Testing A Closed Field Coronal Heating Model Inspired by Wave Turbulence
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Abstract The Problem 2D Case: Simple Dipole 1D Experiments lll: Active Region Heating

g sisinullefs e eneigy baliios of eonemsl plegis on masiessep solss, we oifien ieyulie fie Empirical coronal heating functions have many parameters, are chosen a priori. * We have added the full WTD equations to MAS, our thermodynamic « Want to see if the WTD heating model can produce the time-dependent emission profiles
specification of the coronal heating mechanism in some functional form. To go beyond empiri- MHD model. MAS can be run in two and three dimensions that is typical of Active Regions
cal formulations and to build a more physically motivated heating function, we investigate the Th S luti ) | . .
wave-turbulence driven (WTD) phenomenology for the heating of closed coronal loops. To do € soilution » This simple dipole case is used to contrast behavior of WTD model on - Start from a 3D box simulation of an AR which used an empirically specified model for
so, we employ an implementation of non-WKB equations designed to capture the large-scale A Simple Wave Turbulence Driven (WTD) Heating Model for Closed Fields: open and closed field regions. coronal heating applied on a 3D NLFF field (Mok et. al 2008 and Mok et al. 2014 in prep).
propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of
this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an * While there are many flavors of turbulence models, we explore a model based on Verdini et al., 2010. * We apply a uniform wave energy at boundary + reflective BC.  Pick a line-of-sight (LOS) through the AR core, trace 117 field lines that intersect it.
1dealized loop, and the relevance to a range of solar conditions is established by computing solu- , o , , . .
tions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit ’ Thlf model cmp loys Alernlc tqrbqlence as source.of.heatmg and acceleration, a?nd. eyolves the * The simulation is relaxed to steady state at 20R.. AIA 171 AlA 193 AlA 211 AIA 335 I
dependence of the WTD heating model on loop geometry and plasma properties along the loop Elsasser variables (amplitudes) in time. Our prescription for the low frequency limit 1s as follows: B » g
and at the footpoints, we find that this model can significantly reduce the number of free param- 0z i . ~ ’ e ‘ 2 T. ;M:] |V [krr71 ;0 é, § %
eters when compared to traditional empirical heating models, and still robustly describe a broad | [?} T— U a] . V 24 = Rl Z4 —+ R2 Z:F — Temperature contrast | - : = )J_:
range of quiet-sun and active region conditions. The importance of the self-reflection term in pro- ot 2\ zggf’g:lglosed G Q—i £00.0 % @
ducing realistic heating scale heights and thermal non-equilibrium cycles is discussed, which has where | ' o 2
relevance to the heating and cooling signatures often observed in active region cores. 1 . 500.0 % 3
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use to heat the global corona in our 3D thermodynamic MHD model. i
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* The basal heating rate, O, and heating scale height, 2 ,, are two very im- force due to Reynolds stress N 100.0 A
portant parameters for determining the densities and temperatures of Qui- T e e it . be solved loop leg 0.000 '
: : : ry equations can be solve
et-sun (QS) and Active Region (AR) structures, but ideally they would be - - Fast/Slow wind speed contrast
; along with the MHD equations (3D) or the :
. . g q Advection / between poles and streamer belt.
determined by the physics of the system and not the user! 1D hydrodynamic equations. . I » rcte . . I 0.0
: e : : : . . . .. rong ciosed/open contrasts aespite unitorm
 Solving auxiliary equations inspired by Wave Turbulence Driven (WTD) * Adding reflective boundary conditions Injection : .g P P e y|
. . o Inon.l; h specified plasma and wave boundary conditions!
phenomenology, 1s one way to approach this problem. mimics resonance/non-linear growth.
This Work Key Aspects of the WTD Heating Model 2) Heating scale height 1s determined by the loop solution, not the user!
» Develop and test a simple WTD heating model applicable to the closed 1) Heating on loop is equal to the net Poynting flux — ~|B|/L scaling expected! » Pure WKB propagation gives e o< 4/p, implying Q. dependence on p scale height.
c;)lr(;na, Wher§ heezlll;g ’arlses frombthle dissipation of parallel and anti-par- * Have direct relationship between Poynting flux at the boundary and heating over the loop.  * Areal expansion (i.e. B variation) now plays a role in O, variation both from the hy-  Next we run the WTD heating model along each field line, and track the evolution of
allel propagating Altven wave turbulence. . , : : : : e - - -
| » For simplicity assume v >>U over the loop and the same boundary choice of p, get: drodynamic solution, self-reflection, and the dependence of dissipation on A . temperature and density at gach point along th§ LQS (the true expansion factor and component
 Study the heating properties and resulting plasma conditions for this mod- N . I of gravity is used at each point along the loop in this 1D simulation).
» : : . . e . _ 3) Only two free heating parameters! . . 1
61 undel‘ d I’ange Of AR COIldlthl’lS USIIlg USIIlg our lD 100p hYdrO COde pOlﬂtlﬂg ﬂU.X, P = EVq — \/4—7_‘_7[0, and 1ntegrated heatﬂux, HF = AO n AL /O AQWTD dS ) y g p - ° AS expected, we ﬁnd that the WTD model heatlng varies SlOle Wlth time. HOWeVer, the
* Boundary Wave Energy: ¢, heating scale heights are such that some loops undergo thermal-non-equilibrium.
1 By By, 1
Tried and T Embirical Heati = ti in 3D can show Hp = —— A (AoPrp(0) + AL Prp(L)) = & By, i 2e0 — (L) — e5(0)] * Transverse Length Scale: A » To illustrate this point, we run the simulations again, this time heating with the average
riea an rue. cmpirica edatin unctons in 0 0 . .. " : : 1
. . . P . . s . . Total wave energy passing through footpoints R — e This sounds too good... —> need to test the relevance for realistic conditions. WTD heating rate at each point fixed in time (shown below).
* Volumetric heating is empirically parametrized with analytic functions in 3D. - — . . ce oy
In other words, steady WTD heating can still lead to non-steady plasma conditions!
* The two key parameters are: 1 D E . t I_ P t S Id I d L WTD heating and loop properties as a function of Base Magnetic Field Strength (all else fixed).
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* Total heating rate Q (also written as H). Typically chosen with B proportionality. * Explore variation of WTD heating and apex T as a function of Area and basal field strength. B [ e ey
* Interplay between the scale height (distribution) and basal heating rate (amount) lets * Choose a "standard" loop to start with: 88 Gauss base field, 50Mm height, A/A¢=5.5, reflective z BC. T et ) 1 F 0 T : A
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