Atomic data for astrophysics. Calculations, benchmarking and distribution

Giulio Del Zanna STFC Advanced Fellow DAMTP, University of Cambridge UK

1 Tb/day, 7 EUV channels: 94, 132, 171, 195, 211, 304, 335 A images every 12 seconds

The solar EUV – UV

You could spend a lifetime to understand this spectrum (P. Storey)

Hinode EIS and B.Fawcett's plates

B.Fawcett 166 – 212 Angstroms

Resolution almost as good as B.Fawcett's plates. 5 m Angstroms accuracy in wavelengths.

Atomic data

In optically-thin plasmas line intensities are proportional to:

$$I \sim n_j A_{ji} = \frac{N_j(X^{+m})}{N(X^{+m})} A_{ji} \frac{N(X^{+m})}{N(X)} \frac{N(X)}{N(H)} \frac{N(H)}{N_e} N_e$$

- Measure electron densities, temperatures, emission measures and elemental abundances from spectra.
- Forward modeling.
- Calculate radiative losses:

Calculations of electron excitation data

R-matrix electron impact excitation:

- developed over 30 years by various groups (UCL,QUB): Seaton, Burke, Burgess, Storey, Eissner, Berrington, Badnell, etc.

- Iron Project

- STFC-funded (UK) APAP Network <u>http://www.apap-network.org/</u>

R-matrix data for astrophysics (APAP data)

F-like: Witthoeft Whiteford Badnell (2007) Na-like: Liang, Whiteford, Badnell (2009) Ne-like: Liang et al. (2010, submitted) Li-like: Liang & Badnell (2010)

More R-matrix calculations of iron ions

- Fe VII: Witthoeft et al. (2008)
- Fe VIII: Griffin et al. (2000) Del Zanna (2009)
- Fe IX: Storey et al. (2002)
- Fe X: Del Zanna, Berrington, Mason (2004)
- Fe XI: Del Zanna, Storey, Mason (2010)
- Fe XII: Storey et al. (2005)
- Fe XIII: Storey & Zeippen (2010)
- Fe XIV: Storey et al. (2000); Liang et al. (2010)
- Fe XV Berrington et al. (2005)
- Fe XVIII: Witthoeft et al.(2006).
- Fe XX: Witthoeft, Del Zanna, & Badnell (2007)
- Fe XXIII Chidichimo et al. (2005)

Data included in ADAS, ATOMDB, CHIANTI, etc.

New distorted-wave code (Badnell 2011) to calculate Fe excitation data for n=4,5,6,7

CHIANTI atomic package

CHIANTI Provides all atomic data and IDL programs necessary for modelling spectra from collisionally-ionised plasmas for the XUV. Over 1000 direct citations. No UK funding for 7 years.

V.6 (Dere et al.2009) contained new ionization and recombination rates.V.7 (Landi et al. 2011), Aug 2011, new atomic data for many ions.

Atomic data included other spectral codes. Photoionization (XSTAR, CLOUDY, MOCASSIN) and others (ATOMDB, XSPEC, ISIS, PINTofALE).

G. Del Zanna - APiP 2011

Spectral synthesis

12

Virtual Atomic and Molecular Data Center

• VAMDC aims at building an e-infrastructure for the exchange of atomic and molecular data. VAMDC involves 24 teams.

www.vamdc.org

• VAMDC is supported by the EU in the FP7 framework "Research Infrastructures - INFRA-2008-1.2.2 - Scientific Data Infrastructures" initiative.

CHIANTI atomic data for VAMDC

-Giulio Del Zanna & Helen Mason (Cambridge) in collaboration with IoA and MSSL

-All the BASIC CHIANTI DATA: wavelength, A-value, gf-value, configuration, LSJ, observed, theoretical energies, excitation rates in MySQL -Database can be queried via a web portal or workbench.

-DERIVED DATA (modelling): Python scripts to read the CHIANTI VAMDC

Various general issues:

How can different databases be easily compared ? Multiple calculations. CHIANTI policy is to select one.

Appropriate references to original calculation lost.

14

Benchmarking atomic data (Del Zanna 2004-)

In a series of papers, I have calculated and benchmarked atomic data for the XUV using a `novel' approach.

1)Find the best atomic structure with appropriate CI (and semi-empirical corrections)

2)Compare observed (beam-foil spectroscopy, Elmar Traebert et al.) and theoretical lifetimes and branching ratios.

3)Calculate e excitation rates (R-matrix) and build ion model to calculate line intensities.

4)compare observed and theoretical wavelengths and intensities for low- and high-densities using the emissivity ratios:

5)Try to identify all the brightest lines, using laboratory and astrophysical spectra. RESULTS:

a large number of new identifications, new level energies, revised wavelengths (with uncertainties – (NIST EUV values often not accurate enough for current missions), new Ne, Te diagnostic applications

$$F_{ji}(N_{\rm e}, T_{\rm e}) = C \quad \frac{I_{\rm ob}N_{\rm e}}{N_j(N_{\rm e}, T_{\rm e}) A_{ji}}$$

Werr

Eissr

Benchmarking atomic data for Iron ions

- Fe VII: Del Zanna (2009a) 31/ 53 new EUV (160-300 A) IDs, new Te diagnostics
- Fe VIII: Del Zanna (2009b) 9/34 new EUV IDs, new Te diagnostics
- Fe X: Del Zanna, Berrington, Mason (2004) 9/45 new IDs
- Fe XI: Del Zanna (2010) 31/60 new IDs, new Te diagnostics
- Fe XII: Del Zanna & Mason (2005) 21/58 new IDs
- Fe XIII: Del Zanna (2011a) 13/41 new EUV IDs
- Fe XIV: Del Zanna (2011b)
- Fe XVII: Del Zanna & Ishikawa (2009) 16/50 new IDs (40-400 A), Del Zanna (2011): new Te diagnostics
- Fe XVIII: Del Zanna (2006) new IDs, new Te diagnostics
- Fe XX: Witthoeft, Del Zanna, Badnell (2007)
- Fe XXIII Del Zanna et al. (2005) new Ne, Te diagnostics
- Fe XXIV Del Zanna (2006) new Ne, Te diagnostics

•

G. Del Zanna -

New EIS direct measurements of Te

Del Zanna (2009a,b, 2010): new identifications of Fe VII, VIII lines providing direct Te.

					-
i	Conf.	Lev.	$E_{\rm exp}$	E _{NIST}	
1	3s ² 3p ⁴	³ P ₂ ^e	0	0	-
2	3s ² 3p ⁴	³ P ₁	12667	12667 (0)	
3	3s ² 3p ⁴	³ P ₀ ²	14306	14312 (-6)	
4	$3s^2 3p^4$	${}^{1}D_{2}^{e}$	37743	37743 (-1)	
5	$3s^2 3p^4$	¹ S ₀ ⁶	80831	80814 (16)	
6	3s 3p ³	${}^{3}P_{2}^{0}$	283551	283558 (-7)	
7	3s 3p ⁵	³ P ₁ ⁵	293158	293158 (0)	
8	$3s 3p^5$	³ P ⁶	299163	299163 (0)	
9	3s 3p ⁵	¹ P ₁	361846	361842 (4)	
10	$3s^2 3p^3 3d$	⁵ D ⁰	387544	-	
11	$3s^2 3p^3 3d$	⁵ D ₁	387726	-	
12	$3s^2 3p^3 3d$	5D	387940	-	
13	$3s^2 3p^3 3d$	5D2	388268	-	
14	$3s^2 3n^3 3d$	5D0	389227	-	
15	$3s^2 3p^3 3d$	$^{3}D^{2}$	412856	-	
16	$3s^2 3p^3 3d$	$^{3}D^{2}$	415426	-	
17	$3s^2 3n^3 3d$	3D0	417040	-	
18	$3s^2 3n^3 3d$	3E0	422844	-	Г
10	$3s^2 3n^3 3d$	150	-	-	L
20	$3s^2 3n^3 3d$	3F	426022	-	
21	$3s^2 3n^3 3d$	3 F0	430522	-	
22	$3s^2 3n^3 3d$	${}^{3}G^{4}$	-	-	
23	$3s^2 3n^3 3d$	3G	450211	-	
24	$3s^2 3n^3 3d$	3G ⁴	452416	-	
25	$3s^2 3n^3 3d$	100	450218	-	
26	$3s^2 3n^3 3d$	¹ D ⁴	459210	-	
20	$3s^2 3n^3 3d$	3D ²	-	-	
28	$3s^2 3n^3 3d$	3 D0	_	-	
20	$3s^2 3n^3 3d$	300	484830	-	
30	$3s^2 3n^3 3d$	3 F0	485030	-	
31	$3s^2 3n^3 3d$	3 = 0		-	
32	$3s^2 3n^3 3d$	3 = 2	486413	-	
33	$3s^2 3n^3 3d$	3D4	480378	-	
34	$3c^2 3c^3 3d$	3D0	409570	496090 (-2077)	
35	$3s^2 3n^3 3d$	3D0	494015	-	
36	3s ² 3n ³ 3d	1 203	525260	-	
27	20 ² 20 ³ 2d	3 D 0 †	521070	526480 (4590)	
30	$3s^2 3p^3 3d$	3D0	531304	531290 (14)	
20	252 253 24	3091	522445	533450 (5)	
39	$3s^2 3p^2 3d$	300	535445	541720 (57)	
40	3s ⁻ 3p ⁻ 3d	⁻ P ₀	541///	541200 (37)	
41	3s ² 3p ³ 3d	P_1	541424	554200 (34)	
42	3s ² 3p ³ 3d	3D0	554321	554500 (21)	
43	3s ² 3p ³ 3d	³ D ² ₂	501015	566280 (16)	
44	3s ² 3p ³ 3d	$^{3}D_{1}^{0}$	566396	578860 (20)	
45	5s- 3p- 3d	1D0	578890	504030 (17)	
40	5s- 5p- 3d	·F3	594047	623080 (21)	
4/	5s- 3p' 3d	·P1	023101 C	Del Zanna	
48	3p°	1S6	- 0	. שכו במווומ	

Most 3d levels were not known. Difficulty in the structure calculations.

Fe XI								
i	Configuration (% purity)	Term	E _b	$E_{\rm b}$ - $E_{\rm NIST}$	$E_{\rm b}$ - $E_{\rm CC}$	$E_{\rm b}$ - $E_{\rm SS}$		
37	$3s^2 3p^3$ (² D) $3d(8\%) + 41(22\%) + 39(34\%)$	(P_1°)	531070.0 ± 500	-2380	-55519	-71		
38	$3s^2 3p^3$ (² D) $3d(59\%) + 6(c2 15\%) + 34(18\%)$	$^{3}P_{2}^{o}$	531304.0 ± 10	14	-40888	+60		
39	$3s^2 3p^3$ (² D) $3d(54\%) + 9(c2 15\%) + 37(14\%)$	$^{3}\mathrm{S}_{1}^{\mathrm{o}}$	533476.0 ± 500	-7914	-18513	-1031		
40	$3s^2 3p^3$ (² D) $3d(71\%) + 8(c2 17\%)$	$^{3}P_{0}^{\circ}$	541768.0 ± 500	48	-41771	-367		
41	3s ² 3p ³ (² D) 3d(43%)	$^{3}P_{1}^{\circ}$	$541424.0 \pm \ 200$	14944	-35936	-798		
	$+7(c2\ 10\%)\ +9(c2\ 11\%)\ +47(12\%)$							

Main problems with three very mixed J=1 levels, giving rise to the strongest spectral lines observed in the EUV by Hinode

Found significant problems with all previous calculations.

Fe XI

Needed to study all ions along the sequence. Ekefors (1931): K IV, Ca V best paper !

Fe XI

i-j	λ _{exp}	λobs	ID	Diff. ID
	(Å)	(Å)		
6-103	168.929	? 168.929(10) Be76	Ν	
1-43	178.058	178.056(4) Be76	G66	
4-46	179,758	179.758(10) Be76	G66	
1-42	180.401	180.401(2) Be76 (bl)	G66	
2-44	180.594	180.595(4) Be76	F71	
3-44	181.130	181.131(10) Be76	G66	
2-43	182.167	182.167(2) Be76	G66	
4-45	184.793	184.793(10) Be76 (bl u)	FG66	
1-38	188.216	188.216(2) Be76	B77	F71 (188.299)
1-37	188.299	188.299(2) Be76	J93	B77(189.94)
2-41	189.123	189.123(4) Be76 (bl u)	B77	J93 (192.619)
3-41	189.711	189.723(5) N (bl)	B77	
1-36	190.382	190.382(5) N (bl u)	N	Be76 (S x1)
2-39	192.021	192.021(5) N (bl)	B77	
3-39	192.627	192.624(5) N (bl u)	B77	
2-38	192.813	192.811(5) N (bl O v, u)	F71	
3-37	193.512	- (bl Fe xii 193.509(2))		
4-41	198.538	198.555(10) Be76 (bl S viii)	B77	Be76, J93
1-35	201.112	201.112(5) N (bl Fe xiii)	N	-
4-39	201.734	201.734(10) Be76 (bl Fe xII)	B77	
1-34	202.424	202.424(10) Be76 (bl u)	N	B77 (201.575)
4-38	202.609	- (bl S viii 202.608(10))		
4-37	202.705	202.710(10) Be76 (bl)		
1-30	206.169	206.169(10) Be76 (bl u)	N	
1-29	206.258	206.258(5) N	N	
2-34	207.751	207.749(5) N (bl u)	N	
2-33	209.771	209.771(5) N (bl u)		
1-20	234.730	234.73(2) D78	N	D78 (Fe xv)
1-18	236.494	236.494(10) Be76	N	
1-17	239,780	? 239.78(2) D78	N	
1-16	240.717	240.713(4) Be76 (bl Fe xiii)	N	
1-15	242.215	242.215(10) (bl) Be76	N	
4-21	254,596	254.600(5) N	N	
1-14	256.919	256.925(5) N (bl Fe xii)	N	
4-20	257.547	257.547(10) Be76 (sbl)	N	
1-13	257.554	257.547(10) Be76 (sbl)	J93	T98 (257.26 T)
1-12	257.772	257.772(4) Be76	J93	T98 (257.55 T)
1-11	257.914	257.914(5) N	N	T98 (257.78 T)
4-16	264.772	bl Fe xıv 264.787	N	
4-15	266.586	? 266.613(5) N (bl)	N	
21-79	266.759	266.755(5) N (bl u)	N	

Fe XI – 6 years !	4-9
Benchmark: Del Zanna (2010)	16-67 14-54 1-7 2-8 1-6 2-7 3-7
31 (out of 60) new line identifications	2-6 4-6 6-21 6-14 13-32 14-32 16-32
New Te diagnostics	13-25 14-25 2-5 14-24
$\frac{\text{EIS QS off} - \text{Iimb} - \text{Fe XI Log Ne } [\text{cm}^{-3}] = 8.50}{1_{\text{lob}} = 178 (1-42,180.40 \text{ Å}^{3}\text{P}_{2} - 3\text{P}_{3})}$ $\frac{1_{\text{lob}} = 111 (1-38,188.22 \text{ Å}^{3}\text{P}_{2} - 3\text{P}_{2})}{1_{\text{lob}} = 71.9 (1-37,188.30 \text{ Å}^{3}\text{P}_{2} - 3\text{P}_{1})}$ $(\text{bI Fe XII,u) } \text{l}_{\text{ob}} = 30.8 (1-14,256.92 \text{ Å}^{3}\text{P}_{2} - 5\text{D}_{4})$ $(\text{sbl) } \text{l}_{\text{ob}} = 18.7 (1-13,257.554 \text{ Å}^{3}\text{P}_{2} - 5\text{D}_{3} + 4 - 20,257.547 \text{ Å}^{1}\text{D}_{2} - 3\text{F}_{3})$ $\frac{1}{100} = \frac{1}{3} = 9.99 (1-12,257.77 \text{ Å}^{3}\text{P}_{2} - 5\text{D}_{2})$ $\frac{1}{2} = 1$	14-23 1-4 2-4 21-24 1-2
Log T [K]	

21/58 new transitions identified/revised (Del Zanna & Mason 2005)

R-matrix makes a big difference! Fe XVIII

3.5×107

3.0×10⁷

15.6

R-matrix e- scattering calculation by Witthoeft, Badnell, Del Zanna et al. (2006) solved the problem with the strong 3s--> 2p transitions .

Fe XVIII

DW:

New diagnostics to measure electron temperatures and densities

(Del Zanna 2006). Same issues with Fe XVII. See benchmark paper on R-matrix calculations from Loch et al. (2006) and Liang & Badnell (2010): Del Zanna (2011). 3.5×10⁷ Г

3.0×10⁷

2.5×10⁷

2.0×10⁷

1.5×10⁷

1.0×10⁷

5.0×10⁶

15.6

Conclusions

High-resolution astrophysical spectroscopy in the XUV has shown the need for high-accuracy atomic data.

Excellent agreement (within 10%) between theoretical and observed line intensities for stellar coronae when R-matrix calculations are used.

A novel benchmark work has established a large number of new line identifications and spectral diagnostics.

We have made a great progress, but after 40 years, a large fraction of spectral lines remains unidentified..

A daunting amount of laboratory and theoretical work is still needed..

Thank you