

Coronal loop analysis with Hinode/EIS and SDO/AIA observations

Caroline Alexander, Robert Walsh and Stephane Regnier

Jeremiah Horrocks Institute University of Central Lancashire

Solar Imaging Instruments

Instrument	FOV	Resolution
SOHO/EIT	FD	5"
TRACE	510"x510"	0.5 - 1"
STEREO/EUVI	FD	1.6"
Hinode/XRT	FD/PD	2"
SDO/AIA	FD	~ 1"

Open questions about loops

'Building blocks' of Active Regions:

- Dynamic or stable?
- Source of heating?
- Isothermal?
- Structure
 - Multiple strands?
- Do all loops share common properties?
- Combining observations is key.

EIS Slot Study

EIS 2" Slit Study

EIS Loop Structure

Density

Density was found using the line intensity ratio of:

Fe XII (186.854 + 186.887) / (195.119 + 195.179)

 $\rho_{\text{leg}} = 4.17 \text{ x } 10^9 \text{ cm}^{-3}$ $\rho_{\text{apex}} = 2.4 \text{ x } 10^9 \text{ cm}^{-3}$

Temperature

The emission measure loci method was used to investigate the temperature of the loop at the base and apex.

$$T_{base} = 1.1 MK$$

 $T_{apex} = 1.7 MK$

Measured redshifts in both legs of ~ 10 kms⁻¹

Blueshift of 15 kms⁻¹

Pre-SDO Imaging

AIA Channels

AIA wavelength bands					
Channel	$\Delta\lambda^{\dagger\dagger}$	lon(s)	Region of Atmosphere*	Char. log(<i>T</i>)	
Visible	-	Continuum	Photosphere	3.7	
1700Å	-	Continuum	Temperature minimum, photosphere	3.7	
304Å	12.7	He II	Chromosphere, transition region,	4.7	
1600Å	-	C IV+cont.	Transition region + upper photosphere	5.0	
171Å	4.7	Fe IX	Quiet corona, upper transition region	5.8	
193Å	6.0	Fe XII, XXIV	Corona and hot flare plasma	6.1, 7.3	
211Å	7.0	Fe XIV	Active-region corona	6.3	
335Å	16.5	Fe XVI	Active-region corona	6.4	
94Å	0.9	Fe XVIII	Flaring regions	6.8	
131Å	4.4	Fe XX, XXIII	Flaring regions	7.0, 7.2	

*Absorption allows imaging of chromospheric material within the corona; $^{\dagger\dagger}\text{FWHM},$ in Å

SOHO/EIT vs SDO/AIA

AIA 171

So, what's my point?

Measurements of density, temperature and velocity agree with published values.

Unprecedented level of detail with AIA

Help to build up picture of a 'typical' loop → constrain models

Not all about the pretty pictures...

