X-ray Diagnostics of Fe and Fe/Ni line Features seen during Solar Flares

Rajmal Jain
Physical Research Laboratory,
Ahmedabad, India

SONS Science

Emission Characteristics of Fe and Fe/Ni line Features.

Energy Release and particle acceleration in Solar Flares.

Thermal/non-thermal nature of Solar Flares.

Low Energy cut-off as a function of Flare duration to determine the nature of X-ray photons that varying over time.

Contribution of micro flares in heating the Solar Corona.

Short and long term variation of the Solar Corona: Coronal Seismology

Sun-Earth connection and Space-Weather.

SSTM Daily Tracking [0 TO 180°]

12 'O' Clock Position

East Position _

Block schematics of SLD Payload (SLED, SFE, SLE & SCE)

SOXS, RHESSI, & GOES spectra

10

Table I SLD/SOXS Flare events considered for investigation

S. No.	Date	Time UT			GOES			Active Region			
		Begin	Peak		End	Class	Class		ation	n NOAA	
1.	30 Jul 2003	0407	0409		0428	M2.5		N16 W	/55	10422	
2.	13 Nov 2003	0454	0501		0510	M1.6		N04 E	285	10501	
3.	19 Nov 2003	0358	0402		0419	M1.7		N01 E	206	10501	
4.	07 Jan 2004	B0355	0400		0433	M4.5		N02 E	282	10537	
5. 6.	25 Mar 2004 25 A ₁	0429 pr 2004 0528	0438	0536	0507	M2.3 0558	M2.2	N12 E	N13	10582 E38	10599
7.	14 Aug 2004	0413	0414		0432	M2.4		S13 V	V30	10656	
8.	31 Oct 2004	0526	0531		0546	M2.3		N13 V	V34	10691	
9.	14 Jul 2004	0518	0523	A	0525	M6.2		N12W	/62	10646	
10.	25 Aug 2005	0436	0439		0452	M6.4		N07E	278	10803	

Jain et al., 2006, Solar Phys

$$w = \int_{Line} \frac{[I(E_f) - I(E_c)]}{I(E_{c)}} dE$$

P04: Phiilips, K.J.H., (2004), ApJ, 605, 921-930

RA85: Rothenflug, R.; Arnaud, M. Astron & Astrophys., 144, 431-442

SB77: Sarazin, C. L., and Bahcall, J. N.; 1977, ApJ Suppl., 34, 451-467.

RS77: Raymond, J. C., and Smith, B. W.; 1977, ApJ Suppl., 35, 419-439.

Jain et al., 2006, Solar phys.

Future Plans

- 1. Next Generation SOXS is under discussions.
- a) We plan Solar X-ray Spectroscopy covering energy range from 1-100 keV.
- b) We propose to use four detectors viz.
 - 1. SDD very small area for 0.3-3 keV to study line emission.
 - 2. SDD small area for 1-10 keV to study line + thermal regime
 - 2. SDD large area for 4-30 keV to study thermal regime
 - 3. CdTe or Ga-As large area for 10-100 keV to study thermal+ non-thermal regimes.
- 2. Solar Energetic Particle spectrometer (already in developmental stage)
- 3. Simultaneous observations in X-ray, optical (H-alpha) and radio waveband is planned next year.

Conclusions

- 1. SOXS is operating satisfactorily. However, due to high temperature limits on the spacecraft its operation time now is restricted to 2 hrs daily.
- 2. SOXS so far has observed more than 700 flares of >B2.0 GOES class.
- 3. SOXS Data is available at: http://www.prl.res.in/~soxs-data Data may be downloaded and analyzed in SolarSoft.

 Instrumental functions are incorporated in the SolarSoft
- 4. SOXS marks detection of Fe and Fe/ Ni line complexes distinctly separate.
- 5. SOXS observations reveal flare plasma of multi-thermal nature.
- 6. Peak energy and Equivalent width of Fe line complex vary over temperature.
- 7. Flux ratio of Fe to Fe/Ni line features decreases exponentially with flare plasma temperature in 12-20 MK.
- 8. Next generation solar X-ray spectroscopy in the energy range 0.1-100 keV is planned. Energetic particle spectrometer is under development.

Key Issues

- Diagnostics of line emission between 0.1 and 10 keV; High energy resolution and counts handling capabilities are challenge.
- Fe and Fe/Ni line features also appear in micro-flares, some of which are non-thermal. Any non-thermal contribution to line formation?
- "The >20 keV electrons contain 10 to 50% of the total energy output" Lin and Hudson (1976).
 - Not a single component of the energy budget "is presently known to better than an order of magnitude" (Hudson 1986). Still a challenge.
- Energy in electrons is uncertain because of lower energy cutoff to spectrum (Lin et al., 2002).
 - Thermal energy in plasma is uncertain because of uncertain volume, density, filling factor.
- Only plasma in narrow temperature range is generally imaged. It is not uniform all over?
 - Temperature of coronal flare plasma: Time scales of isothermal or multithermal is challenge. (Jain et al., 2008).
- Pre-flare to main flare connection in context to energy release. No detailed study is made so far.
- Re-acceleration of electrons during the flare?
 High-time and high-energy resolution X-ray spectroscopy is required, which is a challenge?

Thank you