Benchmarking Atomic data for Astrophysics

Giulio Del Zanna

STFC Advanced Fellow DAMTP, University of Cambridge UK

SOHO/CDS forward modeling

Black: observed solar spectrum (SOHO/CDS); blue: theoretical model spectrum

Del Zanna (1999)

Hinode EIS SW

Almost as good as B.Fawcett's plates.

B.Fawcett 166 – 212 Angstroms

SUPERSTRUCTURE

Pete Storey

Helen

Werner Eissner

0-1 1 3 24555 14565 24545516 14555516 65516 14545526 24535526 24545517 24545518 24545519 2454551A 14555517 14555518 14555519 1455551A 2454551B 2454551C 2454551D 2454551E 1455551B 1455551C 00 00000000 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 -4 0 1 26 14 0 7 0 0 0 31 31 31 31 31 31 31 31 0 0 0 0 0 1 0 21 0 0 0 0 0 0 0 1.1556 1.1312 1.1387 1.1706 1.1399 1.4112 1.1205 1.0649 1.1534 1.2947 1.1796 1.1502 1.1588 1.2832 2 9 10 11 12 13 14 1 - 3 5 78 4 6

Benchmarking atomic data for astrophysics

A novel approach: atomic structure (and occasionally R-matrix scattering) calculations with comparisons between

- 1) observed and theoretical wavelengths;
- 2) line intensities for a wide range of astrophysical and laboratory plasmas using the emissivity ratios (follows one idea from Brunella):

$$F_{ji}(N_{\rm e},T_{\rm e}) = C \ \frac{I_{\rm ob}N_{\rm e}}{N_j(N_{\rm e},T_{\rm e}) \ A_{ji}}$$

Result: a large number of revised wavelengths (with uncertainties), new identifications, new level energies and new diagnostic applications.

Appropriate references !

Typically, one ion in 2-5 years..

Fe X

Del Zanna, Berrington, Mason (2004)

$\lambda_{\text{best}}(\text{\AA}) = \lambda$	observed (Å)	Same ID	Diff. ID	
170 050 10 007	170 000 10 01 11	D70		
179.259 ± 0.007	179.266±0.01 U	B78		H
186.241 ± 0.003	186.248±0.01 U	10.50		н,г
186.854 ± 0.004	186.854 ± 0.002 (B78, bl mr)	B78		
186.887 ± 0.007	$186.887 \pm 0.005 (U, bl mr)$	G66, B78		н,г
188.170 ± 0.018	188.17±0.01 U		B78 (188.216)	н,м
188.450 ± 0.004				
190.068 ± 0.004	190.06 ± 0.01 B78	B78		Н
190.467 ± 0.018	190.459±0.01 B78	B78		Н
191.007 ± 0.184				
191.049 ± 0.008	191.049 ± 0.01 U	F71		Н
192.394 ± 0.002	192.394 ± 0.002	F67		
193.204 ± 0.188		-		
193.509 ± 0.002	193.509 ± 0.002	F67		
194.903 ± 0.002	? 194.92±0.01 B78			Н
195.119 ± 0.002	195.119±0.002 (bl mr)	F67		
195.179 ± 0.002	$195.179 \pm 0.002 (U, bl mr)$			н,г
196.640 ± 0.002	196.640±0.01 (bl mr FexIII)	B78		
196.921 ± 0.002	196.923±0.01 B78	B78		Н
198.581 ± 0.008	198.58 ± 0.01 U		B78	н,
201.140 ± 0.008	201.15 ± 0.01 U		B78	н,
201.740 ± 0.021	201.75 ± 0.01 U			н,м
201.760 ± 0.009	201.75±0.01 U			н,м
203.728 ± 0.005	203.728±0.004 (bl Fe XIII mr)		B78 (203.272)	Ν
206.368 ± 0.005	? 206.369±0.01 (bl ?)	B78		
208.316 ± 0.005	? 208.318±0.01 B78 (bl ?)	B78		Н
208.421 ± 0.003				
209.113 ± 0.003	-			
210.918 ± 0.003	? 210.932±0.01 B78	B78		Н
211.732 ± 0.005	? 211.738 ± 0.01	F71		Н
214.399 ± 0.003	214.405±0.01			
217.276 ± 0.015	? 217.271±0.01	F71		Н
219.095 ± 0.005				
219.437 ± 0.015	219.438±0.004 (bl ?)	F71		
221.410 ± 0.049	221.41±0.01 (bl S XII)			N
223.000 ± 0.100	223.0±0.2 (? T02)			Н
223.179 ± 0.249				
225.572 ± 0.254	? 225.856±0.004 (bl)			Ν
227.406 ± 0.006	D 000 B0 1 0 01 77			
230.768 ± 0.006	? 230.78±0.01 U	B78		Ĥ
232.149 ± 0.054				
237.369 ± 0.017				
240.740 ± 0.059	240.74 U (bl 240.713 Fe xпı)			Ν
246.421 ± 0.321				
248.767 ± 0.310				
249.388 ± 0.032	249.388±0.01 (bl ?)			Ν
251.868 ± 0.020				
256.410 ± 0.066	256.41±0.01 U (bl Fe xIII)			N
259.495 ± 0.068	? 259.494±0.002 (bl S x)			Ν
259.963 ± 0.068	? 259.963±0.002 (bl S x ?)			Ν
283.443 ± 0.017	283.446±0.008 (J93)	F71(283.64),J93		Н
287.221 ± 0.017	287.226 J93	J93		Н
291.010 ± 0.018	291.01±0.01 (bl FexIV)	F71		
303.135 ± 0.019	? 303.135±0.008 (J93)	J93		Η
312.253 ± 0.020	? 312.255±0.008 (J93)	J93		H

Fe XII

21/58 new transitions identified/revised

(Del Zanna & Mason 2005)

323.411 ± 0.022				
332.925 ± 1.105				
$335.380 {\pm} 0.035$	335.38±0.01 (U, bl Fexvi,Mgviii)	J93	F71 (335.06)	R
336.979 ± 0.623				
338.263 ± 0.013	338.263 ± 0.01	F70(338.27)		
346.852 ± 0.006	346.852 ± 0.01	F71		
352.106 ± 0.006	352.107 ± 0.01	F71		
363.792 ± 0.700				
364.467 ± 0.007	364.467 ± 0.004	F71		
376.481 ± 0.044				
382.847 ± 0.016	382.83±0.01 (F71)	F71		Н
439.589 ± 1.156				
592.600 ± 0.123	592.6±0.1 D99			Ν
607.168 ± 1.948				
661.967 ± 2.206				
1242.01 ± 0.01	1242.00±0.01 (SBT77, bl ?)	BRW67		
1349.40 ± 0.02	1349.40±0.01 (SBT77)	BRW67		
1847.23 ± 11.19	? bl 1847.25 (SBT77)			Ν
2169.76 ± 0.05	2169.08±0.02 (SBT77, air;			
	2169.76 vacuum, bl Ni III)	G71,J71,S71		
2406.41 ± 0.06	2405.68±0.01 (SBT77, air;	· ·		
	2406.41 vacuum, bl Fe II)	SBT77		
2566.77 ± 0.13	2565.93±0.06 (SBT77, air;			
	2566.70 vacuum, bl Fe II,?)	SBT77		
2904.70 ± 0.17	-			
3072.06 ± 0.19	3072. (Je71 air;			
	3072.9 vacuum)	J71,S71		
	,	·		

R-matrix and Fe XXIII 1 year !

New electron impact excitation by Chidichimo et al. (2005).

Del Zanna et al. (2005): New diagnostics to measure electron temperatures and densities.

Preliminary benchmarks for the X-rays

Sun - 1980 August 25 flore A lot of benchmark work went into the preparation ^{5×107} of CHIANTI v.4, released in 2003 (SMM/FCS) 4×10^{7} (e.g. Del Zanna G. 2002) and for v.5 (cf. Chifor, Del Zanna et al. 2007). 3×10⁷ Significant work still needed. 2×10⁷ (c) DECAY (09:31-09:38 UT 1×10⁷ 5×10⁵ CORONAS-F RESIK 15.6 15.8 Wavelength [Å] 15.0 15.2 15.4 16.0 16.2 Capella - Chandra/HETG 3.5×10 Fe XVII 15.0150 Å 3.0×10^{-4} Chandra Fe XVII 15.2621 Å 1×10⁶ 2.5×10⁻⁻¹ 3.54.5 5.0 Wavelength [Å] 6.0 4.0 5.5 2.0×10^{-4} (2), 1972 P. Anews 1.5×10 **EM** continuum 15.8281 ŝ **EM** lines 15.0790 1.0×10^{-4} RISE ŭ 5.0×10⁻⁵ 52 52 51 EM (cm⁻³) 50 49 15.0 15.2 15.4 15.8 15.8 16.0 16.2 Wavelength [Å] 48 48 ğ ğ 47 11 46 46 6.0 6.5 7.0 7.5 8.0 6.0 6.5 7.0 7.5 8.0 Log T (K) Log T (K)

first R-matrix e- scattering calculation by Witthoeft, Badnell, Del Zanna et al. (2006).

New diagnostics to measure electron temperatures and densities (Del Zanna 2006). Same issues with Fe XVII. In 30 years dozen of papers with speculations...

EM loci

Re-introduced the EM loci method (Strong 1978) to AR loops. Isothermal !

 $\frac{Iobs}{Ab(Y) \ Gji(Te)}$

SOHO CDS Ne VII (blue - 0.7 MK) Ca X (green - 1 MK) Si XII (red - 2 MK)

FIP effect overestimated in AR loops !

- The Widing & Feldman (1993) diagnostic method assumes that the DEM has a continuous distribution, and gives high FIP (14).
- However, the EM Loci curves are consistent with an FIP bias of 3.7, 4 times lower ! (Del Zanna 2003)

The problem of the 'anomalous' ions

Anomalous EM for lines of the Li and Na isoelectronic sequences (from Burton et al. 1971).

See Del Zanna (1999) and Del Zanna et al. (2001,2002)

Li-like N V and C IV are underestimated by factors of 3 and 10, while those of Ne VIII and Mg X are overestimated by factors of 5 and 10, respectively.

The problem is common to stellar coronae (Del Zanna et al. 2002).

Fe VII – Te diagnostics

Del Zanna (2009): benchmarked Witthoeft & Badnell (2008) against laboratory (Fawcett's plates) and solar (Hinode EIS) data.

After two years: Many identifications from Ekberg are wrong (!?). Good agreement with new identifications.

Also identified the decays of the 3d 4s ${}^{3}D_{j}$ (lines n.7,8, 9,10) and ${}^{1}D_{2}$: Te diagnostics.

Te out of eq. for sunspot loops

CHIANTI v.6 ioniz. Eq.

i	Conf.	Lev.	Eexp	E _{NIST}
1	3s ² 3p ⁴	³ P ₂ ^e	0	0
2	3s ² 3p ⁴	³ P ₁	12667	12667 (0)
3	3s ² 3p ⁴	³ P ₀ ²	14306	14312 (-6)
4	$3s^2 3p^4$	${}^{1}D_{2}^{e}$	37743	37743 (-1)
5	$3s^2 3p^4$	¹ S ₀ ^é	80831	80814 (16)
6	3s 3p ³	³ P ₂ ^o	283551	283558 (-7)
7	3s 3p ⁵	³ P ₁ ⁵	293158	293158 (0)
8	3s 3p ⁵	³ P ₀ ⁶	299163	299163 (0)
9	3s 3p ⁵	¹ P ₁	361846	361842 (4)
10	$3s^2 3p^3 3d$	⁵ D ₀	387544	-
11	$3s^2 3p^3 3d$	⁵ D ₁	387726	-
12	$3s^2 3p^3 3d$	5D2	387940	-
13	$3s^2 3p^3 3d$	⁵ D ⁵ ₂	388268	-
14	$3s^2 3p^3 3d$	⁵ D ⁶	389227	-
15	3s ² 3p ³ 3d	$^{3}D_{2}^{2}$	412856	-
16	$3s^2 3p^3 3d$	$^{3}D_{2}^{5}$	415426	-
17	$3s^2 3p^3 3d$	$^{3}D_{1}^{2}$	417049	-
18	$3s^2 3p^3 3d$	³ F ¹ ₂	422844	-
19	$3s^2 3p^3 3d$	¹ S ⁵	-	-
20	$3s^2 3p^3 3d$	${}^{3}F_{2}^{0}$	426022	-
21	3s ² 3p ³ 3d	³ F ²	430522	-
22	3s ² 3p ³ 3d	³ G ⁷ ₂	-	-
23	3s ² 3p ³ 3d	³ G ²	450211	-
24	3s ² 3p ³ 3d	³ G ⁷	452416	-
25	3s ² 3p ³ 3d	¹ G ²	459218	-
26	$3s^2 3p^3 3d$	$^{1}D_{2}^{5}$	-	-
27	$3s^2 3p^3 3d$	${}^{3}D_{1}^{5}$	-	-
28	$3s^2 3p^3 3d$	³ P ₀	-	-
29	3s ² 3p ³ 3d	³ P ₁	484830	-
30	3s ² 3p ³ 3d	³ F ⁶ ₂	485039	-
31	3s ² 3p ³ 3d	³ F ₂	-	-
32	3s ² 3p ³ 3d	³ F ^õ ₄	486413	-
33	3s ² 3p ³ 3d	$^{3}D_{2}^{5}$	489378	-
34	3s ² 3p ³ 3d	$^{3}P_{2}^{\bar{0}}$	494013	496090 (-2077)
35	3s ² 3p ³ 3d	$^{3}D_{3}^{\overline{0}}$	497235	-
36	3s ² 3p ³ 3d	¹ F ₃	525260	-
37	3s ² 3p ³ 3d	${}^{3}P_{1}^{0^{+}}$	531070	526480 (4590)
38	$3s^2 3p^3 3d$	$^{3}P_{2}^{0}$	531304	531290 (14)
39	$3s^2 3p^3 3d$	3S. 1	533445	533450 (-5)
40	$3s^2 3p^3 3d$	${}^{3}P_{0}^{1}$	541777	541720 (57)
41	$3s^2 3p^3 3d$	³ P ^{°†}	541424	541390 (34)
42	$3s^2 3p^3 3d$	$^{3}D^{2}$	554321	554300 (21)
43	$3s^2 3p^3 3d$	³ D ³	561615	561610 (5)
44	$3s^2 3p^3 3d$	³ D ₂	566396	566380 (16)
45	$3s^2 3p^3 3d$	$^{1}D_{2}^{0}$	578890	578860 (30)
46	$3s^2 3p^3 3d$	$^{1}F^{\circ}$	594047	594030 (17)
47	$3s^2 3p^3 3d$	¹ Po	623101	623080 (21)
48	3p ⁶	¹ Se	-	-

Fe XI – 6 years !

Atomic Data from the IRON Project

LXVIII. Electron impact excitation of Fexi*

Fig.7. Collision strengths for transitions involving the three J = 1 levels, averaged over 1 Ryd. Boxes indicate the GT99 values, while triangles the AK03 ones.

Table 3. Summary of line identifications for Fe x1.			4-9	308.544	308.544(4) (sbl) Be76	F71			
Del 7anna (2010)			16-67	308.991	308.991(4) B00	N			
			14-54	326.323	326.323(4) B00	N			
i- j	λ _{exp}	lobs	ID	Diff. ID	1-7	341.113	341.112(10) Be76	F/1	
	(Å)	(Å)			2-8	349.046	349.046(8) S76 (bl Mg vi)	F71	
6-103	168,929	2 168.929(10) Be76	N		1-6	352.670	352.670(10) Be76	F71	
1-43	178.058	178.056(4) Be76	G66		2-7	356.519	356.519(8) S76 bl	F71	
4-46	179.758	179.758(10) Be76	G66		3-7	358.613	358.621(8) S76 bl	F71	
1-42	180.401	180.401(2) Be76 (bl)	G66		2-6	369.163	369.161(10) Be76	F71	
2-44	180.594	180.595(4) Be76	F71		4-6	406.822	406.791(4) TN94	N	
3-44	181.130	181.131(10) Be76	G66		6-21	680.406	? bl 680.28(1) F97	N	
2-43	182.167	182.167(2) Be76	G66		6-14	946.289	946.29(1) F97	N	
4-45	184./93	184./93(10) Be/6 (bl u)	FG00	E71 (199 200)	13-32	1018.90	1018.89(1) F97 (Ы)	N	F97 (Ar xII)
1-38	188.210	188.210(2) Be70	B// 102	F/1 (188.299) P77(180.04)	14-32	1028.95	1028.95(1) F97 (bl)	N	
2-41	180.233	180.239(2) Bero	B77	103 (102 610)	16-32	1408 71	1408 70(1) F97	N	
3-41	189.711	189.723(5) N (bl)	B77	575 (172.017)	13-25	1409 44	1409 45(1) \$77	N	
1-36	190.382	190.382(5) N (bl u)	Ν	Be76 (S x1)	14-25	1428 76	1428 75(1) 877	N	
2-39	192.021	192.021(5) N (bl)	B77		2-5	1467.07	1467 06(2) \$77	171	
3-39	192.627	192.624(5) N (bl u)	B77		14-24	1592.55	1592 56(2) 877	N	ED77 877
2-38	192.813	192.811(5) N (bl O v, u)	F71		14-24	1620.77	1620 78(2) S77 (b) O um)	N	577
3-37	193.512	- (bl Fe xii 193.509(2))		B 84 800	14-25	2640.50	2649 71(2) 877 (-i-)	\$77	311
4-41	198.538	198.555(10) Be/6 (bl S viii)	B77	Be76, J93	1-4	2049.50	2046.71(2) 577 (all)	5//	
1-35	201.112	201.112(5) N (bl Fe XIII) 201.724(10) Pa76 (bl Fa xii)	N 1977		2-4	3988.00	3980.8(5) Je/1 (air)	10177	
1-34	201.734	201.734(10) Be76 (bl re XII) 202.424(10) Be76 (bl ri)	N N	B77 (201 575)	21-24	4567.46	4566.2(5) Je71 (air)	MN//	
4-38	202.609	- (b) S ym 202 608(10))	.,	BIT (201313)	1-2	7894.03	/891.8(1) Je/1 (air)		
4-37	202.705	202.710(10) Be76 (bl)							
1-30	206.169	206.169(10) Be76 (bl u)	Ν				New Te diagno	ostics	
1-29	206.258	206.258(5) N	N				OS off limb Fo VI Log N	$-\frac{1}{2}$	50
2-34	207.751	207.749(5) N (bl u)	N				QS OII - IIIIID - FE XI LOG N= 178 (1-42 180 40 Å 3P3D.)	e [cm]=o.	20
2-33	209.771	209.771(5) N (bl u)					=111 $(1-38,188.22 \text{ Å }^{3}\text{P}_{2}-{}^{3}\text{P}_{2})$		
1-20	234.730	234.73(2) D78	N	D/8 (Fe xv)		- I _{ob} =	=71.9 (1-37,188.30 Å ³ P ₂ - ³ P ₁)		
1-18	230,494	230.494(10) Be/0	N			4 т (ы	Fe XII,u) I_{ob} =30.8 (1-14,256.92 Å ${}^{3}P_{2}$ - ${}^{5}D_{4}$)		
1-17	239.760	240 713(4) Be76 (b) Fe ym)	N)) _{ob} =18.7 (1−13,257.554 A °P ₂ −°D ₃ +4−20,257 =9 99 (1−12 257 77 Å ³ P ₂ − ⁵ D ₂)	(.547 A 'D ₂ —"⊢ ₃)	
1-15	242.215	242.215(10) (bl) Be76	N				3		
4-21	254.596	254.600(5) N	N			t t	1		
1-14	256.919	256.925(5) N (bl Fe xii)	Ν						
4-20	257.547	257.547(10) Be76 (sbl)	N			1 1 2 1 A	4	46	
1-13	257.554	257.547(10) Be76 (sbl)	J93	T98 (257.26 T)				5	
1-12	257.772	257.772(4) Be76	J93	T98 (257.55 T)		1 - 5	5°		
1-11	257.914	257.914(5) N	N	198 (257.78 T)				12	
4-10	204.772	DI FE XIV 204./8/	N			0			20
21-79	266 759	266 755(5) N (bl u)	N			∨ , 5⊿	56 58 60	62 6	
//	200.137	200.00(0) 11 (01 u)				0.4	Log T [K]	0.2 (** *

Good things come to those who wait...

- Fe VII: Witthoeft et al. (2008) S
 Del Zanna (2010) ID
- Fe VIII: Griffin et al. (2000) S Del Zanna (2010) ID
- Fe IX: Storey et al. (2002) S
- Fe X: Del Zanna, Berrington, Mason (2004) S, ID
- Fe XI: Del Zanna, Storey, Mason & Del Zanna 2010 S, ID
- Fe XII: Storey et al. 2005 (S); Del Zanna & Mason (2005) S, ID
- Fe XIII: Storey & Zeippen (2010) S
- Fe XIV: Storey et al. (2000); Liang et al. (2010) S
- Fe XV Berrington et al. (2005)
- Fe XVII: Loch et al. (2006), Liang et al. (2010). ID: Del Zanna & Ishikawa (2009).
- Fe XVIII: Witthoeft et al.(2006). Del Zanna (2006).
- Fe XX: Witthoeft, Del Zanna, Badnell (2007)
- Fe XXIII Chidichimo et al. (2005) S; Del Zanna et al. (2005) ID
- Fe XXIV Whiteford et al. (2002) S; Del Zanna (2006) ID

Atomic Data

- APAP Network <u>http://www.apap-network.org</u>
- CHIANTI database (not funded by STFC) SolarSoft distribution, GUI programs, documentation, www pages.

- Basic atomic data and spectral line emissivities for plasma modelling were imported from CHIANTI into a MySQL database accessible via AstroGrid: www2.astrogrid.org. Unfortunately, AstroGrid is not funded by STFC.
- Del Zanna & Mason are part of the Virtual Atomic and Molecular Data Centre (VAMDC) <u>www.vamdc.eu</u>, an EU-funded international collaboration for the provision of atomic and molecular data.

Conclusions

Excellent agreement (within 10%) between theoretical and observed line intensities for stellar coronae.

A novel benchmark work has established a large number of new line identifications and spectral diagnostics.

We have made a great progress, but after 40 years, some problems are still with us.. A daunting amount of work is still needed (who ?)

Thank you Helen

