

Non-thermal effects on H-α emission in the flare 25 July 2004

Zharkova V.V. (1), Kashapova L.K.(2), Chornogor S. (3), Andrienko O. (3)

1 – Dept. of Mathematics, University of Bradford, UK
2 – Dept. of Radio-physics, ISTP, Irkutsk, Russia
3 – Solar Physics Dept., MAO, Kiev, Ukraine

Solar flare mechanisms

Non-thermal H ionisation & excitation and its effect on Ni

- By beam electrons (Hudson, 1972, Aboudraham & Henoux, 1986,87; Zharkova & Kobylinsky, 1989,91,Sol.Phys,93; Zharkova et a;., 2007)
- By beam protons (Henoux et al, 1993, Voigt et al., 1996)
- Full non-LTE radiative transfer for 5 level plus continuum Hydrogen atom
- Predicted increase in Hydrogen lines and especially in Pashen continuum
- Recent review by Fletcher et al (2010) much more attention was paid to non-thermal effects

Non-thermal hydrogen excitation/ionisation rates

HYDROGEN EMISSION IN IMPULSIVE SOLAR FLARES

Fig. 3. A comparison of the elementary process rate depth variations (radiative and collisional) in the impulsive event model for 2.5 s: (a) $1 \rightarrow 2$, (b) $2 \rightarrow 3$, (c) $1 \rightarrow c$ (continuum), (d) $2 \rightarrow c$. The numbers at the curves denote the parameters: 1 – pure thermal; $2 - \gamma = 3$, $F_0 = 10^9$ (erg cm⁻² s⁻¹); $3 - \gamma = 3$, $F_0 = 10^{11}$; $4 - \gamma = 5$, $F_0 = 10^9$; $5 - \gamma = 5$, $F_0 = 10^{11}$; 6 – external radiation.

265

4

H excitation/ionisation rates by e-beam

(Zharkova and Kobylinskij, Solar Phys., 1993)

TABLE I. Comparison of Excitation and Ionization Rates (B_{nn} , B_{nc}) of a Hydrogen Atom for Beam Electrons with γ = 3 (first row) with Anal $C_{nn'} = N_e B_{nn'}$ sec⁻¹, ogous Rates for "Thermal" Electrons

n	n'=2	3	4	5	6	c		
1	0.162-07 * 0.206-12	0.389-08 0.611-14	0.138-08 0.108-14	0.655-09	0.364-09 0.173-15	0.615-08	$B_{nn'} = \sqrt{\frac{2}{m}} \int_{0}^{\infty} \sqrt{E} f(E) \sigma_{nn'}(E) dE \ \mathrm{cm}^{3}/\mathrm{sec},$	(2)
2	0.941-10	0.034 - 18 0.326 - 06 0.635 - 07 0.131 - 07	0.082 - 19 0.714 - 07 0.646 - 08 0.927 - 09	0.185 - 19 0.262 - 07 0.170 - 08 0.200 - 09	0.103-20 0.128-07 0.702-09 0.740-10	0.130 - 19 0.484 - 07 0.166 - 08 0.764 - 10	, Ĕ,	
3		0.101 0.	0.189-05 0.117-05 0.594-06	0.413-06 0.157-06 0.641-07	0.140 - 10 0.149 - 06 0.724 - 07 0.290 - 07	0.164-06 0.609-07 0.125-07		
4				$0.636-05 \\ 0.541-05 \\ 0.341-05$	0.146-05 0.819-06 0.471-06	0.393-06 0.335-06 0.120-06	$N(E,\xi) = KE^{\prime\prime}(E^2 + 2a\xi)^{-\frac{2}{2}} \theta(\sqrt{E^2 + 2a\xi})^{-\frac{2}{2}} \theta(E^2$	C
5					0.159-04	0.774-06 0.950-06 0.449-06	$-E_1 \theta (E_2 - \sqrt{E^2 + 2a\xi}),$	(,

*Read as 0.162.10-7.

$$N_{e}^{F}(\xi) \approx \frac{F_{0}\left(\frac{m}{2}\right)^{1/s}}{(E_{2}^{2-\gamma} - E_{1}^{2-\gamma})} \frac{2-\gamma}{2} (2a\xi)^{\frac{1-2\gamma}{14}} \frac{\Gamma\left(\frac{3}{4}\right)\Gamma\left(\frac{2\gamma-1}{4}\right)}{\Gamma\left(\frac{\gamma+1}{2}\right)},$$

5

(1)

Zharkova and Kobylinskij, Solar Phys., 1993)

FIG. 3. Depth (ξ) distribution of the degree of ionization of hydrogen atoms for the same values of initial energy flux F_0 at the boundary (ergs·cm⁻²·sec⁻¹) and spectral indices γ : 3) $\gamma = 5$, $F_0 = 10^9$; 4) $\gamma = 5$; $F_0 = 10^{12}$; 1, 2, 5) see caption of Fig. 1.

Lyman line profiles

affected by non-thermal excitation

268

V. V. ZHARKOVA AND V. A. KOBYLINSKY

We take into account radiative and collisional (thermal and non-thermal) processes. The absorption coefficient profiles are suggested to be the Voigt ones in the lines, and to be equal to $f(v) = v_{ic}^3/v^3$ in the Ly- and Ba-continua, where v_{ic} is the continuum head frequency. The spontaneous recombination rates were taken according to Burgess (1964).

In Figures 3 and 4 and in Figures 5–8 there are presented the hydrogen $L\alpha$, $L\beta$, and $H\alpha$ lines intensities and the intensity distributions and inclination in the heads of the Ly, Ba, and Pa-continua respectively for the accepted physical models through 1 s, 2.5 s, and 4 s after beginning of electron beam injection.

Fig. 4. The $L\alpha$ and $L\beta$ line intensities computed for different flare models: (a) time 1 s ($L\alpha$ line), (b) time 2.5 s ($L\alpha$), (c) 4 s ($L\alpha$), (d) 2.5 s ($L\beta$). Here and thereafter up to Figure 8 the numbers at the curves are the same as in Figure 3.

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System

Balmer line profiles

affected by non-thermal excitation

At the first seconds of injection the effect of non-thermal impacts is pronounced in the high chromosphere. One sees that after the development of a gasdynamical response in the chromosphere (over 4 s), the influence of beam electrons on the line profiles, continuum intensity distributions, and inclinations is very sensitive to the relation between physical conditions and the beam parameters.

The hydrogen $L\alpha$ and $L\beta$ line profiles are varying rather similarly to the flare gasdynamics. At the first second the line core intensities decrease for the low F_0 (10°) and increase for the higher F_0 (10¹¹), in comparison with the pure thermal model. On the contrary, the wing intensities strongly depend on a spectral index γ , and less on the initial flux F_0 , arising with a decrease in γ and with an increase in F_0 .

8

Balmer continuum

affected by non-thermal ionization

Fig. 7. The same as in Figure 6 for the Balmer continuum.

In general, it is possible to conclude that the effect of a beam of electrons on the hydrogen lines is mainly in the wings and for a detection of that, rather precise observations are needed.

The hydrogen continuum intensities are more sensitive to non-thermal impacts, as one can see from Figures 6–8. In spite of greater non-thermal ionization rates for the Ly-continuum, the intensity distributions (Figure 6) for a set of different beam parameters are rather close. A slight growth of the Ly-head intensity is observed with F_0 increasing and γ decreasing for any time, and the spectrum inclination is shown to decrease (see Figure 6(c)). The maximum variations are observed in the first second, then they merely decrease. It is explained by a possible growth of Ly-continuum head opacity which overlaps all the non-thermal and thermal impacts.

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System

Pashen continuum affected by non-thermal ionization

The Ba and Pa continuum intensity distributions (Figures 7 and 8) are strongly affected by non-thermal impacts. In the first second they engender the Ba and Pa-head intensities strong rising with F_0 growing and γ falling off. And the dependence of F_0 is more pronounced than of δ . Moreover, the head intensity inclinations are increased by the non-thermal impacts with beam electrons, and for beams with the initial fluxes F_0 equal to 10^{11} erg cm⁻² s⁻¹ and $\gamma = 3$ ($\delta = 4$) we can see almost a direct line in spite of the varying inclination over wavelength for other parameters. At other times (2.5 s and 4 s) the effect on Ba-continuum intensities is similar but smaller due to an increase of the thermal processes role via the gasdynamical response development. In a forthcoming paper we consider the joint effect of the hydrogen atoms and negative ions and

© Kluwer Academic Publishers • Provided by the NASA Astrophysics Data System

n(s) and T(s) are taken from the hydro-dynamic model (Zharkova, V. & Zharkov, S., ApJ, 664, 573, 2007)

Impulsive injection

 $F_0 = 10^{10}$ erg cm⁻² s⁻¹. Power law index is 3. Impulse length is $1.7 \cdot 10^{-3}$ s. Only collisions are taken into account.

Distribution function of the injected beam

$$f\left(t,s=s_{min},z,\mu>0\right) = f_n\psi\left(t\right)\frac{E^{\delta-1}}{E^{\delta+\gamma}+E_0^{\delta+\gamma}}\exp\left(-\frac{\left(1-\mu\right)^2}{\Delta\mu^2}\right)$$

Initial power law index of high energy electrons $\gamma = 3$ Initial pitch angle dispersion $\Delta \mu = 0.2$ Lower energy cut-off $E_0 = 12$ keV Energy flux on the top boundary is $F_0 = 10^{10}$ erg cm⁻² s⁻¹

Relaxation time is \approx 0.07- 0.1 s

Stationary injection

25 July 2004: The pre-flare (left) and main flare (right)

Images of the first phase of the flare

(Zharkova et al. AdvSpace Re

HXR spectra for the 1st peak Zharkova et al. MNRAS, 2010

Photon energy spectrum as function electron beam parameters (RHESSI nugget 25)

Correction of HXR photon flux for Ohmic losses –burst 1

Zharkova et al. MNRAS, 2010

HD models for the burst one

Zharkova et al. MNRAS, 2010

Hα line intensity (non-thermal +thermal excitation) Kernels 1 и 3 (fit very well → electrons are the agents)

Conclusions

- Electron and proton beams naturally occur during a magnetic reconnection process
- Electrons and protons precipitate towards the chromosphere and photosphere
- High-energy particles have multiple effects on a flaring atmosphere:
 - High energy emission (HXR, radio/MW)
 - Particles carry a charge → hence, electric field
 - Variations of electron electric field in space causes a transient magnetic field
 - Deposit energy into the ambient plasma via hydrodynamics
 - Produce non-thermal ionization and excitation → white light flares Pashen emission, Stark wings in Balmer emission, change Balmer increments, and many more appearing within seconds from HXR emission
 - As result electrons produce H-alpha emission increase prior any hydrodynamic heating