
# Flux Emergence

Alan Hood University of St Andrews

14 September 2010

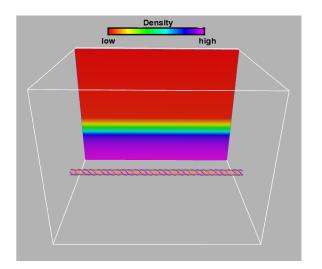


#### Thanks to:

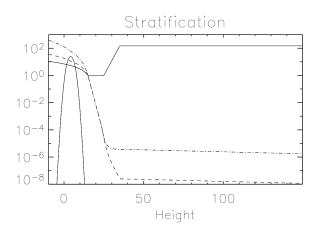
Vasilis Archontis, Michelle Murray, David MacTaggart, Klaus Galsgaard, Fernando Moreno-Insertis.

#### Outline

- ▶ 1. Basic set up.
- ▶ 2. General field at photosphere (magnetograms)
- 3. Sigmoids
- 4. Flux Rope Formation
- ▶ 5. CMEs and Eruptions

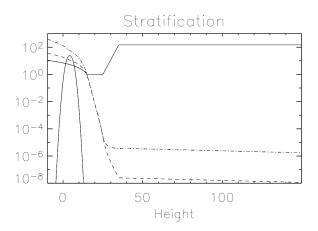

#### Outline

- 1. Basic set up.
- 2. General field at photosphere (magnetograms)
- 3. Sigmoids
- 4. Flux Rope Formation
- ▶ 5. CMEs and Eruptions
- 6. Need to use CHIANTI


#### Outline

- 1. Basic set up.
- ▶ 2. General field at photosphere (magnetograms)
- 3. Sigmoids
- 4. Flux Rope Formation
- ▶ 5. CMEs and Eruptions
- ▶ 6. Need to use CHIANTI (lots and lots)

## **Initial Conditions**




## **Initial Conditions**



Tube buoyant in the middle.

## **Initial Conditions**



Tube buoyant in the middle. But first some observations.

# Pre-existing Twisted Flux Rope?

AR 5617 emergence and twist

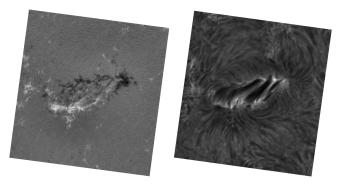
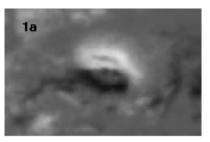


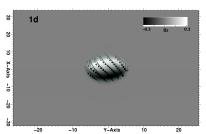

Figure: MDI and  $H_{\alpha}$  7.5 hours after the emergence began.

Observations show many ARs have (at least) modest level of twist (Pevtsov, Canfield & Metcalf, 1995; Longope, Fisher & Pevtsov 1998; Zhang & Bao, 1999; Lites et al., 1995; Strous, 1994; Strous et.al., 1996; Strous & Zwaan, 1999, etc.)

# AR10808 - Magnetogram - MDI - 12/09/2005 - 15/09/2005


Emergence and magnetic 'tails'. (Canou et al, 2009)

(Movies/mdi-mag200509.mpg)


## Canou et al, 2009

- ► AR10808 MDI and THEMIS magnetograms
- $\delta$ -spot and many eruptions.
- Horizontal magnetic fields shows change of direction across neutral line.
- Twisted Flux Rope emerging?
- ► NLFFF extrapolation indicates TFR emerging.
- Pre-existing TFR before eruption.

# Magnetic Tails Observation and Simulation



SOHO/MD1 Mag 2005/09/12 14:27:03 UT



8 / 27

# Initial phase: emergence into the photosphere.

- Density deficit & buoyancy: tube rises to the photosphere. Vrise=1.7 Km/sec, t=12.5 min.
- Formation of a bipolar region.
- ▶  $B \approx 600G$  at the photosphere.

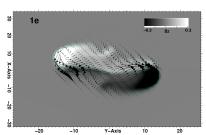
(Movies/movie-long.mov)

# Initial phase: emergence into the photosphere.

 $({\sf Movies/movie\text{-}long.mov})$ 

- Density deficit & buoyancy: tube rises to the photosphere.
   Vrise=1.7 Km/sec, t=12.5 min.
- Formation of a bipolar region.
- ▶  $B \approx 600G$  at the photosphere.
- Formation of tails on both sides of PIL.
- Organized shear velocity flow in the photospheric layer.

# Initial phase: emergence into the photosphere.

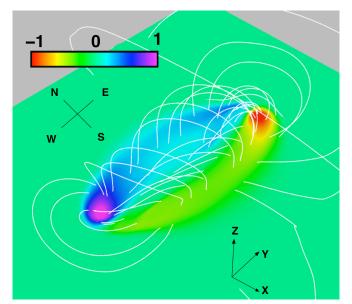

(Movies/movie-long.mov)

- Density deficit & buoyancy: tube rises to the photosphere.
   Vrise=1.7 Km/sec, t=12.5 min.
- Formation of a bipolar region.
- ▶  $B \approx 600G$  at the photosphere.
- Formation of tails on both sides of PII
- Organized shear velocity flow in the photospheric layer. Inflow in the transverse direction.
- See also: Fan (2001),
  Manchester (2004), etc.

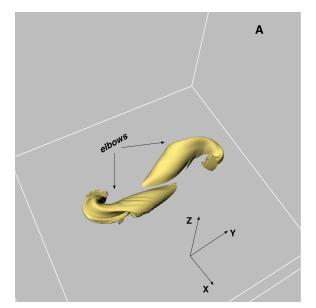
# Magnetic Tails Observation and Simulation



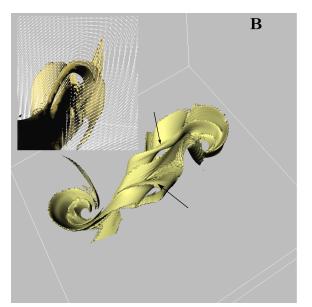
SOHO/MDI/Mag 2005/09/15 14:27:03 UT



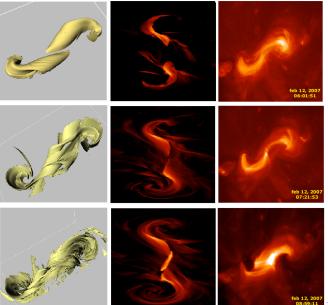

## Photosphere


Bipole formation. Shape of magnetic tails depends on twist.

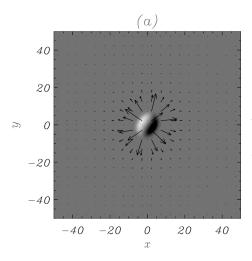
(Movies/B50bzvxy.mpeg)


# Sigmoids: Line of sight B.



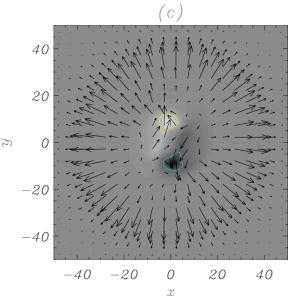

# Sigmoids: Current Sheets




# Sigmoids: Current Sheets



# Sigmoids: Comparison with Observations

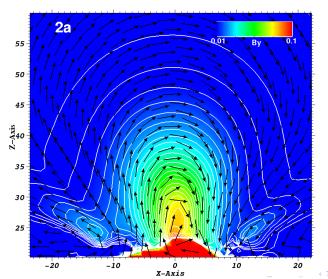



# Flux Rope Formation



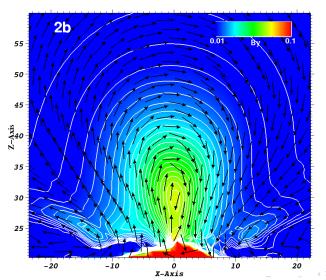

Magnetogram (white positive, black negative) (z=2). Arrows are horizontal velocity (length indicates magnitude).

# Flux Rope Formation: Shear Flow



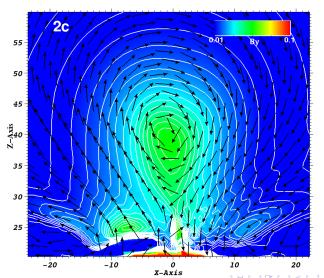

# Flux Rope Formation: Converging Flow




# New Flux rope Formation

Contours of  $B_y$  and arrows show full magnetic field vector at t=90. Rapid expansion creates pressure deficit - inflow.

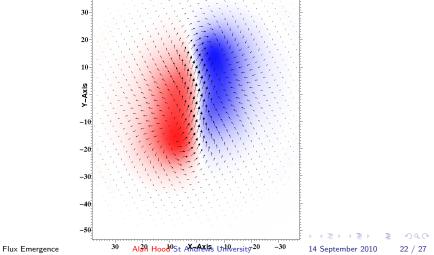



# New Flux rope Formation

Contours of  $B_y$  and arrows show full magnetic field vector at t=100. New rope forms if inflow above original axis.



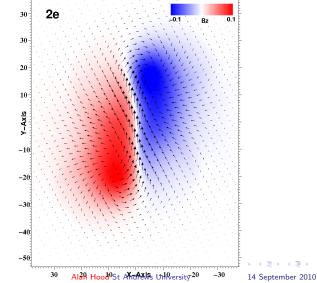
# New Flux rope Formation


Contours of  $B_y$  and arrows show full magnetic field vector at t=120.



# New Flux Rope Emergence

30

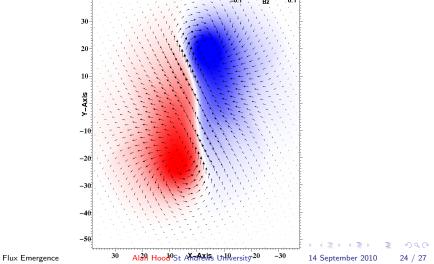

Magnetogram of  $B_z$  at z=30 (bottom of transition region). Arrows indicate horizontal field at t=90.



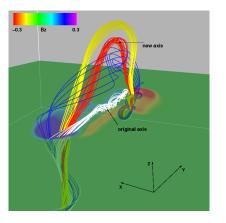
# New Flux Rope Emergence

Flux Emergence

Magnetogram of  $B_z$  at z=30 (bottom of transition region). Arrows indicate horizontal field at t=100.

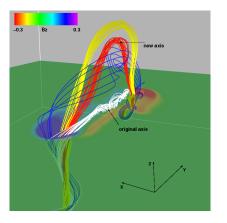



23 / 27


# New Flux Rope Emergence

30

Magnetogram of  $B_z$  at z=30 (bottom of transition region). Arrows indicate horizontal field at t=120.




## Final Field Description



Red - axis of new rope (carries dense plasma). Blue - one rotation around red. White - original axis.

## Final Field Description



Red - axis of new rope (carries dense plasma). Blue - one rotation around red. White - original axis. Eruption of rope depends on overlying field. Held in place by yellow lines - need to remove them.

Eruptions and CMEs: Needs reconnection with coronal B.

(Movies/movie2.mov)

#### At photosphere

Magnetic tails compare well with observations, especially the breakup.

#### At photosphere

► Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

▶ Initial two separate *J* structures. Combine to form sigmoid.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

- ▶ Initial two separate *J* structures. Combine to form sigmoid.
- Strong currents outline sigmoid.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

- ▶ Initial two separate *J* structures. Combine to form sigmoid.
- Strong currents outline sigmoid. Heating gives dense hot sigmoid plasma.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

- $\blacktriangleright$  Initial two separate J structures. Combine to form sigmoid.
- Strong currents outline sigmoid. Heating gives dense hot sigmoid plasma.
- ▶ Needs helicity injected through photosphere.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

- $\blacktriangleright$  Initial two separate J structures. Combine to form sigmoid.
- Strong currents outline sigmoid. Heating gives dense hot sigmoid plasma.
- ▶ Needs helicity injected through photosphere.

#### Flux rope formation and eruption

▶ Needs shear and converging motion.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

- ▶ Initial two separate *J* structures. Combine to form sigmoid.
- Strong currents outline sigmoid. Heating gives dense hot sigmoid plasma.
- ▶ Needs helicity injected through photosphere.

#### Flux rope formation and eruption

- ▶ Needs shear and converging motion.
- ▶ New flux rope, with dense plasma, can erupt.

#### At photosphere

- Magnetic tails compare well with observations, especially the breakup. Tail structure depends on twist.
- Breakup due to horizontal shearing and inflows. Observational evidence?

#### Sigmoids

- ▶ Initial two separate *J* structures. Combine to form sigmoid.
- Strong currents outline sigmoid. Heating gives dense hot sigmoid plasma.
- ▶ Needs helicity injected through photosphere.

#### Flux rope formation and eruption

- Needs shear and converging motion.
- New flux rope, with dense plasma, can erupt.
- ► Full emergence depends on overlying coronal B.