A Personal History of CHIANTI Ken Dere

CHIANTI

- A freely available database of atomic parameters needed to calculate the emission spectrum of a hot, optically-thin plasma
- Freely available IDL and Python programs
- 'CHIANTI' is simply a memorable name

Version 1 released 1996

Version 6 released 2010

NRL SOLRAD project

X-ray ionization chambers

NRL ~ 1971

- Don Horan calculates response of SOLRAD detectors to a hot plasma as a function of temperature and emission measure.
 - Follows procedures outlined by Culhane (1969)
- Tucker and Koren (1971) provide the atomic data to calculate spectral line emission
- George Doschek analyzing OSO X-ray spectra

TABLE 1
ATOMIC DATA USED TO COMPUTE THE LINE INTENSITIES

Ion	Transition	Wavelength (Å)	Excitation Energy (eV)	Effective Collision Strength	Reference*
C v1	1s-np	26.4	470	0.003	(K)
O 11	1s-4p	27.0	459	0.002	(-1)
	1s-3p	28.5	435	0.006	WS
	1s-2p	33.7	368	0.042	(K)
C v	1s2-1s np	32.8	378	0.008	(K)
	$1s^2-1s4p$	33.4	371	0.006	(K)
	1s ² -1s3p	35.0-35.1	353	0.014	WR
	$1s^2-1s2p(^1P)$	40.3	308	0.084	WS
	$1s^2-1s2p(^3P)$	40.7	306	0.008	(M)
	$1s^2-1s2p(^3S)$	41.5	300	0.089	(M)
N vii	1s-np	19.4	639	0.002	
	1s-4p	19.8 20.9	626	0.002 0.005	RW
	1s-3p	24.8	593 500	0.003	RW
N vi	1s-2p 1s ² -1s np	23.3	532	0.005	(K)
14 41	$1s^2 - 1s4p$	23.8	521	0.004	(14)
	1s2-1s3p	24.9-25.0	496	0.010	(K)
	$1s^2-1s2p(^1P)$	28.8	430	0.056	(M)
	$1s^2-1s2p(^3P)$	29.1	425	0.010	(M)
	$1s^2-1s2p(^3S)$	29.5	420	0.063	(M)
O vIII	1s-np	14.8	837	0.002	ŔŴ
	1s-4p	15.2	816	0.002	RW
	1s-3p	16.0	775	0.005	RW, EP (CO) RW, EP (CO)
	1s-2p	19.0	653	0.023	
O vII	1s2-1s np	17.4	713	0.004	RW
	$1s^2-1s4p$	17.8	697	0.004	RW ED (CO)
	1s2-1s3p	18.7	663	0.009	RW, EP (CO)
	$1s^2-1s2p(^1P)$	21.6	575 570	0.056	WR, EP (CO) WR, EP (CO)
	$1s^2-1s2p(^3P)$ $1s^2-1s2p(^3S)$	21.8 22.1	560	0.063	WR, EP (CO)
Ne x	1s-np	9.5	1305	0.0010	RW (CO)
NC A	1s-4p	9.7	1280	0.00084	RW
	1s-3p	10.2	1215	0.0024	RW
	1s-2p	12.2	1020	0.015	RW, EP (CO)
Ne ix	1s2-1s np	10.8	1148	0.003	(K)
	1s2-1s4p	11.0	1130	0.002	(K)
	$1s^2-1s3p$	11.6	1070	0.005	ŘŴ, EP (CO)
	$1s^2-1s2p(^1P)$	13.4	925	0.030	RW, EP (CO)
	$1s^2-1s2p(^3P)$	13.6	912	0.008	RW, EP (CO)
	$1s^2-1s2p(^3S)$	13.7	905	0.025	WR
Ne vIII	2s-nl	52-65.9	188	0.050	(K)
	2s-4l	67.4-74.6	165	0.050	(K)
Mg XII	1s-np	6.6	1879	0.00076	(K)
	1s-4p	6.7	1850	0.00058	WD
	1s-3p	7.11	1740 1470	0.0017 0.010	WR WR, EP (CO)
Marr	1s-2p 1s ² -1s np	8.42 7.30	1698	0.002	(K)
Mg XI	$1s^2-1s \neq 0$ $1s^2-1s \neq 0$	7.47	1660	0.0016	(K)
	1s2-1s3p	7.85-7.86	1570	0.0035	WR
	$1s^2-1s2p(^1P)$	9.17	1350	0.022	RW. EP (CO)
	$1s^2-1s2p(^3P)$	9.23	1340	0.007	RW, EP (CO)
	1s2-1s2p(3S)	9.31	1330	0.017	RW, EP (CO)
Mg x	2l-nl	33.8-43.0	290	0.04	(K)
	21-41	44.0-47.3	260	0.04	(K)
	2s-3p	57 9	214	0.037	wś
	2p-3d	63.2-63.3 65.7-65.9	215	0.09	WS
	2p-3s				WS

^{*}Lines observed in solar corona: WS = Widing and Sandlin; WR = Walker and Rugge; RW = Rugge and Walker; EP = Evans and Pounds. Lines observed in laboratory or computed theoretically: (K) = Kelly; (C) = Chapman; (CO) = Connerade; (M) = Moore; (H) = Hydrogenic. Lines not referenced were obtained by extrapolation or interpolation.

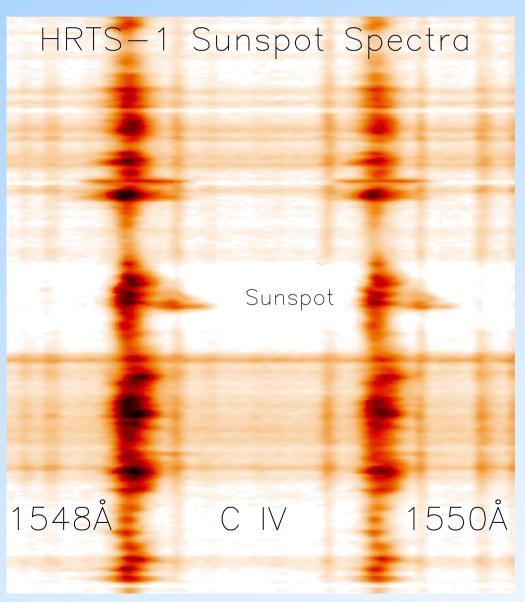
285

TABLE 2-Continued

			1	ABLE 2	Coniin	uea				
NIXXVI	6.14						29.13	25.92	26.19	27.43
SIXIV	6.18			31.87	29.30	26.12	24.98	24.95	25.53	
MgXII	6.60			30.86	28.05	26.55	26.25	26.69		
NIXXIV	6.62					30.43	26.95	25.68	27.47	30.46
SIXIII	6.65	36.58	29.74	26.83	25.47	24.73	24.57	25.53		
SIXIII	6.69	36.97	30.15	27.25	25.90	25.17	25.01	25.98		
MgXII	6.70			30.98	28.17	26.68	26.37	26.82		
SiXIII	6.74	36.63	29.83	26.94	25.60	24.87	24.71	25.68		,
NIXXV	6.76						28.48	26.30	27.35	29.46
NIXXIII	6. 94					28.70	26.31	25.95	28.51	
Nixxvi	7.10						29.05	25.92	26.22	27.48
MgXII	7. 11			30.33	27.61	26.16	25.89	26.36		
FeXXIV	7. 21					30.43	26.58	24. 95	25. 29	26.58
NiXXII	7.26				31.20	27.89	25.88	26.46	29.75	
MgXI	7. 30	32.84	29.29	27.42	26.33	25.95	26, 42			
FeXXI	7. 40					26.84	25.14	26. 22		
MgXI	7. 47	33.04	29.47	27.57	26.46	26.07	26.54			
NIXXV	7.50						28.45	26.30	27.37	29. 49
NiXXI	7. 60				29.08	26.78	25.58	27.08		
NIXXIII	7.70					28.70	26.30	25.94	28.50	
MgXI	7. 86	32.26	28. 85	27.06	26.02	25.67	26.16			
FeXXII	7. 89					27.23	24. 72	24. 93	26.72	
FeXXI	7.90					26.87	25. 15	26.21		
NIXXIV	7.94					30. 35	26. 91	25, 68	27.49	30. 49
FeXXI	8. 00					26.60	24. 91	25. 99		
FeXXIII	8.00					29. 22	25. 95	25. 28	26.35	28. 49
NIXIX	8.10			27.58	26.17	25. 61	25.66	28. 86		
NIXX	8. 25			29.84	27.29	25.84	25.30	27.65		
NIXIX	8. 30			27.91	26.53	25.99	26.05	29. 26		
FeXXI	8.30					26.40	24. 71	25.79		
FeXXIV	8. 35					30. 31	26.52	24.96	25.32	26. 63
MgXII	8. 42			29.07	26.54	25.23	25.03	25.57		
FeXIX	8.60				27.79	25.70	25.22	27.82		
NIXXII	8.60				31.04	27.80	25.85	26.47	29.77	
NIXXI	8.60				28. 92	26.69	25.54	27.09		
NiXXI	8. 83				28.97	26.72	25.55	27.08		
FeXXIII	8.86					29.16	25. 92	25.28	26.37	28.52
FeXXI	8. 95					26.53	24.88	26.00		
NIXIX	9.00	*****		27. 31	26.01	25.53	25.63	28.86		
NIXIX	9.10		• • • • •	27.29	26.00	25.53	25.63	28.86		
FeXVIII	9. 15		33.98	28.50	26.41	25, 26	25.45	28.90		
MgXI	9. 17	30.45	27.45	25.92	25.04	24.80	25.35			
FeXX	9.20				29.03	26.16	25.09	26.89		
NIXXVI	9.20						28.85	25.81	26.16	27.44
MgXI	9.23	30.92	27.93	26.41	25.54	25.30	25.86			
NiXXII	9.25				30.91	27.78	25.89	26.57	29.90	
MgXI	9.31	30.47	27.51	26.00	25.13	24.90	25.46			
NIXXIV	9.32					30.25	26.92	25.79	27.65	30.68
NIXXIII	9.35					28.64	26.36	26.11	28.73	
FeXXII	9.45					27, 17	24.70	24.93	26.74	

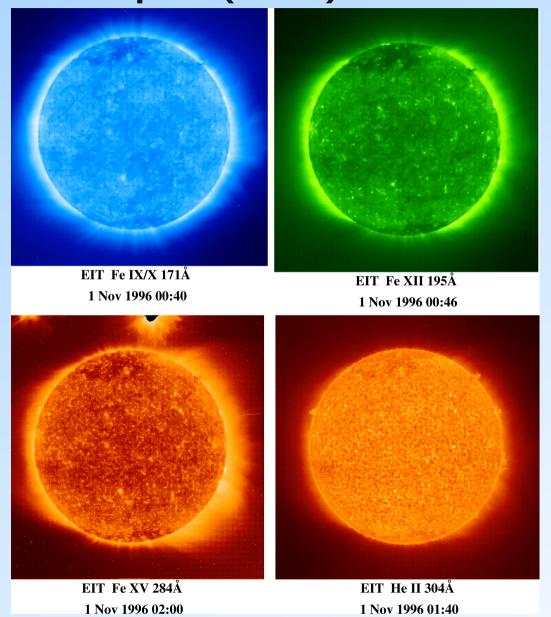
Skylab 1973-1974

- Slitless Objective grating spectrograph (S082A)
 - Or, the overlap-a-graph
 - 170 360 Å and 300 600 Å



Modeling solar spectra

- Helen Mason visits George Doschek at NRL
 - Using the Distorted Wave package to calculate the necessary atomic data.
 - Density diagnostics from spectra line intensities



High Resolution Telescope and Spectrograph (HRTS)

Extreme-ultraviolet Imaging Telescope (EIT) on SOHO

EIT- narrow band imager

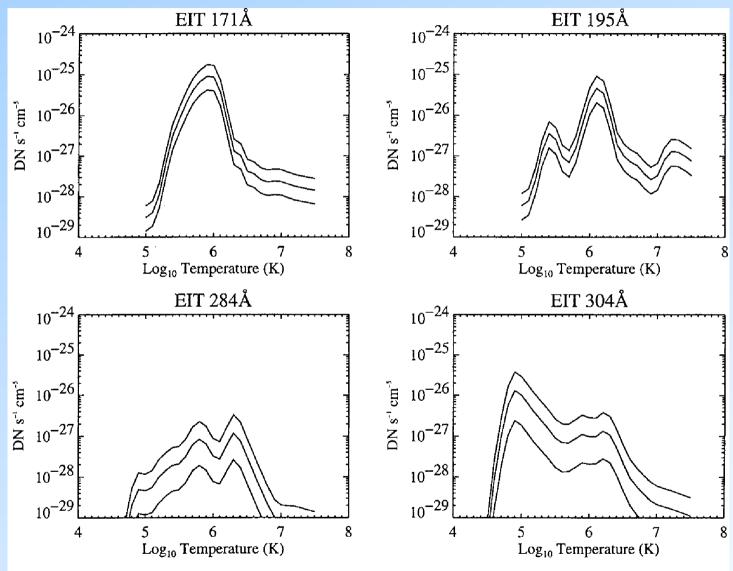
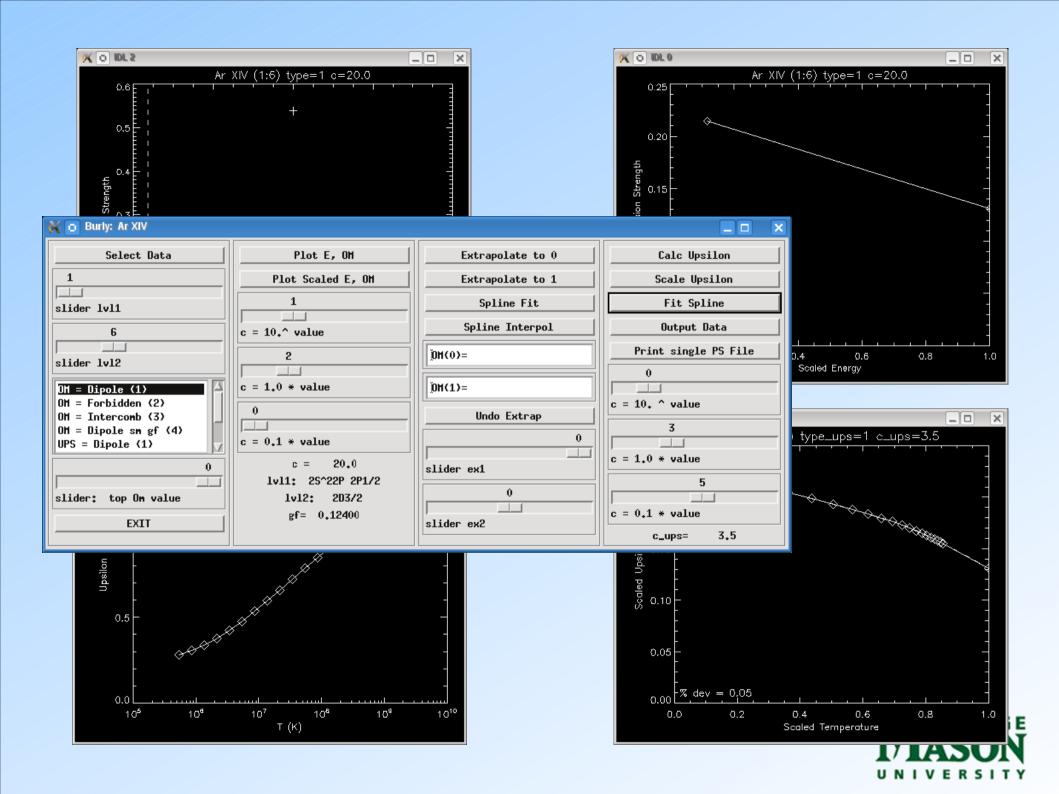



Figure 12. EIT plasma response H(T) for various sector and filter-wheel combinations. In each plot, the top curve includes the clear filter-wheel filter, the middle curve the 'Al+1' filter and the bottom curve the 'Al+2' filter.

Beginnings of CHIANTI

- ~1993(?) NASA proposal accepted
- SOHO Elba meeting in 1993 began to work together with Brunella Monsignori Fossi
- Applied the Burgess and Tully (1992) scaling laws to calculated collision strengths
- A lot of data to incorporate so that an automated widget process developed

CHIANTI beginnings cont.

- January 1996 Brunella dies
- Late 1996 the database is first released
- 1997 Publication of CHIANTI Version 1 paper, for wavelengths greater than 50 Å

Team

- Giulio Del Zanna (U. Cambridge)
- Ken Dere (NRL, GMU)
- Enrico Landi (Arcetri, NRL, U. Michigan)
- Massimo Landini (U. Florence)
- Helen Mason (U. Cambridge)
- Brunella Monsignori Fossi (Arcetri)
- Peter Young (U. Cambridge, RAL, NRL)

CHIANTI releases

- Version 2 1999: continuum and minor ions
- Version 3 2001: extension to shorter wavelengths
- Version 4 2003: proton rates
- Version 5 2006: new X-ray data
- Version 6 2009: ionization, recombination

One measure of the success of CHIANTI is through the number of citations to the CHIANTI papers in the scientific literature. The information below has been extracted from the <u>ADS abstracts service</u>.

Total number of citations to CHIANTI papers: 1420*.

Full list of papers that cite the CHIANTI papers.

Summary of where and when the citing papers were published:

Journal ApJ	No. of papers* 264	Year 1997	No. of papers*
ApJS	26	1998	27
ApJL	55	1999	65
AJ	7	2000	42
A&A	200	2001	56
A&AS	6	2002	46
MNRAS	48	2003	86
Solar Physics	56	2004	63
JGR	7	2005	100
J. Phys. B	10	2006	84
ADNDT	17	2007	80
Phys. Scripta	8	2008	123
PASJ	13	2009	98
Adv. Space Research	26	2010	37
Sp. Sci. Rev.	13		
Phys. Rev. A	3		
Icarus	4		
Mem. Soc. Ast. I	tal.4		
Rev. Sci. Inst.	4		
Ast. Lett.	8		
Other	138		

^{*-} Some papers cite more than one of the CHIANTI papers, thus leading to multiple citations from a single paper. The columns above give the number of citing papers. The total number of such papers is **917**.

Thu: 78 °F

Observations analyzed with CHIANTI

- Solar
 - Yohkoh
 - SOHO
 - SERTS
 - TRACE
 - CORONAS
 - Hinode
 - RHESSI

- SOXS
- Ground-based
- GOES
- STEREO
- SDO

cont.

- Astronomy
 - IUE
 - EUVE
 - Hubble
 - FUSE
 - Chandra
 - XMM

- GALEX
- ESO-VLT
- SPEAR-FIMS
- NEAR-Shoemaker
- EURD
- ISO

cont.

- Planetary
 - Cassini
 - FUSE
 - Hubble
 - Chandra

- Models
 - NRL-irradiance
 - XSTAR
 - APED
 - Cloudy
 - Pint of Ale
 - MOCASSIN

CHIANTI in the future

Working on it

