Can κ - distribution Explain Observed Intensities of Si III lines in the Transition Region?

Elena Dzifčáková¹ & Alena Kulinová^{1,2}

¹Astronomical institute Ondřejov Academy of Sciences of the Czech Republic

> ²Comenius University Bratislava Slovak Republic

Motivation

The analysis of the SUMER Si III spectra in EUV region from 1100 Å to 1320 Å showed that it is not possible to explain the observed spectrum under the assumption of the Maxwellian distribution of free electrons (Pinfield *et al.*, 1999, ApJ **527**, 1000)

We try

- to explain observed spectrum by a non-thermal κ-distribution with an enhanced number of particles in its high energy tail
- to determine parameter of distribution, κ

We assume

 the influence of radiation field on Si III line intensities (it has not been included in any previous calculations)

We would like to show

how a strong gradient of density and T in the transition region influences observed intensities of Si III lines and diagnosed parameters of plasma?

Non-thermal Electron *κ* - distribution

$$f(E)dE = A_{\kappa} \left(\frac{m}{2\pi kT}\right)^{3/2} \left(1 + \frac{E}{(\kappa - 1.5)kT}\right)^{-(\kappa + 1)} E^{1/2}dE, \quad \text{(Shoub, 1983)}$$

$$A_{\kappa} = \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 0.5)(\kappa - 1.5)^{3/2}} \qquad 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ \langle E \rangle = 3kT/2 \\ p = NkT \qquad 10^{-5} \\ The comparison of the Maxwellian distribution with κ -distributions for $\kappa = 2, 3, 5, 10$ and $T = 10^{6} K.$$$

Ionization equilibrium

excitation equilibrium

The original modification of CHIANTI software and extended database has been used for computation of spectra under synthetic the assumption of non-thermal distributions.

• The 20 level model of Si III is included in CHIANTI.

Schematic diagram of the first 12 levels with the indication of the emission lines observed by SUMER.

Maxwellian distribution: (blue), κ *-distributions:* κ =12 (green), κ =7 (red), κ =5 (grey), κ =3 (yellow), κ =2 (black) for transitions 1-5 (left), 1-13 (middle), 1-11 (right).

DiaGnostics

• unfortunately, this is not valid neither for Maxwell nor for the κ -distributions when radiation field is added.

Diagnostics - Maxwellian

Maxwellian distribution Maxwellian distribution 1.2 AR 1.0 1 1 4.6 4.8 0.3 12.0 1.5 0.8 R9=|₁₃₁₃/|₁₁₁₃ $R7 = |_{1301}/|_{1296}$ 1.0 0.2 AR 95 0.6 0.0 10.5 10.5 full lines: 0.4 0.1 10.0 T_{rad} = 6000 K, 0.2 9.0 r=1.003R_o 0.0 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.10 0.15 0.25 0.05 0.20 0.3 R3=1,108/1,1298 R3=I1108/I1298 Maxwellian distribution Maxwellian distribution dashed lines: 0.0.30 0.20 9.5 no radiation field 4.8,12.0 10.0 0.025 0.15 10.5 11.5 0.020 color points with R9=|₁₁₃/|₁₁₁₃ 11.0 |=|₁₂₉₆/ error bars: 11.0 0.015 11.5 observed line ratios 12.0 0.010 (Pinfield et al. 1999) 0.05 0.005 4.6 44 0.000 0.00 0 2 0.0 0.5 1.0 1.5 2.5 3.0 3.5 3 5 6 2.0 R5=1113/11294 R4=|1109/|1296

A grid of model spectra has been computed for:

- κ -distribution with κ = 2 34 and Maxwellian distribution
- T : 10⁴ K 10⁵ K
- N_e: 10⁸ cm⁻³ 10¹² cm⁻³
- T_{rad}=6000 K, r=1.003 R_☉ (25 000 km)

The diagnostics method uses our grid of the calculated values of R1 - R11 for different T, N_e, and κ and looks for a minimum of the differences between the observed and theoretical line ratios.

Conclusions I.

 $\stackrel{\checkmark}{\leftarrow}$ the presence of the κ-distribution is able to explain the observed line ratios of Si III in the transition region

* N_e and T diagnosed for the κ -distribution correspond to the electron densities and temperatures derived under assumption of the Maxwellian distribution

✤ a degree of the non-thermality of the region on the Sun increases with their activity – probably it is related to the configuration of the magnetic field

Scudder (1992) κ~2.2, MacNeice *et al.* (1991) - small departures from the Maxwellian distribution

Problems:

Iower N_e for QS

Iow T=10⁴ K for AR

Is there an influence of the strong N_e and T gradient in the transition region on diagnostics?

DEM - Maxwellian

3 different DEM from CHIANTI

Assumptions:

- constant κ in the transition region
- ♦ constant pressure, $N_e xT = 10^{13} 10^{16} \text{ cm}^{-3} \text{ K}$

$$I_{ij} = \frac{hc}{4\pi\lambda_{ij}} A_{ij} A_{si} \int \frac{N_i}{N_{si}^{k+}} \frac{N_{si}^{k+}}{N_{si}} \frac{N_H}{N_e} N_e dI$$

$$I_{ij} = \frac{hc}{4\pi\lambda_{ij}} A_{ij} A_{si} \int \frac{N_i}{N_e N_{si}^{k+}} \frac{N_{si}^{k+}}{N_{si}} \frac{N_H}{N_e} DEM \, dT = \int G(T) DEM \, Td \log(T) / \log(e)$$
$$DEM = N_e^2 \frac{dI}{dT}$$

DEM – cornal hole

❖ corresponds to DEM 1, log(N_exT) = 14.6 (left) and 14.8 (right) cm⁻³K
 ❖ isothermal diagnostics: log(N_e)+log(T) = 10.15+4.40=14.55 cm⁻³K

DEM – quiet sun

- Ieft: the observed ratios are situated outside of calculated values variable κ, optical thickness of 1206 Å line?
- Iog(N_exT) = 14.2-15.2 cm⁻³K (right, for different DEM's)
- isothermal diagnostics: $log(N_e)+log(T) = 9.25+4.55=13.80 \text{ cm}^{-3}\text{K}$

optical thickeness of 1206 Å line

Pinfield et al. (1999): the absence of the flattening of the Gaussian profile of this line in the quiet Sun region Avrett & Loeser (2008): A

line that is strong enough to have its line-center optical depth close to unity where the temperature increases with high will appear in emission if the line source function also increases with high.

blue: Maxwellian green: κ=12 red: κ=7 full line: DEM 1 dashed line: DEM 2 dot-dashed line:DEM 3

DEM – Active region

 $log(N_e xT) = 14.1 \text{ cm}^{-3}\text{K} (left \& right)$

- isothermal diagnostics: $log(N_e)+log(T) = 10.10+4.00=14.10 \text{ cm}^{-3}\text{K}$
- Iow T is a result of strong gradient T and N_e

Conclusions II.

- the presence of the κ-distribution or similar kind of the electron distribution with an enhanced number of particles in high-energy tail is able to explain the observed intensities of Si III lines in the transition region
- a gradient of N_e and T in the transition region does not influence the diagnosed value of κ; a stronger activity corresponds to the higher nonthermality of plasma
- DEM can influence diagnosed N_e and T but pressure seems to be correct
- the 1206 Å line can be optically thick it is not suitable for diagnostics
- Iow T diagnosed for κ =7 in AR is a result of the strong gradient of T and N_e; the highest contribution to the total line intensities comes from the lowest parts of the transition region with the lowest T

Open problems:

- the effect of thermalization of the electron distribution at the boundary between chromosphere and transition region on diagnostics should be investigated for different DEM's
- DEM's under an assumption of κ-distribution should be calculated

Thank you for your attention!