

Solar Plasma Spectroscopy:

Achievements and Future Challenges

DAMTP, University of Cambridge 13-15 September 2010

Single filter temperature diagnostics of an active region observed with HINODE/XRT

S. Terzo, F. Reale,

Università degli studi di Palermo – INAF/Osservatorio Astronomico di Palermo

National Astronomical Observatory of Japan

Solar corona: Active Region

Active region:

- close to the Sun's center
- 2006 November 14

Data:

- 303 images
- Al poly filter (0.2-3keV)
- high cadence: ~6 sec
- total coverage ~26 min
- 256x256 pixels images

Average Intensity Map

Our aim is to obtain a T map

Solar-B (Hinode)

Main Instruments:

So
la
r
Optical Telescope, (SOT)

Solar-B Spacecraft Art copyright 2002, 2004 B. E. Johnson

I m

 \bullet EUV

aging Spectrometer (EIS)
ambridge 13-15 September 2010

XRT consists of:

- Grazing-incidence-type optic (Wolter-I)
- Focal plane mechanisms (filters and shutters)
- A 2048x2048 CCD camera

• XRT has two filters whe

e

1 for X-ray and visible images.

Broad band Filters: XRT

The temperature response function as given by SolarSoft and presented in the figure.

Flux:

$$\phi_i = \frac{1}{4\pi d^2} \int_V G_i(T) n_e^2(T) dV$$

Response Functions:

$$G_i(T) = \int d\lambda f(\lambda, T) g_i(\lambda)$$

Filter ID	Material	Thickness (Å)	Filter support	Thickness (Å)	Oxide	Thickness (total, Å)
Al-mesh	Al	1600	_	82%	Al ₂ O ₃	150
Al-poly	Al	1250	Polyimide	2500	Al ₂ O ₃	100
C-poly	C	6000	Polyimide	2500	N/A	N/A
Ti-poly	Ti	3000	Polyimide	2300	TiO ₂	100
Be-thin	Be	9E4	N/A	N/A	BeO	150
Al-med	Al	1.25E5	N/A	N/A	Al ₂ O ₃	150
Be-med	Be	3.0E5	N/A	N/A	BeO	150
Al-thick	Al	2.5E5	N/A	N/A	Al ₂ O ₃	150
Be-Thick	Ве	3.0E6	N/A	N/A	BeO	150

(Golub et al., 2007)

Temperature diagnostics: Filters ratio method

For an isothermal plasma, filter ratios provide T diagnostics (Vaiana et al. 1973)

• Flux detected in i-th filter:

$$I_i = EM \times G_i(T)$$

$$EM = \int_{V} n^2 dV$$

$$EM = \frac{I_i}{G_i(T_0)}$$

Filter ratio provides T
 (EM cancels out):

$$R_{ij} = \frac{I_i}{I_j} = \frac{G_i(T)}{G_i(T)}$$

AIMS

High cadence observation allow us to use an alternative approach:

Single filter temperature diagnostics

HOW?

Al_poly filter band

The used filter is Al_poly (F1), sensitive most in the 0.2–3 keV energy band.

Single filter temperature diagnostics

✓ Concept: fast

fluctuations of pixel

light curves due to

photon noise

Data cleaning

We remove

- ✓ Low signal pixels and transient brightenings:
- ✓ Spike-like features
- Microflares and brighter transient events
- \checkmark Slow variations (*Loop motion effect*)

Cleaned active region data:

Pixels withconstant or slowlinear lightcurves

>~56% left

Temporal fluctuation Analysis

For each pixel, we measure the standard deviation of the fluctuations around the linear

best fit of the light curve (σ_p), i.e. the width of their distribution

σ_p Photon Noise

If the fluctuations are due to the photon noise

they

d

pend on the
$$\sigma_p = \sqrt{K_i^{(2)}(T)I_0}$$
 erage DN rate I_0 :

The conversion factor K. (2) from DN rate to photon rate Solar Plasma Spectroscopy, Cambridge 13-15 September 2010

The Conversion from DN/s to photon counts is T-dependent

$$K_i^{(2)} = \frac{\int [(hc/\lambda)/(57 \times 3.65 eV)]P(\lambda, T)\eta_i(\lambda)d\lambda}{\int P(\lambda, T)\eta_i(\lambda)d\lambda}$$

 $P(\lambda,T)$

Emissivity as function of wavelength and electron temperature

Telescope effective area

from Kano & Tsuneta (1995).

Single filter temperature diagnostics

We can derive T by inverting:

$$K_i^{(2)} = \sigma_p^2 / I_0 \Longrightarrow$$

$$K_i^{(2)} = f(T)$$

Result: Temperature map

Color scale: 6.18 (red) <logT<6.4 (blue)

Solar Plasma Spectroscopy, Cambridge 13-15 September 2010

Conclusions

Applicability:

- ► High cadence observations (dt < plasma times)
- In a multi-thermal line of sight we are sampling the EM where the filter is more sensitive (soft filter in this case)
- Easy application to constant or linear light curves
- Robust method: little dependence on the calibration

Next steps...

- Emission measure analysis and maps
- ► Comparison with TRACE data
- Comparison with Filter Ratio temperature maps
- Comparison with spectroscopic results

Thank you for the attention

Thanks to

European Space Agency (ESA) and LOC

for the financial support

INAF

