Solar and stellar high-resolution X-ray spectra. Plasma diagnostics with CHIANTI

G. Del Zanna

DAMTP, University of Cambridge, Cambridge UK

K. P. Dere

Naval Research Laboratory, Washington DC, USA

E. Landi

Naval Research Laboratory, Washington DC, USA

M.Landini

Dipartimento di Astronomia e Scienza dello Spazio, University of Florence, Italy

H. E. Mason

DAMTP, University of Cambridge, Cambridge UK

P. R. Young

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

Abstract.

High-resolution X-ray solar (SMM/FCS, SOLEX) and stellar (Chandra/HETG) spectra are presented and interpreted using CHIANTI. The CHIANTI atomic database has been extended in the 1 - 50 Å wavelength region, and now includes lines from H- and He-like ions, innershell transitions and satellite lines. Coronal densities are evaluated using density-sensitive lines, and the multi-thermal characteristics described with DEM distributions. This allows *quantitative* comparisons between the CHIANTI predicted line intensities and the observed spectra to be made. Such comparisons are useful for line identifications and to provide an assessment of the completeness and reliability of the most recent atomic data.

1. Introduction

The definition of an atomic database for the X-ray wavelengths is of great importance to the analysis and interpretation of the high-resolution X-ray spectra that the Chandra and XMM satellites are now providing, and for the future solar spectra that will be provided by CORONAS-F.

CHIANTI is a collaborative project involving the Naval Research Laboratory (Washington DC, USA), the Arcetri Observatory (Firenze, Italy), and the Cambridge University (United Kingdom).

CHIANTI consists of a critically evaluated set of atomic data, that together with a set of Interactive Data Language (IDL) programs can provide information on the observed emission line spectra of astrophysical plasmas, in terms for example of temperature, density and element abundances. The main assumptions are that the plasma emission is optically thin, collisionally dominated and in ionization equilibrium.

The CHIANTI database is widely used. It also currently constitutes a large part of the Atomic Plasma Emission Database developed at the Centre for Astrophysics, Cambridge (USA), by Randall Smith and Nancy Brickhouse.

- The database contains the most uptodate atomic data, in the form of ASCII files (that include energy levels, oscillator strengths and A values, electron collisional excitation rates, etc). These files contain complete references to the sources of the data, which in some cases have been supplemented by our own calculations.
- The structure is modular, so this database can easily be updated and inserted into other databases.
- The available atomic data are assessed before they are entered into the database.
- Wavelengths based on experimental data are provided.
- A set of ionization equilibrium, element abundances and Differential Emission Measure (DEM) files are provided.
- The IDL routines are documented and are in a modular form, allowing easy inclusion in user-written programs. Some of the features include:
 - Calculate synthetic spectra.
 - Density diagnostic ratios.
 - Temperature diagnostic ratios.
 - DEM(T) inversion.
 - Continuum (free-free and free-bound).
 - Radiative losses.

The first version of the CHIANTI database was released in 1996 (Dere et al., 1997). The second version (Landi et al. 1999), included continuum emission and data for additional ions.

The CHIANTI database is being used extensively by the astrophysical and solar communities. The CHIANTI v.1 and v.2 databases have proved a high-degree of accuracy and completeness in the EUV wavelength range (at wavelengths longer than 150 Å) as shown by comparisons made with e.g. SERTS and SOHO/CDS solar spectra, where the database has successfully been used for both plasma diagnostics (e.g.: Mason et al, 1997; Young et al., 1998; Del Zanna and Bromage 1999) and in-flight calibration purposes (e.g.: Landi et al., 1999; Brosius et al., 1998).

1.1. Extension to the X-rays

The CHIANTI atomic database has been extended in the 1 - 50 Å wavelength region, as described in Paper IV: 'CHIANTI - an atomic database for emission lines, IV - Extension to X-ray Wavelengths' (Dere at al., 2000).

The main new additions are:

- inclusion of emission lines from the hydrogen and helium isoelectronic sequences, innershell transitions and satellite lines.
- Many of the ions already present in previous versions of the database have been modified and improved with new atomic data. In particular, for the ions Fe XVII-XXIV, that produce most of the strongest lines in the X-ray wavelength range, the adopted energy levels are mostly those recently reported by Shirai et al. (2000).

The new version 3 of the CHIANTI database, with associated IDL procedures is freely available at the web sites:

- Naval Research Laboratory (NRL) in Washington, USA: http://www.solar.nrl.navy.mil/chianti.html
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK:

http://www.damtp.cam.ac.uk/user/astro/chianti/chianti.html

• Arcetri Astrophysical Observatory in Florence, Italy: http://www.arcetri.astro.it/science/chianti/chianti.html

These web sites also contain more information on CHIANTI and have examples. We also maintain an CHIANTI e-mail list, that is used to distribute information about any developments of the CHIANTI database and programs. If you are interested, please send us an e-mail.

1.2. Future developments of CHIANTI

CHIANTI will continue to grow and be updated in the future. We expect to work on the following areas in the near future:

- include proton excitation rates;
- develop new software, that will enhance the potentialities of the database;

4 Del Zanna et al.

- include new atomic data calculations;
- perform more accurate data assessments, also with further comparison with experimental data;
- develop procedures that account for non-ionization equilibrium.

2. Comparison with observed spectra in the 1–50 Å range

The CHIANTI database has been compared with observed spectra in the 1–50 Å wavelength range in order to test for accuracy and completeness.

2.1. Observed solar spectra

Paper IV includes a comparative list of CHIANTI-predicted lines and the observed lines from published high resolution solar spectra, mostly recorded by the SMM/FCS and SOLEX spectrometers. This list is reproduced in the appendix.

First of all, it is important to keep in mind that:

- There are very few published high resolution solar spectra in the 1-50 Å range, at this time.
- Most of these spectra are not in calibrated physical units or do not have an accurate intensity calibration.
- The spectra were usually recorded by scanning over a wavelength range.
- Most of the spectra were recorded during solar flares, when the intensities of the flare lines was changing by large factors.
- Different publications present different spectral line identifications.
- Most of the line identifications were based on wavelengths, and not on intensities.

Two solar spectra have been chosen here for testing CHIANTI:

- A flare spectrum of 1979 June 10 recorded in the 8 23 Å region by the SOLEX (USAF P78-1) spectrometer (McKenzie et al., 1980). The spectrum was recorded in $\simeq 85s$.
- A flare spectrum of 1980 August 25 recorded in the 5 19 Å region by the SMM/FCS in ≃ 18m (Phillips et al., 1982). The flare lines dropped their intensity by factors ≃ 3 while the spectrum was recorded, making this observation difficult to interpret.

2.2. Observed stellar spectra

Two of the stars selected for the Chandra Emission Line Project have been selected:

- Chandra/HETG HR 1099. A single spectrum in the public database has been used.
- Chandra/HETG Capella. Here, a composite of the publicly available spectra extracted by D. Huenemoerder (MIT) has been used.

2.3. Solar vs. stellar X-ray spectra for line identifications

A question arises: which spectral data are more suitable to test the completeness and correctness of the latest atomic data ?

The new Chandra/HETG have a high spectral resolution, comparable to that of the earlier solar spectrometers. This high resolution is very useful for line identifications and the assessment of line blending.

The solar flare spectra, however, have the advantage over the available stellar spectra of having good signal-to-noise, together with the presence of both cool and high-temperature (flare) spectral lines.

For quantitative analyses, spectra should be well calibrated in intensity over large wavelength ranges.

The solar spectra have the disadvantage of lack of simultaneity in recording lines at different wavelengths, making their interpretation quite problematic, for flare observations.

2.4. The model adopted for producing CHIANTI spectra

As a first approximation, the following model was adopted:

- The photospheric abundances of Grevesse and Anders (1991).
- The ionization equilibria of Arnaud and Raymond (1992) for iron ions, Arnaud and Rothenflug (1985) for the other abundant ions and Landini and Monsignori Fossi (1991) for the minor ions.
- A constant density of 10^{11} and 10^{12} (cm⁻³) was adopted for the solar spectra and the HR 1099 spectrum. A constant pressure of 10^{16} (cm⁻³ K) was adopted for the Capella spectrum.
- A differential emission measure analysis (Del Zanna, 1999) was performed on all spectra, attempting to reproduce the majority of lines.
- CHIANTI line intensities have been calculated, and synthetic spectra constructed convolving the line intensities with gaussian profiles having fixed width, as a first approximation.

2.5. Results

Now, a sample of the comparisons performed are presented.

Figure 1. Capella HETG observed and synthetic spectrum.

Figure 2. Capella HETG observed and synthetic spectrum.

Figure 3. The solar flare spectrum of McKenzie et al. (1980) with the synthetic spectrum. Note how most of the lines are high-T ones.

Figure 4. *HR 1099 HETG observed and synthetic spectrum. Note how most of the lines are high-T ones.*

Figure 5. The 1980 solar flare spectrum of Phillips et al. (1982) with the synthetic spectrum. Note the presence of unidentified lines.

3. Conclusion

A large effort was expended in extending the CHIANTI database into the soft X-ray wavelength region (1-50 Å), to include new transitions from hydrogen and helium isoelectronic sequences, innershell transitions and satellite lines, and from several other ions. Plasma characteristics such as electron densities and temperatures can now be derived from X-ray spectra using CHIANTI.

The X-ray wavelength region is still relatively **unexplored**.

Only a few high-resolution solar spectra are available. Now the Chandra and XMM satellites are providing high-resolution X-ray spectra. The issue of line identifications and completeness of an atomic database in the X-ray wavelength range is still very important, in particular when considering the interpretation of low-resolution spectra, that represent the majority of data taken by Chandra and XMM.

The inclusion of the most updated atomic data, in particular for the Fe XVII-XXIV ions, can be considered a great improvement in our understanding of the X-ray spectrum. The comparisons with the solar and stellar spectra have shown that the great majority of lines observed in the X-ray spectrum between 1 and 50 Å can be identified and are now included in the CHIANTI database.

These comparisons have however outlined that there are still many unidentified lines, and lines for which no atomic data are available. Much work is still required in order to have more accurate line identifications. For this, highresolution, high S/N well calibrated spectra are needed.

Acknowledgments. We are grateful to K. Phillips (RAL) for providing calibrated SMM/FCS spectra.

Financial support from PPARC and the Chandra Emission Line Project (ELP) is acknowledged.

G. Del Zanna also acknowledges financial support from the University of Central Lancashire.

References

Arnaud, M., Raymond, J.: 1992, ApJ, 398, 394

- Arnaud, M., Rothenflug R. 1985, A&AS, 60, 425
- Brosius, J. W., Davila, J. M. and Thomas, R. J., 1998, Astrophys. J. Letters, 497, L113, Calibration of the SERTS-95 Spectrograph from Iron Line Intensity Ratios
- Del Zanna, G. and Bromage, B.J.I. 1999, J. Geophys. Res., 104, 9753, The Elephant's Trunk: Spectroscopic diagnostics applied to SOHO/CDS observations of the August 1996 equatorial coronal hole
- Del Zanna, G., 1999, PhD thesis, University of Central Lancashire, UK
- Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. and Young, P. R., 1997, Astron. Astrophys. Suppl. Ser., 125, 149, CHIANTI: an Atomic Database for Emission Lines
- Grevesse, N., and Anders, E., 1991, in *Solar Interior and Atmosphere*, eds. A.N. Cox, W.C. Livingston, and M.S. Matthews, (Tucson: Univ. Arizona Press), 1227

- Landi, E., Del Zanna, G., Landini, M., Bromage, B.I.J., Breeveld, E., Pike, C.D., Relative intensity calibration of CDS-GIS detectors on SOHO using a plasma diagnostic technique, 1999, A&A, 135, 171
- Landi, E., Landini, M., Dere, K.P., Young, P.R.. and Mason, H. E., 1999, Astron. Astrophys., 135, 339, CHIANTI an atomic database for emission lines III Continuum radiation and extension of the ion database
- Landini, M., Monsignori Fossi, B.C., 1991, A&AS, 91, 183
- Mason H.E., Young P.R., Pike C.D., Harrison R.A., Fludra A., Bromage B.J.I., Del Zanna G., 1997, Sol. Phys., 170, 143, Application of Spectroscopic Diagnostics to Early Observations with the SOHO Coronal Diagnostic Spectrometer
- McKenzie, D.L., Landecker, P.B., Broussard, R.M., Rugge, H.R., Young, R.M., Feldman, U., & Doschek, G.A., 1980, ApJ, 241, 409 (14)
- Phillips, K.J.H., Leibacher, J.W., Wolfson, C.J., Parkinson, J.H., Fawcett, B.C., Kent, B.J., Mason, H.E., Acton, L.W., Culhane, J.L., & Gabriel, A.H., 1982, ApJ, 256, 774 (17)
- Shirai, T., Sugar, J., Musgrove, A., Wiese, W.L., 2000, J. Phys. Chem. Ref. Data, Monograph 8
- Young, P.R., Landi, E. and Thomas R.J., 1998, Astron. Astrophys., 329, 291, CHIANTI: an atomic database for emission lines II. Comparison with the SERTS-89 active region spectrum

Table 1. Ions included in the CHIANTI database. \circ : Ions in the CHIANTI 1.01 version *not* changed in the present update. \bullet : Ions in the CHIANTI 1.01 version whose data have been modified/complemented in the present update. \star : New entries for the CHI-ANTI version 3.0 database.

CHIANTI: Line list in the 1-50 Å range

Here, we reproduced the line list as in Dere et al. (2000).

This compiled list includes observations from: (1) Acton et al. 1985; (7) Widing and Sandlin 1968; (11) Fawcett et al. 1987; (12) the list of Fawcett et al. 1987 revised by Phillips et al. 1999; (13) Feldman, Doschek & Kreplin 1980; (14) McKenzie et al. 1980; (15) McKenzie & Landecker 1982; (16) McKenzie et al. 1985; (17) Phillips et al. 1982; (18) Phillips et al. 1999; (19) Doschek 1972; (20) Pike et al. 1996.

The numbers between 1 and 20 refer to the reference key provided in the last column of the Table. Aside from the spectra of Widing and Sandlin 1968, all of the spectra were observed during solar flares. We have developed a composite of these spectra by combining all of the observations within a narrow wavelength interval. Because of the relatively low resolution of the X-ray spectra compiled by Doschek 1972, we have not included all of these observed wavelengths.

Whenever solar observations were available, the average of the observed wavelengths for each single spectral line feature is given in the first column of Table 5 (the last column provides a key to the reference to the observations). If there are CHIANTI predicted lines associated with the observed line, they are listed, with their CHIANTI wavelength (in second column), their identification (third and fourth column), and intensity of the line (fifth column). A blank first column indicates multiple strong lines that can be associated with the observed wavelength. Note that only the brightest lines contributing to each blend are shown. A '.....' in the first column indicates a strong spectral line that is expected on the basis of the CHIANTI computed spectra that has not apparently been observed.

The intensities of the lines in the CHIANTI database have been calculated as in Paper I, using a differential emission measure (DEM) of a solar flare between 3×10^4 and 2×10^7 K is taken from Dere and Cook (1979) this time enhanced and extrapolated to 10^8 K in order to reproduce the lines at the shortest wavelengths. The calculations of the line intensities assume the solar elemental abundances of Allen (1973), the ionization equilibria of Arnaud and Raymond (1992) for iron ions, Arnaud and Rothenflug (1985) for the other abundant ions and Landini and Monsignori Fossi (1991) for the minor ions. The line intensities are expressed in erg cm⁻² s⁻¹ sr⁻¹.

If there are no bright lines predicted by CHIANTI, associated with the observed one, a 'missing' line is listed in the Table. This line can be recognised by the absence of a predicted intensity (i.e. a '...' in the intensity column). Wavelengths and identifications are those given by Kelly (1987).

The CHIANTI database predicts many more lines than are listed in Table but we have not included lines below a threshold value suggested by the intensities of the lines that have been observed. The CHIANTI database also predicts the presence of many lines that apparently have not been observed yet. Some of these lines are from energy levels that do not have observed values, and are not included in the Table.

We stress that the intensity values in the Table should only be used as a guide to the identification and the problem of blending and should be used in a relative sense. Some identifications should be considered simply coincidental if the expected intensity is relatively low.

CHIANTI XUV Line List								
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
•••	1.2540	Ni XXVII	$1s^2 {}^1S_0$ - $1s 5p {}^1P_1$	1.1e+03				
	1.2830	Ni XXVII	$1s^2 {}^1S_0$ - 1s 4p 1P_1	$2.5e{+}03$				
	1.2934	Ni XXVIII	$1{ m s}~^2{ m S}_{1/2}$ - $3{ m p}~^2{ m P}_{3/2}$	1.2e+03				
	1.3500	Ni XXVII	$1s^2 {}^1S_0$ - 1s 3p 1P_1	7.6e + 03				
	1.3520	Ni XXVII	$1s^2 {}^1S_0$ - 1s 3p 3P_1	$1.3e{+}03$				
	1.3917	Fe XXVI	$1{ m s}~^2{ m S}_{1/2}$ - $5{ m p}~^2{ m P}_{3/2}$	7.5e+03				
	1.3919	Fe XXVI	$1 { m s} \ ^2 { m S}_{1/2}$ - $5 { m p} \ ^2 { m P}_{1/2}$	$3.8e{+}03$				
	1.4249	Fe XXVI	$1s {}^{2}S_{1/2}$ - $4p {}^{2}P_{3/2}$	1.5e+04				
	1.4253	Fe XXVI	$1s {}^{2}S_{1/2}$ - $4p {}^{2}P_{1/2}$	7.4e+03				
	1.4610	Fe XXV	$1s^2 {}^1S_0$ - 1s 5p 3P_1	$3.5e{+}03$				
	1.4610	Fe XXV	$1s^2$ 1S_0 - $1s$ $5p$ 1P_1	$2.6e{+}04$				
	1.4950	Fe XXV	$1s^2 {}^1S_0$ - 1s 4p 1P_1	5.7e + 04				
	1.4950	Fe XXV	$1\mathrm{s}^2$ $^1\mathrm{S}_0$ - 1s 4p $^3\mathrm{P}_1$	7.8e+03				
	1.5023	Fe XXVI	$1 { m s} \ ^2 { m S}_{1/2}$ - $3 { m p} \ ^2 { m P}_{3/2}$	4.6e + 04				
	1.5035	Fe XXVI	$1 { m s} \ {}^2{ m S}_{1/2}$ - $3 { m p} \ {}^2{ m P}_{1/2}$	$2.3e{+}04$				
	1.5303	Ni XXVIII	$1s {}^{2}S_{1/2}$ - $2p {}^{2}P_{3/2}$	7.7e + 03				
	1.5358	Ni XXVIII	$1 \text{s} \ ^2\text{S}_{1/2}$ - $2 \text{p} \ ^2\text{P}_{1/2}$	$3.8e{+}03$				
	1.5415	Ni XXVII d	$1s \ 2p \ {}^1\dot{P}_1$ - $2p \ 2p \ {}^1D_2$	1.1e+03				
1.567	1.5730	Fe XXV	$1s^2$ 1S_0 - $1s$ $3p$ 1P_1	1.7e+05	19			
	1.5750	Fe XXV	$1\mathrm{s}^2$ $^1\mathrm{S}_0$ - $1\mathrm{s}$ 3p $^3\mathrm{P}_1$	$2.6e{+}04$				
1.587	1.5880	Ni XXVII	$1s^2 {}^1S_0$ - 1s 2p 1P_1	5.2e + 04	19			
	1.5923	Ni XXVII	$1s^2$ 1S_0 - $1s$ $2p$ 3P_2	7.7e + 03				
	1.5935	Ni XXVI	$1s^2 2s {}^2S_{1/2}$ - $1s 2s 2p (^1P) {}^2P_{1/2}$	$1.2e{+}03$				
	1.5965	Ni XXVII	$1s^2 {}^1S_0$ - 1s 2p 3P_1	1.0e+04				
	1.5970	Ni XXVI	$1s^2 2s {}^2S_{1/2}$ - $1s 2s 2p ({}^3P) {}^2P_{3/2}$	5.6e + 03				
	1.5977	Ni XXVI d	$1s^2 2p {}^2P_{3/2}$ - 1s 2p (³ P) 2p ${}^2P_{3/2}$	$1.1e{+}03$				
	1.5984	Ni XXVI d	$1s^2 2p {}^2P_{1/2}$ - 1s 2p (¹ P) 2p ${}^2D_{3/2}$	2.3e+03				
	1.5996	Ni XXVI	$1s^2 2s {}^2S_{1/2}$ - $1s 2s 2p ({}^3P) {}^2P_{1/2}$	$1.5e{+}03$				
	1.6009	Ni XXVI d	$1s^2 2p {}^2P_{3/2}$ - 1s 2p (¹ P) 2p ${}^2D_{5/2}$	$3.5e{+}03$				
	1.6036	Ni XXVII	$1s^2 {}^1S_0$ - 1s 2s 3S_1	1.0e+04				
1.778	1.7780	Fe XXVI	$1s \ ^2S_{1/2}$ - $2p \ ^2P_{3/2}$	$3.0e{+}05$	20			
	1.7795	Fe XXV d	$1{ m s}\; 3{ m p}\; {}^1{ m P}_1$ - $2{ m p}\; 3{ m p}\; {}^1{ m D}_2$	$1.3e{+}04$				
1.783	1.7833	Fe XXVI	$1 { m s} \ ^2 { m S}_{1/2}$ - $2 { m s} \ ^2 { m S}_{1/2}$	1.0e+04	20			
	1.7834	Fe XXVI	$1 \text{s} {}^{2}\text{S}_{1/2}$ - $2 \text{p} {}^{2}\text{P}_{1/2}$	$1.5e{+}05$				
	1.7872	Fe XXV d	$1s \ 2s \ {}^{1}S_{0}$ - $2s \ 2p \ {}^{1}P_{1}$	1.9e+04				
	1.7873	Fe XXV d	$1s \ 2p \ ^{3}P_{2}$ - $2p^{2} \ ^{1}D_{2}$	$1.2e{+}04$				
1.792	1.7920	Fe XXV d	1 s 2p $^{1}{\rm P}_{1}$ - 2p² $^{1}{\rm D}_{2}$ (J)	$3.7e{+}04$	20			
	1.7926	Fe XXV d	$1s \ 2p \ ^{3}P_{2}$ - $2p^{2} \ ^{3}P_{2}$	1.4e+04				
1.8283					13			
1.8309					13			

CHIANTI XUV Line List (cont.)							
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
1.8344					13		
1.8389					13		
1.8424					13		
1.8499	1.8500	Fe XXV	$1s^{2} {}^{1}S_{0}$ - 1s 2p ${}^{1}P_{1}$ (w)	1.2e + 06	13		
	1.8517	Fe XXIV d	$1s^2 3d {}^2D_{5/2}$ - 1s 2p (1P) 3d ${}^2F_{7/2}$	1.3e+04			
	1.8525	Fe XXIV d	$1s^2 3p {}^2P_{1/2}$ - $1s 2p ({}^1P) 3p {}^2D_{3/2}$	1.4e+04			
	1.8532	Fe XXIV d	$1s^2 3p {}^2P_{3/2}$ - $1s 2p (^1P) 3p {}^2D_{5/2}$	1.8e+04			
1.8552	1.8554	Fe XXV	$1s^{2} {}^{1}S_{0}$ - 1s 2p ${}^{3}P_{2}$ (x)	1.6e + 05	13		
1.8568	1.8565	Fe XXIV d	$1s^2 3p {}^2P_{3/2}$ - $1s 2p ({}^3P) 3p {}^2D_{5/2}$	6.2e + 03	13		
	1.8566	Fe XXIV d	$1s^2 2p {}^2P_{3/2}$ - 1s 2p (¹ P) 2p ${}^2S_{1/2}$ (m)	7.2e + 03			
	1.8571	Fe XXIV d	$1s^2 2s {}^2S_{1/2}$ - $1s 2s2p ({}^1P) {}^2P_{1/2} (t)$	1.6e+04			
	1.8572	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (¹ P) ${}^2P_{1/2}$ (t)	1.7e+04			
1.8595	1.8595	Fe XXV	$1s^{2} {}^{1}S_{0}$ - 1s 2p ${}^{3}P_{1}$ (y)	$2.1e{+}05$	13		
	1.8604	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (³ P) ${}^2P_{3/2}$	9.4e + 04			
1.8610	1.8604	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - $1s 2s 2p ({}^3P) {}^2P_{3/2}$ (q)	9.4e + 04	13		
1.8631	1.8622	Fe XXIV d	$1s^2 2p {}^2P_{3/2} - 1s 2p ({}^3P) 2p {}^2P_{3/2} (a)$	2.0e+04	13		
	1.8630	Fe XXIV d	$1s^2 2p {}^2P_{1/2} - 1s 2p ({}^1P) 2p {}^2D_{3/2} (k)$	4.9e+04			
	1.8635	Fe XXIV d	$1s^2 2s {}^2S_{1/2} - 1s 2s2p ({}^3P) {}^2P_{1/2} (r)$	7.9e+03			
	1.8637	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (³ P) ${}^2P_{1/2}$ (r)	$2.6e{+}04$			
1.8660	1.8659	Fe XXIV d	$1s^2 2p {}^2P_{3/2}$ - 1s 2p (¹ P) 2p ${}^2D_{5/2}$ (j)	7.3e+04	13		
1.8680	1.8676	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (³ P) ${}^4P_{5/2}$	$1.5e{+}04$	13		
	1.8682	Fe XXV	$1s^2 {}^{1}S_0$ - 1s 2s ${}^{3}S_1$ (z)	2.3e+05			
1.8704	1.8721	Fe XXIII d	$2s 2p {}^{3}P_{1}$ - $1s 2s 2p^{2} {}^{3}D_{1}$	$1.1e{+}04$	13		
1.8732	1.8724	Fe XXIII d	$2s \ 2p \ ^{3}P_{0}$ - $1s \ 2s \ (^{4}P) \ 2p^{2} \ ^{3}P_{1}$	7.3e+03	13		
	1.8727	Fe XXIV d	$1s^2 2p {}^2P_{3/2}$ - $1s 2p ({}^3P) 2p {}^4P_{5/2}$ (e)	$1.2e{+}04$			
	1.8728	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (³ P) ${}^4P_{1/2}$ (v)	5.1e + 03			
	1.8730	Fe XXIV	$1s^2 2s {}^2S_{1/2} - 1s 2s 2p ({}^3P) {}^4P_{3/2} (u)$	$1.2e{+}04$			
	1.8731	Fe XXIII d	$2s 2p {}^{3}P_{1}$ - $1s 2s 2p^{2} {}^{3}D_{2}$	3.0e+04			
	1.8734	Fe XXIII d	$2s \ 2p \ ^{3}P_{2}$ - $1s \ 2s \ (^{4}P) \ 2p^{2} \ ^{3}P_{2}$	$9.6e{+}03$			
1.8754	1.8754	Fe XXIII d	$2s \ 2p \ ^{3}P_{2}$ - $1s \ 2s \ 2p^{2} \ ^{3}D_{3}$	4.1e + 04	13		
1.8779	1.8771	Fe XXIII d	$2s 2p {}^{1}P_{1} - 1s 2s 2p^{2} {}^{1}D_{2}$	$9.1e{+}03$	13		
	1.8786	Fe XXIII d	$2s^2 {}^1S_0$ - 1s $2s^22p {}^3P_1$	2.7e+03			
1.8794	1.8795	Fe XXII d	$2s^2 2p {}^2P_{3/2}$ - 1s $2s^2 2p^2 {}^2S_{1/2}$	1.1e+03	13		
1.8824	1.8822	Fe XXII d	$2s^2 2p {}^2P_{1/2}$ - $1s 2s^2 2p^2 {}^2D_{3/2}$	$3.4e{+}03$	13		
1.8851	1.8849	Fe XXII d	$2s^2 2p {}^2P_{3/2}$ - 1s $2s^2 2p^2 {}^2D_{5/2}$	$4.5e{+}03$	13		
1.8867	1.8870	Fe XXIII d	$2s \ 2p \ ^{3}P_{2}$ - $1s \ 2s \ 2p^{2} \ ^{5}P_{3}$	1.8e+03	13		
1.8916	1.8924	Fe XXIV d	$1s^2 2p {}^2P_{1/2} - 1s 2s^2 {}^2S_{1/2} (p)$	2.1e+03	13		
1.8942	1.8944	Fe XXI d	$2p^2 {}^{3}P_0$ - 1s $2s^22p^3 {}^{3}D_1$	2.4e+03	13		
1.8966	1.8965	Fe XXI d	$2p^2 {}^{3}P_1 - 1s \; 2s^2 2p^3 \; {}^{3}D_2$	3.2e + 03	13		
	1.8969	Fe XXIV d	$1s^2 2p {}^2P_{3/2}$ - $1s 2s^2 {}^2S_{1/2}$ (o)	2.2e + 03			

CHIANTI XUV Line List (cont.)								
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
	1.8969	Fe XXI d	$2p^2 {}^{3}P_2$ - 1s $2s^22p^3 {}^{3}D_3$	1.2e+03				
1.9051	1.9051	Fe XX	$1s^2 2s^2 2p^3 {}^4S_{3/2}$ - $1s 2s^2 2p^4 {}^4P_{5/2}$	•••	13			
1.9075	1.9075	Fe XX	$1s^2 2s^2 2p^3 {}^2P_{3/2}$ - $1s 2s^2 2p^4 {}^2P_{3/2}$	•••	13			
1.9360	1.9360	Fe K α_1		•••	13			
1.9400	1.9400	Fe K α_2			13			
2.706	2.7054	Ca XIX	$1s^2 {}^1S_0 - 1s \; 3p \; {}^1P_1$	9.9e + 03	19			
3.0185	3.0185	Ca XX	$1s {}^{2}S_{1/2}$ - $2p {}^{2}P_{3/2}$	3.6e + 04	13			
3.0239	3.0239	Ca XX	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	1.8e+04	13			
3.0485	3.0486	Ca XIX d	$1s 2p^{-1}P_1 - 2p^{2-1}D_2$ (j)	$3.8e{+}03$	13			
3.16	3.1502	Ar XVIII	$1s\ ^2S_{1/2}$ - $3p\ ^2P_{3/2}$	$1.9e{+}04$	19			
	3.1514	Ar XVIII	$1 { m s} \ ^2 { m S}_{1/2}$ - $3 { m p} \ ^2 { m P}_{1/2}$	9.6e + 03				
3.1769	3.1772	Ca XIX	$1s^2 {}^1S_0$ - $1s 2p {}^1P_1$ (w)	$6.9e{+}04$	13			
3.1822	3.1820	Ca XVIII d	$1s^2 3p {}^2P_{1/2}$ - $1s 2p ({}^1P) 3p {}^2D_{3/2}$	$9.1e{+}02$	13			
	3.1829	Ca XVIII d	$1s^2 3p {}^2P_{3/2}$ - 1s 2p (¹ P) 3p ${}^2D_{5/2}$	1.4e+03				
3.1889	3.1891	Ca XIX	$1s^{2} {}^{1}S_{0}$ - 1s 2p ${}^{3}P_{2}$ (x)	7.9e+03	13			
3.1925	3.1927	Ca XIX	$1s^{2} {}^{1}S_{0} - 1s {}^{2}p {}^{3}P_{1} (y)$	9.0e + 03	13			
3.2003	3.1961	Ca XVIII	$1s^2 2s {}^2S_{1/2} - 1s 2s 2p ({}^3P) {}^2P_{3/2} (q)$	2.4e + 03	13			
	3.1996	Ar XVII	$1s^{2} {}^{1}S_{0}$ - 1s 4p ${}^{1}P_{1}$	$9.5e{+}03$				
3.2033	3.2038	Ca XVIII d	$1s^2 2p {}^2P_{3/2}$ - $1s 2p ({}^3P) 2p {}^2P_{3/2}$ (a)	7.2e + 02	13			
3.2066	3.2064	Ca XVIII d	$1s^2 2p {}^2P_{1/2} - 1s 2p ({}^1P) 2p {}^2D_{3/2} (k)$	2.5e + 03	13			
3.2111	3.2102	Ca XVIII d	$1s^2 2p {}^2P_{3/2} - 1s 2p ({}^1P) 2p {}^2D_{5/2} (j)$	3.4e + 03	13			
	3.2111	Ca XIX	$1s^{2} {}^{1}S_{0} - 1s 2s {}^{3}S_{1} (z)$	1.8e+04				
3.371	3.3654	Ar XVII	$1s^2 {}^1S_0$ - 1s 3p 1P_1	$3.0e{+}04$	19			
3.698	3.6958	S XVI	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	7.4e + 03	19			
	3.6960	S XVI	$1s {}^{2}S_{1/2}^{-7} - 5p {}^{2}P_{1/2}^{-7}$	3.7e + 03				
3.733	3.7311	Ar XVIII	$1s {}^{2}S_{1/2}^{-7} - 2p {}^{2}P_{3/2}^{-7}$	1.4e+05	19			
	3.7365	Ar XVIII	$1s {}^{2}S_{1/2}^{-} - 2p {}^{2}P_{1/2}^{-}$	6.8e + 04				
	3.7554	Ar XVII d	$1s 2s {}^{1}S_{0} - 2s 2p {}^{1}P_{1}$	4.0e + 03				
	3.7720	Ar XVII d	$1s 2p {}^{1}P_{1} - 2p 2p {}^{1}D_{2}$	1.2e + 04				
3.786	3.7843	S XVI	$1s^{2}S_{1/2} - 4p^{2}P_{3/2}$	1.7e + 04	19			
	3.7847	S XVI	$1s {}^{2}S_{1/2}^{1/2} - 4p {}^{2}P_{1/2}^{1/2}$	8.4e + 03				
3.949	3.9488	Ar XVII	$1s^2 {}^1S_0^7 - 1s 2p {}^1P_1$	2.1e+05	19			
3.969	3.9656	Ar XVII	$1s^2 {}^1S_0$ - 1s 2p 3P_2	2.0e+04	19			
	3.9691	Ar XVII	$1s^2 {}^1S_0 - 1s 2p {}^3P_1$	2.6e + 04				
	3.9978	S XV	$1s^2 {}^1S_0$ - 1s 5p 1P_1	9.0e + 03				
4.004	3.9908	S XVI	$1 { m s} {}^2{ m S}_{1/2}$ - $3 { m p} {}^2{ m P}_{3/2}$	$5.1e{+}04$	19			
	3.9919	S XVI	$1s {}^{2}S_{1/2}^{-7} - 3p {}^{2}P_{1/2}^{-7}$	2.6e + 04				
	3.9939	Ar XVII	$1s^2 \ {}^1S_0 - 1s \ 2s \ {}^3S_1$	6.2e + 04				
4.104	4.0885	S XV	$1s^2 {}^1S_0$ - 1s 4p 1P_1	2.0e+04	19			
4.299	4.2991	S XV	$1s^2 {}^1S_0$ - $1s {}^3p {}^1P_1$	$6.4e{+}04$	19			

CHIANTI XUV Line List (cont.)							
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
4.729	4.7274	S XVI	$1s {}^{2}S_{1/2}$ - $2p {}^{2}P_{3/2}$	3.7e + 05	19		
	4.7328	S XVI	$1 { m s} \ ^2 { m S}_{1/2}$ - $2 { m p} \ ^2 { m P}_{1/2}$	1.8e+05			
4.769	4.7611	S XV d	$1s \ 2s \ {}^{1}S_{0}$ - $2s \ 2p \ {}^{1}P_{1}$	$8.5e{+}03$	19		
	4.7848	S XV d	$1s \ 2p \ ^1P_1$ - $2p \ 2p \ ^1D_2$	2.7e+04			
4.834	4.8310	Si XIV	$1s\ ^2S_{1/2}$ - $5p\ ^2P_{3/2}$	1.5e+04	19		
	4.8312	Si XIV	$1s {}^{2}S_{1/2}$ - $5p {}^{2}P_{1/2}$	7.6e+03			
4.948	4.9467	Si XIV	$1s {}^{2}S_{1/2}$ - $4p {}^{2}P_{3/2}$	$3.4e{+}04$	19		
	4.9472	Si XIV	$1s {}^{2}S_{1/2}$ - $4p {}^{2}P_{1/2}$	$1.7e{+}04$			
5.039	5.0387	S XV	$1s^2 {}^1S_0 - 1s 2p {}^1P_1(w)$	4.5e + 05	$18,\!19$		
5.050	5.0484	S XIV d	$1s^2 3p {}^2P_{1/2}$ - 1s 2p (¹ P) 3p ${}^2D_{3/2}$	4.4e + 03	18		
	5.0495	S XIV d	$1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$	6.8e + 03			
5.066	5.0631	S XV	$1s^{2} {}^{1}S_{0} - 1s 2p {}^{3}P_{2} (x)$	2.8e+04	18, 19		
	5.0665	S XV	$1s^2 {}^1S_0 - 1s 2p {}^3P_1 (y)$	5.4e + 04			
5.105	5.1015	S XV	$1s^{2} {}^{1}S_{0}$ - 1s 2s ${}^{3}S_{1}$ (z)	1.5e+05	18, 19		
	5.1025	S XIV d	$1s^2 2p {}^2P_{3/2} - 1s 2p ({}^1P) 2p {}^2D_{5/2} (j)$	1.0e+04			
5.220	5.2168	Si XIV	$1s^{2}S_{1/2} - 3p^{2}P_{3/2}$	1.1e+05	18, 19		
	5.2179	Si XIV	$1s {}^{2}S_{1/2}^{7}$ - $3p {}^{2}P_{1/2}^{7}$	5.3e + 04			
5.228	5.2230	Si XIII	$1s^2 \ {}^1S_0 - 1s \ 6p \ {}^1P_1$		18		
5.238			· · ·		18		
5.285	5.2856	Si XIII	$1s^2 {}^1S_0$ - 1s 5p 1P_1	$1.2e{+}04$	$18,\!19$		
5.407	5.4046	Si XIII	$1s^2 \ {}^1S_0$ - $1s \ 4p \ {}^1P_1$	2.8e+04	$18,\!19$		
5.682	5.6807	Si XIII	$1s^2 {}^1S_0$ - 1s 3p 1P_1	$8.9e{+}04$	$16,\!17,\!18,\!19$		
5.816	5.8157	Si XII d	$1s^2 2p \ ^2P_{1/2}$ - $1s \ 2p \ (^3P) \ 3p \ ^2D_{3/2}$	1.4e+03	19		
	5.8163	Si XII d	$1s^2 2p {}^2P_{3/2}$ - 1s 2p (³ P) 3p ${}^2D_{5/2}$	2.9e+03			
6.049	6.0525	Al XIII	$1 { m s}^{2} { m S}_{1/2}$ - $3 { m p}^{2} { m P}_{3/2}$	7.1e+03	19		
	6.0537	Al XIII	$1 \text{s} \ ^2\text{S}_{1/2}$ - $3 \text{p} \ ^2\text{P}_{1/2}$	$3.6e{+}03$			
	6.1720	Si XIII d	1s 3d $^1 m \dot{D}_2$ - 2p 3d $^1 m F_3$	1.0e+04			
6.180	6.1804	Si XIV	1s ² S _{1/2} - 2p ² P _{3/2}	7.8e + 05	$17,\!18,\!19$		
6.187	6.1858	Si XIV	$1 \text{s} \ ^2\text{S}_{1/2}$ - $2 \text{p} \ ^2\text{P}_{1/2}$	$3.9e{+}05$	$17,\!18$		
	6.1993	Si XIII d	1s 3d ${}^{3}\!\mathrm{\dot{D}}_{3}$ - 2p 3d ${}^{3}\mathrm{F}_{4}$	5.6e + 03			
6.212					18		
6.224	6.2296	Si XIII d	1s 2s 1S_0 - 2s 2p 1P_1	$1.2e{+}04$	19		
	6.2446	Si XIII d	1 s $2{\rm s}~^3{\rm S}_1$ - 2 s $2{\rm p}~^3{\rm P}_2$	$8.2e{+}03$			
	6.2482	Si XIII d	1 s $2{\rm s}~^3{\rm S}_1$ - 2 s $2{\rm p}~^3{\rm P}_1$	5.0e + 03			
6.261					$17,\!18$		
6.266	6.2650	Si XIII d	$1s 2p {}^{1}P_{1}$ - $2p 2p {}^{1}D_{2}$	$3.8e{+}04$	$17,\!18,\!19$		
6.319					18		
6.324					18		
6.333					18		
6.364					18		

CHIANTI XUV Line List (cont.)								
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
6.402					18			
6.420					18			
6.470					18			
6.485					18			
6.581	6.5800	Mg XII	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	9.3e + 03	18			
	6.5802	Mg XII	$1s_{1/2}^2 S_{1/2} - 5p_{1/2}^2 P_{1/2}$	4.6e + 03				
	6.6350	Al XII	$1s^2 {}^1S_0$ - 1s 3p 1P_1	4.5e + 03				
6.647	6.6480	Si XIII	$1s^2 {}^1S_0 - 1s 2p {}^1P_1 (w)$	6.1e + 05	$16,\!17,\!18$			
	6.6539	Si XII d	$1s^2 \ 3d \ ^2D_{3/2}$ - $1s \ 2p \ (^1P) \ 3d \ ^2F_{5/2}$	5.2e + 03				
6.659	6.6554	Si XII d	$1s^2 \ 3d \ ^2D_{5/2}$ - $1s \ 2p \ (^1P) \ 3d \ ^2F_{7/2}$	8.2e + 03	16			
	6.6627	Si XII d	$1s^2 3p {}^2P_{1/2}$ - $1s 2p ({}^1P) 3p {}^2D_{3/2}$	5.4e + 03				
	6.6638	Si XII d	$1s^2 3p {}^2P_{3/2}$ - $1s 2p ({}^1P) 3p {}^2D_{5/2}$	7.8e + 03				
6.685	6.6851	Si XIII	$1s^2 {}^{1}S_0$ - 1s 2p ${}^{3}P_2$ (x)	3.0e + 03	$17,\!18$			
6.688	6.6883	Si XIII	$1s^2 {}^1S_0$ - 1s 2p 3P_1 (y)	$4.4e{+}04$	$17,\!18$			
6.692	6.6891	Si XII d	$1s^2 3p {}^2P_{3/2}$ - $1s 2p ({}^3P) 3p {}^2D_{5/2}$	$8.3e{+}02$	16			
6.720	6.7180	Si XII	$1s^2 2s {}^2S_{1/2}$ - $1s 2s 2p ({}^3P) {}^2P_{3/2} (q)$	5.4e + 03	16			
	6.7200	Si XII	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (³ P) ${}^2P_{1/2}$ (r)	$2.1e{+}03$				
6.740	6.7377	Mg XII	$1s {}^{2}S_{1/2}$ - $4p {}^{2}P_{3/2}$	$2.1e{+}04$	$16,\!17,\!18$			
	6.7382	Mg XII	$1 \text{s} {}^{2}\text{S}_{1/2}$ - $4 \text{p} {}^{2}\text{P}_{1/2}$	1.0e+04				
	6.7404	Si XIII	$1s^2 {}^{1}S_0 - 1s 2s {}^{3}S_1(z)$	1.4e+05				
	6.7432	Si XII d	$1s^2 2p {}^2P_{3/2}$ - $1s 2p ({}^1P) 2p {}^2D_{5/2}$	$8.1e{+}03$				
	6.8111	Ni XXVI	$1s^2 2s^{'2}S_{1/2}$ - $1s^2 4p {}^2P_{3/2}$	6.6e + 03				
	6.8208	Ni XXVI	$1s^2 2s {}^2S_{1/2}$ - $1s^2 4p {}^2P_{1/2}$	$3.5e{+}03$				
6.950			, , , ,		$17,\!18$			
7.102	7.1058	Mg XII	$1s \ ^2S_{1/2}$ - $3p \ ^2P_{3/2}$	$6.3e{+}04$	$17,\!18$			
7.105	7.1069	Mg XII	$1 \text{s} \ ^2\text{S}_{1/2}$ - $3 \text{p} \ ^2\text{P}_{1/2}$	$3.2e{+}04$	$17,\!18$			
7.170	7.1690	Fe XXIV	$1 { m s}^2 \ 2 { m s} \ {}^2 { m S}_{1/2}^{'}$ - $1 { m s}^2 \ 5 { m p} \ {}^2 { m P}_{1/2}$	$1.8e{+}04$	$16,\!17,\!18$			
	7.1690	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - $1s^2 5p {}^2P_{3/2}$	$3.4e{+}04$				
	7.1709	Al XIII	$1 { m s} \ {}^2{ m S}_{1/2}$ - $2 { m p} \ {}^2{ m P}_{3/2}$	$5.1e{+}04$				
	7.1763	Al XIII	$1 \text{s} {}^{2}\text{S}_{1/2}$ - $2 \text{p} {}^{2}\text{P}_{1/2}$	$2.5e{+}04$				
7.310	7.3100	Mg XI	$1s^2 {}^1S_0^{'}$ - 1s 5p ${}^1\dot{P}_1$	4.0e+03	$17,\!18$			
7.368	7.3698	Fe XXIV	$1s^2 2p \ ^2P_{1/2}$ - $1s^2 \ 5d \ ^2D_{3/2}$	$1.6e{+}04$	12			
7.377			, , ,		12			
7.387	7.3910	Fe XXIV	$1s^2 2p {}^2P_{1/2}$ - $1s^2 5s {}^2S_{1/2}$	$6.5e{+}03$	12			
7.438	7.4381	Fe XXIV	$1s^2 2p {}^2P_{3/2}$ - $1s^2 5d {}^2D_{5/2}$	1.4e+03	12			
	7.4403	Fe XXIV	$1s^2 \ 2p \ ^2P_{3/2}$ - $1s^2 \ 5d \ ^2D_{3/2}$	$2.9e{+}03$				
7.454	7.4620	Fe XXIV	$1s^2 2p {}^2P_{3/2}$ - $1s^2 5s {}^2S_{1/2}$	$1.4e{+}04$	12			
7.473	7.4730	Mg XI	$1s^2 {}^1S_0$ - 1s 4p 1P_1	$9.0e{+}03$	12,17,18			
	7.4720	Fe XXIII	$2 \mathrm{s}^2 \ ^1\mathrm{S}_0$ - 2 s $5 \mathrm{p} \ ^1\mathrm{P}_1$					
7.477					$12,\!16$			

CHIANTI XUV Line List (cont.)								
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
7.498					12			
7.561					12			
7.685					16			
7.710					$17,\!18$			
7.757	7.7570	Al XII	$1s^{2} {}^{1}S_{0}$ - 1s 2p ${}^{1}P_{1}$ (w)	3.0e + 04	$17,\!18$			
7.774					$17,\!18$			
7.808	7.8070	Al XII	$1s^2 {}^1S_0 - 1s 2p {}^3P_1 (y)$	3.2e + 03	$16,\!17,\!18$			
7.850	7.8510	Mg XI	$1s^2 {}^1S_0 - 1s {}^3p {}^1P_1$	2.8e+04	$11,\!12,\!17,\!18$			
7.872	7.8721	Al XII	$1s^2 {}^1S_0$ - $1s 2s {}^3S_1 (z)$	1.2e + 04	$11,\!12,\!17,\!18$			
7.902					$11,\!12$			
7.919					$11,\!12$			
7.936					12			
7.952	-				16			
7.987	7.9828	Fe XXIV	$1s^2 2s {}^2S_{1/2} - 1s^2 4p {}^2P_{3/2}$	1.0e+05	$11,\!12,\!16$			
7.997	7.9930	Fe XXIV	$1s^2 2s {}^2S_{1/2}$ - $1s^2 4p {}^2P_{1/2}$	5.4e + 04	$11,\!12,\!16$			
8.069					17,18			
8.091					11,12			
8.141					16			
8.153					12,16,18			
8.159					12,18			
8.168					12			
8.204	0.0911		$1^{2} 0^{2} D = 1^{2} 4 1^{2} D$	50 104	12			
8.232	8.2311	FE AALV	$1s^{-}2p^{-}P_{1/2} - 1s^{-}4d^{-}D_{3/2}$	5.2e + 04	11,12,10			
8.270	0.0000		1^{2} 2^{2} 1^{2} 4^{2} 2^{2}	00 104	12			
8.285	8.2830	Fe XXIV	$1s^{-}2p^{-}P_{1/2} - 1s^{-}4s^{-}S_{1/2}$	2.2e+04	12			
8.304	8.3030	Fe XXIII	$2s^2 {}^{1}S_0 - 2s 4p {}^{1}P_1$	1.2e + 05	11,12,13,16			
8.316	8.3158	Fe XXIV	$1s^2 2p {}^2P_{3/2} - 1s^2 4d {}^2D_{5/2}$	9.3e + 04	11,12,13,16,17			
	8.3193	Fe XXIV	$1s^2 2p {}^2P_{3/2}$ - $1s^2 4d {}^2D_{3/2}$	1.0e+04				
8.325					14			
8.376	8.3729	Fe XXIV	$1s^2 2p {}^2P_{3/2} - 1s^2 4s {}^2S_{1/2}$	4.6e + 04	16			
8.419	8.4192	Mg XII	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	4.4e + 05	$17,\!18$			
8.424	8.4246	Mg XII	$1s {}^{2}S_{1/2}$ - $2p {}^{2}P_{1/2}$	2.2e + 05	$17,\!18$			
8.500	8.4956	Mg XI d	1s 2s ${}^{1}S_{0}$ - 2s 2p ${}^{1}P_{1}$	3.8e + 03	18			
8.531	8.5290	Fe XXIII	$2s 2p {}^{3}P_{0} - 2s 4d {}^{3}D_{1}$	5.4e + 03	12			
8.552	8.5500	Fe XXIII	$2s 2p {}^{3}P_{1} - 2s 4d {}^{3}D_{2}$	$1.1e{+}04$	$11,\!12,\!17,\!18$			
	8.5513	Mg XI d	1 s 2p $^1\mathrm{P}_1$ - 2p 2p $^1\mathrm{D}_2$	$1.2e{+}04$				
8.573					$11,\!12,\!16,\!17,\!18$			
8.617	8.6140	Fe XXIII	$2s 2p {}^{3}P_{2} - 2s 4d {}^{3}D_{3}$	2.0e+04	$11,\!12,\!16$			
	8.6180	Fe XXIII	$2s 2p {}^{3}P_{2}$ - $2s 4d {}^{3}D_{2}$	3.7e + 03				
8.644					$11,\!12$			

CHIANTI XUV Line List (cont.)									
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs				
8.660					$11,\!12$				
8.715					$11,\!12$				
8.722					$11,\!12$				
8.734					$11,\!12$				
8.753					12				
8.814	8.8140	Fe XXIII	$2s 2p P_1 - 2s 4d D_2$	1.3e+05	$11,\!12,\!16$				
8.823					14				
8.848			1 1		$11,\!12,\!18$				
8.906	8.9060	Fe XXIII	$2s \ 2p \ ^1P_1$ - $2s \ 4s \ ^1S_0$	5.0e + 04	$11,\!12$				
8.919					$11,\!12,\!16$				
8.933					12				
8.976	8.9770	Fe XXII	$2s \ 2p^2 \ ^2D_{5/2}$ - $2s \ 2p \ (^3P) \ 4d \ ^2F_{7/2}$	•••	$11,\!12,\!14,\!16,\!18$				
8.993					12				
9.007					$11,\!12$				
9.068	9.0613	Ni XXVI	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{3/2}$	4.0e + 04	$11,\!12$				
9.073					11, 12, 14, 16, 17, 18				
9.114	9.1050	Ni XXVI	$1s^2 2s \ ^2S_{1/2}$ - $1s^2 \ 3p \ ^2P_{1/2}$	$2.1e{+}04$	$11,\!12,\!16$				
9.136					$11,\!12$				
9.150					18				
9.170	9.1690	Mg XI	$1s^2 {}^1S_0$ - $1s 2p {}^1P_1$ (w)	1.9e+05	$12,\!14,\!16,\!17,\!18$				
9.173					18				
9.181	9.1796	Mg X d	$1s^2 \ 3d \ ^2D_{3/2}$ - $1s \ 2p \ (^1P) \ 3d \ ^2F_{5/2}$	1.1e+03	$16,\!17,\!18$				
	9.1811	Mg X d	$1s^2 \ 3d \ ^2D_{5/2}$ - $1s \ 2p \ (^1P) \ 3d \ ^2F_{7/2}$	1.6e + 03					
9.189	9.1927	Mg X d	$1s^2 3p {}^2P_{1/2}$ - 1s 2p (¹ P) 3p ${}^2D_{3/2}$	8.9e + 02	$12,\!17,\!18$				
9.194	9.1938	Mg X d	$1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$	1.4e + 03	12,16,17,18				
9.202		U			12				
9.215					18				
9.224					12				
9.233	9.2282	Mg XI	$1s^2 {}^1S_0$ - 1s 2p 3P_2 (x)	2.4e + 03	12,14,16,17,18				
	9.2312	Mg XI	$1s^2 {}^1S_0 - 1s {}^2p {}^3P_1 (y)$	$2.1e{+}04$					
9.241		U			16				
9.252					12				
9.276					12				
9.284	9.2840	Mg X	$1s^2 2s {}^2S_{1/2}$ - 1s 2s 2p (³ P) ${}^2P_{3/2}$ (q)	8.3e + 02	17				
9.290					12,16,18				
9.298					18				
9.314	9.3143	Mg XI	$1s^2 {}^1S_0$ - 1s 2s 3S_1 (z)	7.1e + 04	$12,\!16,\!17,\!18$				
9.319	9.3161	Mg X d	$1s^2 2p {}^2P_{1/2}$ - 1s 2p (¹ P) 2p ${}^2D_{3/2}$ (k)	7.50e + 02	$12,\!14,\!16,\!17,\!18$				
	9.3206	Mg X d	$1s^2 2p {}^2P_{3/2} - 1s 2p ({}^1P) 2p {}^2D_{5/2}$ (i)	1.2e + 03					
	9.3400	Ni XXV	$2s^{2} {}^{1}S_{0} - 2s {}^{3}p^{-1}P_{1}$	$2.0e{+}04$					

CHIANTI XUV Line List (cont.)

)) (i)				
λ_{solar} (A)	λ (A)	lon	Transition	Int	Refs
9.361	9.3620	Ne X	1s ${}^2S_{1/2}$ - 6p ${}^2P_{3/2}$		$11,\!12,\!18$
9.383					$11,\!12$
9.391	9.3898	Ni XXVI	$1s^2 2p^2 P_{1/2} - 1s^2 3d^2 D_{3/2}$	2.7e + 04	$11,\!12,\!16,\!17,\!18$
	9.3900	Ni XXV	$2s^2 {}^{1}S_0 - 2s \; 3p \; {}^{3}P_1$	1.0e+04	
9.416	9.4150	Fe XXIII	$2p^2 {}^1S_0 - 2s 4p {}^1P_1$	$3.9e{+}03$	$11,\!12$
9.455	9.4510	Fe XXI	$2p^2$ 3P_1 - $2p$ 4d 3D_2	2.5e+05	12
9.476					$11,\!12$
9.481	9.4807	Ne X	$1 { m s} \ ^2 { m S}_{1/2}$ - $5 { m p} \ ^2 { m P}_{3/2}$	$1.5e{+}04$	$11,\!12,\!14,\!16,\!17,\!18$
	9.4809	Ne X	$1s \ ^2S_{1/2}$ - $5p \ ^2P_{1/2}$	7.4e + 03	
9.525	9.5353	Ni XXVI	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{5/2}$	4.8e + 04	16
9.542					$11,\!12$
9.548	9.5490	Ni XXVI	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{3/2}$	5.3e + 03	$11,\!12$
9.554	9.5590	Fe XXI	$2p^2 {}^{3}P_2 - 2p 4d {}^{3}D_1$	3.7e + 03	16
	9.5668	Ni XXVI	$1s^2 2p {}^2P_{1/2} - 1s^2 3s {}^2S_{1/2}$	1.2e + 04	
9.586	9.5810	Fe XXI	$2p^2 {}^{1}D_2 - 2p 4d {}^{3}F_3$	1.6e + 04	11.12.16
9.632	9.6330	Ni XXV	$2s 2p {}^{3}P_{1} - 2s 3d {}^{3}D_{2}$	2.0e+03	11.12
9.656					16
9.663					11,12
9.690	9.6880	Fe XIX	$2p^4 {}^{3}P_2 - 2p^3 (^{2}D) 5d {}^{3}D_3$		11,12
9.710	9.7080	Ne X	$1 \text{s}^{-2} \text{S}_{1/2} - 4 \text{p}^{-2} \text{P}_{3/2}$	3.3e + 04	11,12,17,18
9.711	9.7085	Ne X	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{1/2}$	1.6e + 04	11, 12, 16, 17, 18
9.726	9.7321	Ni XXVI	$1s^2 2p {}^2P_{3/2} - 1s^2 3s^2S_{1/2}$	2.5e + 04	12
9.795	9.7990	Fe XIX	$2p^4 {}^{3}P_1 - 2p^3 (^{2}D) 5d {}^{3}D_2$		11.12
9.807	9.8090	Cr XXII	$1s^2 2p {}^2P_{1/2} - 1s^2 4d {}^2D_{2/2}$	1.0e + 03	11.12.16
9.847	9 8420	Fe XIX	$2p^4 {}^{3}P_2 - 2p^3 ({}^{4}S) 5d {}^{3}D_2$		11 12
9.858	0.0120	101111	-p 12 -p (5) 54 -D3		16
9.896					12^{-3}
9.902					16
9.940					12
9.945					12
9.973	9.9680	Ni XXV	$2s \ 2p \ ^{1}P_{1}$ - $2s \ 3d \ ^{1}D_{2}$	$4.1e{+}04$	$11,\!12$
9.988	9.9910	Fe XX	$2p^{3} {}^{4}S_{3/2} - 2p^{2} ({}^{3}P) 4d {}^{4}P_{3/2}$		14
9.998	10.0015	Fe XXV	$1s 2s {}^{3}S_{1} - 1s 3p {}^{3}P_{2}$	8.9e + 03	11, 12, 16
10.021	10.0232	Na XI	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	1.9e + 04	12,14
	10.0286	Na XI	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	9.3e + 03	,
10.069	-		1/2 1 1/2		16
10.134	10.1340	Fe XVII	$2s^2 2p^6 {}^1S_0$ - $2s 2p^6 5p {}^3P_1$		14,16
10.250	10.2385	Ne X	$1s^{2}S_{1/2} - 3p^{2}P_{3/2}$	7.4e + 04	16
	10.2396	Ne X	$1s {}^{2}S_{1/2}^{1/2} - 3p {}^{2}P_{1/2}^{1/2}$	3.7e + 04	
10.328	10.3220	Ni XXV	$2s 2p ^{1}P_{1} - 2s 3s ^{1}S_{0}$	2.4e+04	16

CHIANII AUV Line List (cont.)								
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
10.359					16			
	10.3690	Fe XXV	$1\mathrm{s}~2\mathrm{p}~^3\mathrm{P}_1$ - $1\mathrm{s}~3\mathrm{s}~^3\mathrm{S}_1$	1.9e+03				
10.382	10.3860	Fe XVII	$2s^2 2p^6 {}^{1}S_0 - 2s^2 2p^5 ({}^{2}P_{1/2}) 7d {}^{1}P_1$	• • •	14			
10.502	10.4985	Fe XXV	1s 2p ${}^3\mathrm{P}_2$ - 1s 3s ${}^3\mathrm{S}_1$	1.6e+03	16			
	10.5060	Fe XVII	$2s^2 2p^6 {}^1S_0 - 2s^2 2p^5 ({}^2P_{3/2}) 7d {}^3D_1$	•••				
10.530	10.5330	Co XXV	$1s^2 2p \ ^2P_{3/2}$ - $1s^2 \ 3s \ ^2S_{1/2}$	1.1e+03	16			
10.564	10.5597	Fe XXIII	$2s^2 {}^1S_0$ - $2p \; 3s \; {}^1P_1$	$6.5e{+}03$	$17,\!18$			
	10.5640	Fe XIX	$2p^4 \ {}^{3}P_1$ - $2p^3 \ (^{2}P) \ 4d \ {}^{3}D_2$	•••				
10.579	10.5859	Fe XXV	$1s 2p {}^{1}P_{1}$ - $1s 3s {}^{1}S_{0}$	6.3e + 03	$16,\!17,\!18$			
10.620	10.6190	Fe XXIV	$1s^2 2s \ ^2S_{1/2}$ - $1s^2 \ 3p \ ^2P_{3/2}$	6.0e + 05	$17,\!18$			
10.636	10.6350	Fe XIX	$2p^4 \ ^{3}P_2$ - $2p^3 \ (^{2}D) \ 4d \ ^{3}S_1$	•••	$14,\!17,\!18$			
10.647	10.6440	Fe XIX	$2p^4 \ ^3P_2$ - $2p^3 \ (^2D) \ 4d \ ^3P_2$	•••	16			
10.654	10.6550	Fe XVII	$2s^2 2p^{6-1}S_0 - 2s^2 2p^5 (^2P_{1/2}) 6d {}^1P_1$	•••	$16,\!17$			
10.662	10.6630	Fe $XXIV$	$1s^2 2s \ ^2S_{1/2}$ - $1s^2 \ 3p \ ^2P_{1/2}$	$3.2e{+}05$	$14,\!17,\!18$			
10.684	10.6840	Fe XIX	$2p^4 \ ^3P_2$ - $2p^3 \ (^2D) \ 4d \ ^3F_3$	•••	$17,\!18$			
10.718					18			
10.738	10.7350	Fe XIX	$2p^4 {}^{3}P_1 - 2p^3 (^{2}D) 4d {}^{3}S_1$	•••	18			
10.769	10.7643	Ne IX	$1s^2 {}^1S_0 - 1s 5p {}^1P_1$	2.7e + 03	$16,\!17,\!18$			
	10.7700	Fe XIX	$2p^4 {}^{3}P_1 - 2p^3 ({}^{2}D) 4d {}^{3}D_2$					
	10.7700	Fe XVII	$2s^2 2p^{6-1}S_0 - 2s^2 2p^5 (^2P_{3/2}) 6d^{-3}D_1$					
10.778					14,18			
10.791					14			
10.818	10.8130	Fe XIX	$2p^4 {}^{3}P_2 - 2p^3 ({}^{4}S) 4d {}^{3}D_3$		16,17,18			
10.827	10.8240	Fe XIX	$2p^4 {}^{1}D_2 - 2p^3 ({}^{2}D) 4d {}^{1}D_2$	•••	18			
10.857	10.0251				18			
10.933	10.9351	Fe XXIII	$2s 2p {}^{3}P_{1} - 2p 3p {}^{3}D_{2}$	4.7e + 03	17,18			
10,000	10.9330	Fe XIX	$2p^{+} {}^{\circ}P_{1} - 2p^{\circ} ({}^{\circ}S) 4d {}^{\circ}D_{2}$		10 15 10			
10.980	10.9806	Fe XXIII	$2s^2 + S_0 - 2s + 3p + P_1$	5.7e + 05	16,17,18			
10.996	11.0003	Ne IX	$1s^2 + S_0 - 1s + 4p + P_1$	6.0e + 03	14,16,17,18			
11.014	11.0027	Na X	$2s^2 + S_0 - 1s + 2p + P_1$	6.2e + 03	17 10			
11.014	11.0181	Fe XXIII	$2s^2 + S_0 - 2s + 3p + P_1$	2.8e+05	17,18			
11.026	11.0229	Fe XVII	$2p^{\circ} {}^{1}S_{0} - 2s {}^{2}p^{\circ} {}^{4}p {}^{1}P_{1}$	8.8e+03	14,16,17,18			
11 0 41	11.0290	Fe XXIV	$1s^{2} 2p^{2}P_{1/2} - 1s^{2} 3d^{2}D_{3/2}$	4.0e+05	10			
11.041	11.0229	Fe XVII	$2p^{\circ} {}^{1}S_{0} - 2s {}^{2}p^{\circ} {}^{4}p {}^{3}P_{1}$	1.1e+03	18			
11.132	11.1320	ге хүш	$2s^2 2p^3 r^5_0 - 2s^2 2p^3 (^2P_{1/2})$ 5d 1P_1		14,16,17,18			
11.147	11 1700	D- VVIV	1-2 = 2D = 1 = 2 = 1 = 2D	7.1 - 1.05	18			
11.1/2	11.1/09	FE AAIV	$15^{-} 2p^{-} P_{3/2} - 15^{-} 30^{-} D_{5/2}$	7.10+05	14,10,17,18			
11.189	11.1879	Fe XXIV	$1s^{2} 2p^{-}P_{3/2} - 1s^{2} 3d^{-}D_{3/2}$	1.8e+04	14,10,17,18			
11.253	11.2530	Fe XVII	$2s^{2} 2p^{5} - 2s^{2} 2p^{5} (^{2}P_{3/2})$ bd	•••	14,16,17,18			
	11.2530	Fe XVIII	$2p^{3-2}P_{1/2} - 2p^{4}$ (¹ S) 4d $^{2}D_{3/2}$	•••				

CHIANTI XUV Line List (cont.)

٦

CHIANTI XUV Line List (cont.)								
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
11.269	11.2606	Fe XXIV	$1s^2 \ 2p \ ^2P_{1/2}$ - $1s^2 \ 3s \ ^2S_{1/2}$	1.8e+05	14			
11.292	11.2984	Fe XXIII	$2s \ 2p \ ^{3}P_{0}$ - $2s \ 3d \ ^{3}D_{1}$	$2.6e{+}04$	$17,\!18$			
11.311					$17,\!18$			
11.325	11.3252	Fe XXIII	$2s 2p {}^{3}P_{1} - 2s 3d {}^{3}D_{2}$	4.7e + 04	$17,\!18$			
11.334	11.3380	Fe XXIII	$2s 2p {}^{3}P_{1} - 2s 3d {}^{3}D_{1}$	1.9e+04	$14,\!16$			
11.420	11.4200	Fe XVIII	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^3P) \ 4d \ ^2F_{5/2}$	•••	$17,\!18$			
11.429	11.4263	Fe XXIV	$1s^2 \ 2p \ ^2P_{3/2}$ - $1s^2 \ 3s \ ^2S_{1/2}$	3.7e + 05	16			
11.443	11.4414	Fe XXIII	$2s 2p {}^{3}P_{2}$ - $2s 3d {}^{3}D_{3}$	7.8e+04	$14,\!16,\!17,\!18$			
	11.4417	Fe XXII	$2s^2 2p {}^2P_{1/2}$ - $2s 2p ({}^3P) 3p {}^2D_{3/2}$	$2.1e{+}05$				
11.458	11.4580	Fe XVIII	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^3P) \ 4d \ ^4F_{5/2}$		$17,\!18$			
11.480					$17,\!18$			
11.495	11.5101	Fe XXII	$2s^2 2p {}^2P_{1/2}$ - $2s 2p ({}^3P) 3p {}^2P_{3/2}$	7.6e + 04	$14,\!16$			
11.527	11.5196	Fe XXIII	$2p^{2} {}^{3}P_{0}$ - $2p \; 3d \; {}^{3}D_{1}$	1.4e+04	$1,\!17,\!18$			
	11.5260	Fe XVIII	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^3P) \ 4d \ ^2D_{5/2}$	•••				
11.537					14			
11.545	11.5470	Ne IX	$1s^2 {}^1S_0$ - 1s 3p 1P_1	1.8e+04	$16,\!17,\!18$			
11.580					18			
11.594			2- 10		18			
11.640	11.6457	Fe XXIII	$2s 2p {}^{3}P_{1} - 2s 3s {}^{1}S_{0}$	1.3e+04	18			
	11.6690	Fe XXII	$2s^2 2p {}^2P_{3/2} - 2s 2p ({}^3P) 3p {}^2P_{3/2}$	2.7e+04				
11.740	11.7363	Fe XXIII	$2s 2p {}^{1}P_{1} - 2s 3d {}^{1}D_{2}$	1.1e + 06	14,16,17,18			
11.771	11.7675	Fe XXII	$2s^2 2p {}^2P_{1/2} - 2s^2 ({}^1S) 3d {}^2D_{3/2}$	1.1e + 06	14, 16, 17, 18			
11.825	11.7955	Fe XXII	$1s^2 2s 2p^2 {}^4P_{3/2} - 2s 2p ({}^3P) 3d {}^2D_{5/2}$	9.3e + 04				
	11.7960	Fe XXII	$1s^2 2s 2p^2 {}^4P_{1/2} - 2s 2p ({}^3P) 3d {}^4D_{3/2}$	1.2e + 04				
	11.8207	Fe XXII	$1s^2 2s 2p^2 {}^4P_{5/2} - 2s 2p ({}^3P) 3d {}^4D_{5/2}$	2.4e+04	$17,\!18$			
11.836	11.8320	Ni XX	$2s^2 \ 2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^1D) \ 3d \ ^2D_{5/2}$	1.7e+04	$14,\!16$			
	11.8410	Ni XX	$2s^2 2p^5 {}^2P_{3/2}$ - $2p^4 (^1D) 3d {}^2P_{3/2}$	9.0e + 03				
11.864	11.8734	Fe XXIII	$2\mathrm{s}~2\mathrm{p}~^3\mathrm{P}_2$ - $2\mathrm{s}~3\mathrm{s}~^3\mathrm{S}_1$	$2.3e{+}04$	$17,\!18$			
11.885	11.8852	Fe XXII	$1s^2 2s 2p^2 {}^4P_{3/2}$ - 2s 2p (³ P) 3d ${}^4P_{5/2}$	$4.9e{+}04$	$16,\!18$			
	11.8971	Fe XXIII	$2p^2$ 1S_0 - $2p$ $3d$ 1P_1	$4.1e{+}04$				
11.926	11.9208	Fe XXII	$2s^2 \ 2p \ ^2P_{3/2}$ - $2s^2 \ (^1S) \ 3d \ ^2D_{5/2}$	7.1e+04	14			
11.934	11.9336	Fe XXII	$2s^2 2p \ ^2P_{3/2}$ - $2s^2 \ (^1S) \ 3d \ ^2D_{3/2}$	$2.1e{+}05$	$16,\!17,\!18$			
11.972	11.9750	Fe XXII	$1s^2 2s 2p^2 {}^4P_{5/2}$ - 2s 2p (³ P) 3d ${}^4F_{7/2}$	1.6e+04	$14,\!16,\!17,\!18$			
	12.0097	Fe XXII	$1s^2 2s 2p^2 {}^2S_{1/2} - 2s 2p ({}^3P) 3d {}^2P_{3/2}$	1.8e+04				
	12.0578	Fe XXII	$1s^2 2s 2p^2 {}^2D_{3/2}$ - 2s 2p (³ P) 3d ${}^2F_{5/2}$	6.0e + 04				
	12.0764	Fe XXII	$1s^2 2s 2p^2 {}^2S_{1/2} - 2s 2p ({}^1P) 3d {}^2D_{3/2}$	1.4e+04				
	12.0778	Fe XXII	$1s^2 2s 2p^2 {}^2P_{3/2} - 2s 2p ({}^1P) 3d {}^2D_{5/2}$	$2.9e{+}04$				
	12.0912	Fe XXII	$1s^2 2s 2p^2 {}^2D_{5/2} - 2s 2p ({}^3P) 3d {}^2F_{5/2}$	5.2e + 04				
	12.0981	Fe XXIII	$2p^2 \tilde{1}D_2 - 2p 3s P_1$	1.9e+04				
12.122	12.1227	Fe XVII	$2s^2 2p^6 - 2s^2 2p^5 (^2P_{1/2}) 4d$	1.5e + 05	1,17,18			

λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
12.128	12.1321	Ne X	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	7.4e + 05	$14,\!17,\!18$		
	12.1375	Ne X	$1s \ ^2S_{1/2}$ - $2p \ ^2P_{1/2}$	3.7e + 05			
12.153	12.1760	Fe XXIII	$2s \ 2p \ ^{1}P_{1}$ - $2s \ 3s \ ^{1}S_{0}$	6.2e + 05	$17,\!18$		
12.199	12.1926	Fe XXII	$1s^2 2s 2p^2 {}^2P_{1/2}$ - 2s 2p (³ P) 3d ${}^2P_{3/2}$	2.9e + 04	$14,\!17,\!18$		
	12.1931	Fe XXII	$1s^2 2s 2p^2 {}^2D_{3/2}$ - 2s 2p (³ P) 3d ${}^2D_{5/2}$	1.4e + 05			
	12.2273	Fe XXII	$1s^2 2s 2p^2 {}^2D_{5/2}$ - 2s 2p (³ P) 3d ${}^2D_{5/2}$	$2.1e{+}04$			
12.264	12.2639	Fe XVII	$2s^2 2p^6 - 2s^2 2p^5 (^2P_{3/2}) 4d$	$1.3e{+}05$	$17,\!18$		
12.285	12.2850	Fe XXI	$2p^2 {}^{3}P_0$ - $2s^2 2p 3d {}^{3}D_1$	1.4e+06	$17,\!18$		
12.399	12.3980	Fe XXI	$2p^2$ $^{3}P_1$ - $2s^2$ $2p$ 3d $^{3}D_1$	2.5e + 05	$14,\!17,\!18$		
12.408					$17,\!18$		
12.429	12.4351	Ni XIX	$2p^6$ 1S_0 - $2p^5$ $3d$ 1P_1	$2.3e{+}04$	$14,\!17,\!18$		
12.460	12.4620	Fe XXI	$2p^2 {\ }^3P_1$ - $2s^2 {\ }2p {\ }3d {\ }^1D_2$	4.4e + 04	$17,\!18$		
	12.4650	Fe XXI	$2p^2$ 3P_2 - $2s^2$ $2p$ $3d$ 3D_1	1.5e + 04			
12.501					$14,\!17,\!18$		
12.522	12.5250	Fe XXI	$2p^2 \ {}^{3}P_2$ - $2s^2 \ 2p \ 3d \ {}^{3}F_3$	5.6e + 04	$17,\!18$		
12.550					$17,\!18$		
12.566					17,18		
12.581	12.5855	Fe XXII	$1s^2 2s 2p^2 {}^2P_{3/2} - 2s 2p ({}^3P) 3d {}^2D_{5/2}$	1.3e+04	$14,\!17,\!18$		
	12.5880	Fe XXI	$2p^2$ 3P_2 - $2s^2$ $2p$ $3d$ 3F_2	2.4e + 04			
12.599		~			17,18		
12.622	12.6230	Cr XXII	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$	8.4e + 03	18		
10.000	12.6230	Fe XXI	$2p^2 {}^{1}S_0 - 2s^2 2p \ 3d {}^{1}P_1$	1.1e+04	10		
12.638	10.0500				18		
12.654	12.6538	Fe XXIII	$2p^2 {}^{-1}D_2 - 2s {}^{-3}p {}^{-1}P_1$	8.9e + 03	14,17,18		
10,000	12.6560	N1 XIX	$2p^{o-1}S_0 - 2p^{o-3}d^{-5}D_1$	8.0e+03	15 10		
12.682	12.6780	Fe XVII	$2s^2 2p^6 - 2s^2 2p^6 ({}^2P_{3/2}) 4s$	3.6e + 03	17,18		
	12.7330	Fe XXI	$2p^{2-1}D_{2} - 2s^{2} 2p 3d^{-1}D_{2}$	1.4e+04	14.10		
12.754					14,18		
12.700 12.775					18 18		
12.770	19 7020	E ₂ VVI	$2n^2$ 1D $2n^2$ 2n 2d 3E	1.2 + 0.1	10		
12.700	12.7930	Fe AAI	$2p$ $D_2 - 2s$ $2p$ $3u$ r_2 $2a^2 2p^3 4q$ $2a^2 2p^2 (3p) 2d 4p$	1.5e + 04	10 1141719		
12.012	12.0170 10.0170	Fe AA Fe XX	$28 \ 2p \ 5_{3/2} - 28 \ 2p \ (r) \ 5u \ r_{3/2}$	5.0e + 05	1,14,17,10		
19 990	12.8173	ге лл	$2s^{-}2p^{-}5_{3/2} - 2s^{-}2p^{-}(^{\circ}P) 5d^{-}P_{5/2}$	0.2e + 00	14 17 19		
12.829 12.847					14,17,10 17,18		
12.047	19 8881	Fo VV	$2a^2 2n^3 2D$, $2a^2 2n^2 (1D)$ 3d 2E	1.10 ± 0.4	17,10		
12.000	12.0004	re AA	25 2p $D_{5/2}$ - 25 2p (D) 30 $F_{7/2}$	1.10+04	$10 \\ 17 18$		
12.304					1/		
12.912 12.925	12 9251	Fe XX	$2s^2 2p^3 {}^2D_{r}$ (2 = $2s^2 2p^2 ({}^1D) 3d {}^2D_{r}$ (2	$4.0e{+}03$	14 17 18		
12.020	12.0201	Fe XXI	$25 2p D_{5/2} 25 2p (D) 50 D_{5/2} D$	1.00 + 00 1.0e⊥0/	17,11,10		
	14.9400	TEW	2p IU-28 2p 08 II	1.00 ± 04			

CHIANTI XUV Line List (cont.)

CHIANTI XUV Line List (cont.)							
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
12.940					18		
12.952					$14,\!17,\!18$		
12.966					$14,\!17,\!18$		
12.983	12.9796	Fe XX	$2s^2 2p^3 {}^2D_{3/2} - 2s^2 2p^2 ({}^3P) 3d {}^2D_{5/2}$	4.4e + 04	$17,\!18$		
12.998					18		
13.009					18		
13.019					14,17,18		
13.053	13.0431	Fe XX	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^{3}P) 3d {}^2D_{5/2}$	1.3e+04	17,18		
	13.0530	Fe XXI	$2p^2 {}^{3}P_1 - 2s^2 2p 3s {}^{3}P_1$	6.0e + 03			
	13.0553	Fe XX	$2s^2 2p^3 {}^2P_{3/2} - 2s^2 2p^2 ({}^1D) 3d {}^2F_{5/2}$	5.0e + 03			
13.060	13.0553	Fe XX	$2s^2 2p^3 {}^2P_{3/2} - 2s^2 2p^2$ (¹ D) 3d ${}^2F_{5/2}$	5.0e + 03	14		
13.091	13.0823	Fe XX	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^2F_{7/2}$	$2.3e{+}04$	$14,\!17,\!18$		
	13.1132	Fe XX	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^4P_{3/2}$	$2.2e{+}04$			
	13.1132	Fe XX	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^4P_{5/2}$	7.6e + 04			
	13.1280	Fe XXI	$2p^{2} {}^{3}P_{2} - 2s^{2} 2p 3s {}^{3}P_{1}$	1.9e+04			
13.143	13.1371	Fe XXII	$1s^2 2s 2p^2 {}^2D_{5/2} - 2s 2 ({}^1S) 3p {}^2P_{3/2}$	2.9e+04	$14,\!17,\!18$		
	13.1500	Fe XXII	$1s^2 2s 2p^2 {}^2D_{3/2} - 2s^2 ({}^1S) 3p {}^2P_{1/2}$	1.2e + 05			
13.162	13.1601	Fe XX	$2s^2 2p^3 {}^2P_{1/2} - 2s^2 2p^2 ({}^3P) 3d {}^2D_{3/2}$	1.1e+04	14, 17, 18		
13.232			1 1/2 1 () 5/2		14		
13.253					17,18		
13.265	13.2640	Fe XIX	$2s^2 2p^4 {}^3P_2$ - $2p^3 ({}^2P^*) 3d {}^3D_3$	1.0e+04	$14,\!17,\!18$		
13.279			· - · · / · ·		$14,\!17,\!18$		
	13.2920	Cr XXII	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{5/2}$	$1.2e{+}04$			
13.308	13.3080	Ni XX	$2s^2 2p^5 {}^{2}P_{3/2} - 2p^4 ({}^{3}P) 3s {}^{4}P_{5/2}$	6.9e + 03	17,18		
13.323	13.3190	Fe XVIII	$2s^2 2p^{5} P_{3/2} - 2s 2p^5 (^3P^*) 3p {}^2D_{5/2}$	6.6e + 03	$14,\!17,\!18$		
	13.3190	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2} - 2s 2p^5 ({}^3P^*) 3p {}^2P_{1/2}$	6.5e + 03	, ,		
13.356	13.3480	Fe XIX	$2s^{2} 2p^{4} {}^{3}P_{0} - 2p^{3} ({}^{2}P^{*}) 3d {}^{3}P_{1}$	1.2e + 04	17.18		
	13.3551	Fe XVIII	$2s^2 2p^5 {}^{2}P_{3/2} - 2s 2p^5 ({}^{3}P^*) 3p {}^{2}P_{3/2}$	9.8e + 03	,		
	13.3551	Fe XXII	$1s^{2} 2s 2p^{2} S_{1/2} - 2s^{2} (1S) 3p^{2} P_{1/2}$	2.4e+04			
13.377	13.3740	Fe XVIII	$2s^2 2p^5 {}^2P_{2/2} - 2s 2p^5 ({}^3P^*) 3p {}^4P_{5/2}$	1.0e+04	14.17.18		
13 404	13 3969	Fe XVIII	$2s^{2} 2p^{5} {}^{2}P_{2} = 2s {}^{2}p^{5} ({}^{3}P^{*}) 3p^{4} D_{2} = 2s {}^{2}p^{5} ({}^{3}P^{*}) 3p^{4} $	5.2e+03	11,11,10		
13.101 13.426	13.4250	Fe XIX	$2s^{2} 2p^{4} {}^{3}P_{2} - 2p^{3} ({}^{2}D^{*}) 3d^{4}F_{2}$	$1.9e \pm 0.04$	17 18		
13.420 13.448	13.4200 13.4470	Ne IX	$1s^2 {}^{1}S_{0} - 1s {}^{2}D {}^{1}P_{1}$	1.30+04 1.2e+05	1 14 17 18		
13.464	13.4640	Fe XIX	$2s^2 2n^4 {}^{3}P_{2} - 2n^3 ({}^{2}D^*) 3d {}^{3}S_1$	$5.5e \pm 04$	1,14,11,10		
13.507	135040	Fe XIX	$2s^{2} 2p^{4} {}^{3}P_{2} - 2p^{3} ({}^{2}D^{*}) 3d {}^{3}D_{2}$	9.30+04 9.7e+03	1 17 18		
13 519	135210	Fe XIX	$2s^{2} 2p^{4} 3P_{a} - 2p^{3} (^{2}D^{*}) 3d^{3}D_{a}$	$2.0e \pm 05$	14 17 18		
13 551	13.5210 13.5515	Fe XXII	$1s^2 2s 2p^2 {}^2P_{a/a} - 2s 2 ({}^1S) 3p {}^2P_{a/a}$	2.00+00 8 2e+03	11718		
10.001	13,5520	Ne IX	$15^{2} \frac{1}{3/2} \frac{1}{2} 1$	1.2e + 0.0	1,11,10		
	13.5529 13.5550	Cr XXII	$1s^2 2n^2 P_{a/a} = 1s^2 3s^2 S_{a/a}$	$5.8e \pm 03$			
	13 5680	E YIY	$3_{2}^{2} 2_{2}^{2} 3_{2}^{4} 3_{2}^{3} 2_{2}^{3} 3_{2}^{3} (2_{2}^{2}) (2_{$	9.00 ± 0.0 8 70 ± 0.4			
	19.9090	ге ліл	$28 \ 2p \ r_2 - 2p \ (-D^2) \ 30 \ r_2$	0.70+04			

ſ

CHIANTI	XUV	Line List	(cont.))

λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
13.631					17,18
13.649	13.6470	Fe XIX	$2s^2 2p^4 {}^3P_2$ - $2p^3 (^2D^*) 3d {}^3F_3$	1.2e + 04	$14,\!17,\!18$
13.672	13.6700	Fe XIX	$2s^2 2p^4 {}^{3}P_1 - 2p^3 ({}^{2}D^*) 3d {}^{3}D_2$	$2.2e{+}04$	$14,\!17,\!18$
13.700	13.6987	Ne IX	$1s^2 {}^1S_0$ - $1s 2s {}^3S_1$	$4.3e{+}04$	$1,\!14,\!17,\!18$
13.719			-		$17,\!18$
13.738	13.7360	Fe XIX	$2s^2 2p^4 {}^1D_2$ - $2p^3 (^2D^*) 3d {}^1F_3$	$1.7e{+}04$	$17,\!18$
	13.7361	Fe XX	$2s^2 2p^3 {}^{4}S_{3/2} - 2s^2 2p^2 ({}^{3}P) 3s {}^{4}P_{5/2}$	$9.7e{+}04$	
13.778	13.7791	Fe XIX	$2s^2 2p^4 {}^{1}D_2$ - $2p^3 (^2D^*) 3d {}^3S_1$	1.0e+04	$1,\!17,\!18$
	13.7790	Ni XIX	$2p^{6} {}^{1}S_{0} - 2p^{5} {}^{3}s {}^{1}P_{1}$	7.7e + 03	
13.795	13.7950	Fe XIX	$2s^2 2p^4 {}^3P_2$ - $2p^3 ({}^4S^*) 3d {}^3D_3$	6.0e + 04	$14,\!17,\!18$
13.827	13.8181	Fe XX	$2s^2 2p^3 {}^{4}S_{3/2} - 2s^2 2p^2 ({}^{3}P) 3s {}^{4}P_{3/2}$	5.0e + 04	$1,\!17,\!18$
	13.8231	Fe XVII	$2p^{6} {}^{1}S_{0}$ - $2s 2p^{6} 3p {}^{1}P_{1}$	7.3e+04	
13.844					$14,\!17,\!18$
13.891	13.8910	Fe XVII	$2p^{6} {}^{1}S_{0}$ - $2s {}^{2}p^{6} {}^{3}p {}^{3}P_{1}$	1.1e+04	$1,\!17,\!18$
13.934					$17,\!18$
13.948	13.9451	Fe XX	$2s^2 2p^3 {}^{4}S_{3/2} - 2s^2 2p^2 ({}^{3}P) 3s {}^{4}P_{1/2}$	$3.9e{+}04$	$1,\!14$
	13.9540	Fe XVIII	$2s^2 2p^5 {}^2\dot{P}_{3/2}$ - $2p^4 (^1S) 3d {}^2D_{5/2}$	$2.2e{+}04$	
13.958	13.9540	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}$ - $2p^4$ (¹ S) 3d ${}^2D_{5/2}$	$2.2e{+}04$	$17,\!18$
13.967	13.9690	Fe XIX	$2s^2 2p^4 {}^1D_2^{'}$ - $2p^3 (^2D^*) 3d {}^3F_3^{'}$	$3.3e{+}03$	14
14.017	14.0096	Fe XX	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3s {}^2P_{3/2}$	$2.1e{+}04$	$17,\!18$
	14.0146	Fe XX	$2s^2 2p^3 {}^2D_{3/2} - 2s^2 2p^2 ({}^3P) 3s {}^2P_{1/2}$	1.7e+04	
14.028					$1,\!14$
14.041	14.0430	Ni XIX	$2p^{6} {}^{1}S_{0}$ - $2p^{5} {}^{3}S {}^{3}P_{1}$	$1.3e{+}04$	$14,\!17,\!18$
14.078	14.0766	Fe XX	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3s {}^4P_{5/2}$	2.4e+04	$1,\!14,\!17,\!18$
	14.0770	Ni XIX	$2p^{6' 1}S_0 - 2p^5 3s^{-3}P_2$	7.9e+03	
14.124	14.1209	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2}$ - $2p^4$ (¹ S) 3d ${}^2D_{3/2}$	$2.2e{+}03$	$17,\!18$
	14.1359	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 (^1D) 3d {}^2P_{1/2}$	6.2e + 03	
14.152	14.1519	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 (^1D) 3d {}^2D_{3/2}$	1.4e+04	$1,\!17,\!18$
14.208	14.2030	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}^3 - 2p^4 ({}^1D) 3d {}^2D_{5/2}^7$	4.0e + 05	1,14,17,18
	14.2078	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}^2 - 2p^4 ({}^1D) 3d {}^2P_{3/2}^3$	2.1e+05	, , ,
14.262	14.2566	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 (^1D) 3d {}^2S_{1/2}$	7.3e + 04	1,14,17,18
14.311			1 5/2 1 () 1/2		17,18
14.345	14.3439	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2}$ - $2p^4 ({}^1D) 3d {}^2P_{1/2}$	2.6e + 04	$1,\!17,\!18$
14.360	14.3604	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2} - 2p^4 ({}^1D) 3d {}^2D_{3/2}$	4.1e + 04	17.18
14.373	14.3740	Fe XVIII	$2s^2 2p^{5} {}^2P_{3/2}^2 - 2p^4 ({}^3P) 3d {}^2D_{5/2}^3$	1.4e + 05	1.17.18
14.388			r = 5/2 $r = 7/2$		14
14.422	14.4179	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2}$ - $2p^4$ (¹ D) 3d ${}^2P_{3/2}$	3.2e + 04	14,17,18
14.456	14.4530	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}^2 - 2p^4 ({}^3P) 3d {}^2D_{2/2}^2$	8.8e + 03	1,17.18
	14.4682	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2} - 2p^4 ({}^1D) 3d {}^2S_{1/2}$	1.4e+04	, . , -
14.482	14.4850	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}^{1/2} - 2p^4 ({}^3P) 3d {}^4F_{5/2}$	2.6e + 04	14,17,18

	CHIANTI XUV Line List (cont.)							
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
14.496					14			
14.535	14.5341	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}$ - $2p^4 ({}^3P) 3d {}^2F_{5/2}$	9.8e + 04	$1,\!17,\!18$			
14.552	14.5510	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^3P) 3d {}^4P_{3/2}$	4.8e+04	$1,\!14,\!17,\!18$			
14.585	14.5811	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^3P) 3d {}^4P_{1/2}$	$2.2e{+}04$	$17,\!18$			
14.611	14.6098	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2} - 2p^4 ({}^3P) 3d {}^2P_{3/2}$	7.0e+03	$17,\!18$			
14.669	14.6670	Fe XIX	$2s^2 2p^4 {}^3P_2$ - $2p^3 (^2D^*) 3s {}^3D_3$	6.6e + 03	$1,\!14,\!17,\!18$			
	14.6705	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2} - 2p^4 ({}^3P) 3d {}^2D_{3/2}$	7.3e+03				
14.703					$17,\!18$			
14.739					$14,\!17,\!18$			
14.747					$1,\!14$			
14.760					$14,\!17,\!18$			
14.818	14.8205	O VIII	$1s \ ^2S_{1/2}$ - $5p \ ^2P_{3/2}$	3.4e+04	$1,\!14,\!17,\!18$			
	14.8207	O VIII	$1 { m s} \ ^2 { m S}_{1/2}$ - $5 { m p} \ ^2 { m P}_{1/2}$	1.7e+04				
14.873	14.8681	Fe XVIII	$2s^2 2p^5 {}^2P_{1/2}$ - $2p^4 ({}^3P) 3d {}^4D_{1/2}$	4.2e + 03	$14,\!17,\!18$			
14.908					$17,\!18$			
14.919					14			
14.930					$17,\!18$			
14.962					14			
14.974	14.9700	Fe XIX	$2s^2 2p^4 {}^{3}P_2 - 2p^3 ({}^{4}S^*) 3s {}^{3}S_1$	4.4e+03	$17,\!18$			
15.012	15.0150	Fe XVII	$2p^{6} {}^{1}S_{0}$ - $2p^{5} {}^{3}d {}^{1}P_{1}$	1.1e+06	$1,\!14,\!17,\!18$			
15.040					17,18			
15.080					14,17,18			
15.114					17,18			
15.177	15.1760	O VIII	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{3/2}$	7.6e + 04	$1,\!14,\!17,\!18$			
	15.1765	O VIII	1s ${}^{2}S_{1/2}$ - 4p ${}^{2}P_{1/2}$	3.8e + 04				
15.208					$1,\!17,\!18$			
15.265	15.2621	Fe XVII	$2p^{6}$ $^{1}S_{0}$ - $2p^{5}$ $3d$ $^{3}D_{1}$	2.6e + 05	1,14,17,18			
15.279					1,18			
15.289					17			
15.374					1,14,17,18			
15.410					17,18			
15.432	15 4500			0 4 + 0 4	17,18			
15.454	15.4500	Fe XVII	$2p^{\circ}$ S_0 - $2p^{\circ}$ $3d$ P_1	3.4e + 04	1,14,15,17,18			
15.495					1,14,15,17,18			
15.516	15 0050		$a^{2} a^{5} {}^{2} D = a^{4} (1D) a^{2} D$	4.0 + 0.4	14,15,17,18			
15.626	15.6250	ге хүш	2s ⁻ 2p ^o $^{2}P_{3/2}$ - 2p ^o (*D) 3s $^{2}D_{5/2}$	4.0e + 04	1,14,15,17,18			
15.079					114151710			
15.700	15 0901	E- VVIII	9-2 $9-5$ $2D$ $9-4$ $(3D)$ $9-4D$	9.9 - 1.04	1,14,15,17,18			
15.829	15.8281	ге дүш	$2s^{-}2p^{-}P_{3/2} - 2p^{-}(^{\circ}P) 3s^{-}P_{3/2}$	3.3e + 04	1,14,15,17,18			
15.870					1,14,15,17,18			

	CHIANTI XUV Line List (cont.)							
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
16.003	16.0050	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}$ - $2p^4 ({}^3P) 3s {}^2P_{3/2}$	5.8e + 04	$1,\!14,\!15,\!17,\!18$			
	16.0055	O VIII	$1 { m s} \ {}^2{ m S}_{1/2}$ - $3 { m p} \ {}^2{ m P}_{3/2}$	$2.2e{+}05$				
	16.0067	O VIII	$1 \text{s} \ ^2\text{S}_{1/2}$ - $3 \text{p} \ ^2\text{P}_{1/2}$	$1.1e{+}05$				
16.017			, , ,		$17,\!18$			
16.074	16.0720	Fe XVIII	$2s^2 2p^5 {}^2P_{3/2}$ - $2p^4 ({}^3P) 3s {}^4P_{5/2}$	1.4e+05	$1,\!14,\!15,\!17,\!18$			
16.108					$1,\!14,\!15,\!17,\!18$			
16.167	16.1670	Fe XVIII	$2s 2p^6 {}^2S_{1/2}$ - $2s 2p^5 ({}^3P) 3s {}^2P_{3/2}$	$8.9e{+}04$	$1,\!14,\!15,\!17,\!18$			
16.238	16.2380	Fe XVII	$2 p^{6' 1} S_0$ - $2 p^5 3 p^{-3} P_2$	5.8e + 03	$1,\!17,\!18$			
16.249					15			
16.274					$14,\!15,\!17,\!18$			
16.312	16.2950	Fe XVIII	$2s 2p^6 {}^2S_{1/2}$ - $2s 2p^5 ({}^3P) 3s {}^4P_{3/2}$	2.4e+04	$14,\!15,\!17,\!18$			
16.344	16.3360	Fe XVII	$2p^{6}$ $^{1}S_{0}$ - $2p^{5}$ $3p$ $^{3}D_{2}$	$8.3e{+}03$	$1,\!14,\!15,\!17,\!18,\!20$			
16.618					$17,\!18$			
16.631					$15,\!18$			
16.774	16.7760	Fe XVII	$2p^{6}$ $^{1}S_{0}$ - $2p^{5}$ $3s$ $^{3}P_{1}$	3.7e + 05	$1,\!14,\!15,\!17,\!18,\!20$			
16.821					$17,\!18$			
16.956					14			
17.051	17.0510	Fe XVII	$2p_{0}^{o-1}S_{0} - 2p_{5}^{o-3}s_{1}^{-1}P_{1}$	4.4e + 05	$1,\!14,\!15,\!17,\!18,\!20$			
17.098	17.0960	Fe XVII	$2p_{1}^{o_{1}}S_{0} - 2p_{2}^{o_{3}}3s_{1}^{3}P_{2}$	2.5e+05	$1,\!15,\!17,\!18,\!20$			
17.205	17.2010	Fe XVI	$2p^{\circ} 3p - 2p^{\circ} 3s 3p$		$15,\!17,\!18$			
17.318					15			
17.367	17.3500	Fe XVIII	$2s 2p^{6} {}^{2}S_{1/2} - 2p^{4} ({}^{1}S) 3p {}^{2}P_{3/2}$	5.2e + 03	15			
	17.3700	Cr XVI	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{1}D) 3d {}^{2}D_{5/2}$	•••				
17.390	17.3960	O VII	$1s^2 {}^1S_0 - 1s 5p {}^1P_1$	2.1e+03	$15,\!18$			
17.499	17.5010	Fe XVI	$2p_{2}^{6} 3p - 2p_{2}^{5} 3s 3p$	•••	$15,\!17,\!18$			
	17.5010	Fe XVI	$2p^{6} 3d - 2p^{5} 3s 3d$	•••				
17.622	17.6220	Fe XVIII	$2s \ 2p^6 \ ^2S_{1/2}$ - $2p^4 \ (^1D) \ 3p \ ^2P_{3/2}$	2.4e + 05	$1,\!14,\!15,\!17,\!18$			
17.684		_	0.1		15			
17.765	17.7680	O VII	$1s^2 {}^1S_0 - 1s 4p {}^1P_1$	4.7e + 03	$14,\!15$			
17.798	17.8040	Fe XVIII	$2s 2p^{6} {}^{2}S_{1/2} - 2p^{4} ({}^{1}D) 3p {}^{2}D_{3/2}$	6.4e + 03	15			
	18.0290	Fe XVIII	$2s 2p^{6} {}^{2}S_{1/2} - 2p^{4} ({}^{3}P) 3p {}^{2}D_{3/2}$	6.9e + 03				
18.090	18.0900	Fe XVIII	$2s \ 2p^6 \ ^2S_{1/2}$ - $2p^4 \ (^3P) \ 3p \ ^4S_{3/2}$	4.8e+03	15			
18.202	18.2020	Fe XVIII	$2s \ 2p^6 \ ^2S_{1/2}$ - $2p^4 \ (^3P) \ 3p \ ^4D_{3/2}$	1.6e+04	15			
	18.2020	Fe XVIII	$2s \ 2p^6 \ ^2S_{1/2}$ - $2p^4 \ (^3P) \ 3p \ ^2P_{3/2}$	$1.3e{+}04$				
18.360					1			
18.401					15			
18.499	18.4970	$\operatorname{Cr} XV$	$2p^{6} {}^{1}S_{0}$ - $2p^{5} ({}^{2}P_{1/2})$ 3d ${}^{1}P_{1}$	•••	$1,\!15,\!18$			
18.565			,		15			
18.627	18.6270	O VII	$1s^2 {}^1S_0$ - 1s 3p 1P_1	$1.4e{+}04$	$1,\!14,\!15,\!17,\!18$			
18.689	18.6909	Ca XVIII	$1{ m s}^2~2{ m s}~^2{ m S}_{1/2}$ - $1{ m s}^2~3{ m p}~^2{ m P}_{3/2}$	2.0e+04	15			

	CHIANTI XUV Line List (cont.)						
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
18.733	18.7319	Ca XVIII	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{1/2}$	1.0e+04	15		
18.783	18.7860	Ar XVI	$1s^2 2p {}^2P_{3/2}$ - $1s^2 4s {}^2S_{1/2}$	$4.4e{+}03$	15		
18.928	18.9320	O VII d	1s 3d $^{1}D_{2}$ - 2p 3d $^{1}F_{3}$	2.4e+03			
18.970	18.9671	O VIII	$1 { m s} \ ^2 { m S}_{1/2}$ - $2 { m p} \ ^2 { m P}_{3/2}$	1.4e+06	$1,\!14,\!15,\!17,\!18$		
	18.9725	O VIII	1s ² S _{1/2} - 2p ² P _{1/2}	7.2e + 05			
19.059	19.0610	O VII d	1s 3d $^3{ m D}_3$ - 2p 3d $^3{ m F}_4$	$2.3e{+}03$	$17,\!18$		
	19.0640	O VII d	1s 3d $^{3}D_{2}$ - 2p 3d $^{3}F_{3}$	$1.5e{+}03$			
	19.0660	O VII d	$1s 3d {}^{3}D_{1} - 2p 3d {}^{3}F_{2}$	$1.1e{+}03$			
19.260	19.2550	Cr XVI	$2p^{5} {}^{2}P_{3/2} - 2p^{4} (^{1}D) 3s {}^{2}D_{5/2}$	•••	$1,\!15$		
19.300	19.3060	O VII d	$1s 2s {}^{3}S_{1} - 2s 2p {}^{3}P_{2}$	$1.9e{+}03$	15		
	19.3100	O VII d	$1s 2s {}^{3}S_{1} - 2s 2p {}^{3}P_{1}$	1.1e+03			
19.354	19.3612	N VII	$1s {}^{2}S_{1/2}$ - $5p {}^{2}P_{3/2}$	2.3e+03	$17,\!18$		
	19.3614	N VII	$1s \ ^2S_{1/2}$ - $5p \ ^2P_{1/2}$	1.1e+03			
19.403	19.3930	O VII d	$1s 2p {}^{1}P_{1} - 2p^{2} {}^{1}D_{2}$	$4.3e{+}03$	$17,\!18$		
19.511	19.5110	Cr XVI	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^1D) \ 3s \ ^2D_{3/2}$	•••	15		
19.532	19.5380	Cr XVI	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^3P) \ 3s \ ^2P_{3/2}$	•••	15		
19.564	19.5580	Ca XVII	$2s^2 {}^1S_0$ - $2s {}^3p {}^1P_1$	$2.3e{+}03$	15		
19.583	19.5825	Ca XVII	$2s^2 {}^1S_0$ - $2s 3p {}^3P_1$	1.8e+03	$17,\!18$		
19.640	19.6420	Ca XVIII	$1s^2 2p {}^2P_{1/2}$ - $1s^2 3d {}^2D_{3/2}$	1.4e+04	15		
19.715	19.7140	Cr XVI	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^3P) \ 3s \ ^2P_{1/2}$	•••	15		
19.788	19.7892	Ca XVIII	$1s^2 2p \ ^2P_{3/2}$ - $1s^2 \ 3d \ ^2D_{5/2}$	$2.5e{+}04$	15		
19.808	19.8009	Ca XVIII	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{3/2}$	2.7e+03	15		
	19.8070	Cr XVI	$2p^5 \ ^2P_{3/2}$ - $2p^4 \ (^3P) \ 3s \ ^4P_{5/2}$	•••			
	19.8257	N VII	$1s^{-2}S_{1/2}$ - $4p^{-2}P_{3/2}$	5.0e + 03			
	19.8261	N VII	$1s \ ^2S_{1/2}$ - $4p \ ^2P_{1/2}$	$2.5e{+}03$			
19.916					15		
	20.0530	Ca XVIII	$1{ m s}^2~2{ m p}~^2{ m P}_{1/2}$ - $1{ m s}^2~3{ m s}~^2{ m S}_{1/2}$	6.2e + 03			
20.126	20.1219	Ar XVIII	$2{ m p}~^2{ m P}_{1/2}$ - $3{ m s}~^2{ m S}_{1/2}$	$3.3e{+}02$	15		
	20.2190	Ca XVIII	$1{ m s}^2~2{ m p}~^2{ m P}_{3/2}$ - $1{ m s}^2~3{ m s}~^2{ m S}_{1/2}$	$1.3e{+}04$			
20.288	20.2804	Ar XVIII	$2{ m p}~^2{ m P}_{3/2}$ - $3{ m s}~^2{ m S}_{1/2}$	6.4e + 02	15		
20.318	20.3400	Ca XVII	$2s 2p {}^{3}P_{1} 2s 3d {}^{3}D_{2}$	2.7e+02	$15,\!18$		
20.434	20.4370	Ca XVII	$2s 2p {}^{3}P_{2} - 2s 3d {}^{3}D_{3}$	5.0e + 02	15		
20.862	20.8610	K XVII	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{3/2}$	4.9e+02	$1,\!15,\!18$		
	20.8630	$\operatorname{Cr} XV$	$2p^{6} {}^{1}S_{0} - 2p^{5} ({}^{2}P_{1/2}) 3s {}^{1}P_{1}$	•••			
20.906	20.9095	N VII	$1{ m s}~^2{ m S}_{1/2}$ - $3{ m p}~^2{ m P}_{3/2}$	1.4e+04	$1,\!15$		
	20.9106	N VII	$1 { m s} \ ^2 { m S}_{1/2}$ - $3 { m p} \ ^2 { m P}_{1/2}$	7.3e+03			
21.153	21.1530	$\operatorname{Cr} XV$	$2p^{6} {}^{1}S_{0}$ - $2p^{5} ({}^{2}P_{3/2})$ 3s ${}^{3}P_{1}$	•••	$1,\!15$		
21.202	21.1980	Ca XVII	$2s 2p {}^{1}P_{1} - 2s 3d {}^{1}D_{2}$	$5.9\mathrm{e}{+03}$	$1,\!15$		
	21.3830	Fe XXIV	$1s^2 3s {}^2S_{1/2}$ - $1s^2 5p {}^2P_{3/2}$	$3.2e{+}03$			
	21.3830	Fe XXIV	$1s^2 \ 3s \ ^2S_{1/2}$ - $1s^2 \ 5p \ ^2P_{1/2}$	1.7e + 03			

	CHIANII XUV Line List (cont.)						
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
21.447	21.4500	Ca XVI	$2p \ ^2P_{1/2}$ - $2s^2 \ 3d \ ^2D_{3/2}$	2.9e+03	$1,\!15$		
21.603	21.6020	O VII	$1{ m s}^2$ ${ m i'S_0}$ - $1{ m s}$ $2{ m p}$ ${ m ^1P_1}$	$9.1e{+}04$	$1,\!14,\!15,\!18$		
21.802	21.8070	O VII	$1\mathrm{s}^2$ $^1\mathrm{S}_0$ - $1\mathrm{s}$ $2\mathrm{p}$ $^3\mathrm{P}_1$	5.8e + 03	$1,\!14,\!15$		
21.850	21.8200	Fe XXIV	$1s^2 \ 3p \ ^2P_{1/2}$ - $1s^2 \ 5d \ ^2D_{3/2}$	1.7e+03	18		
22.025	22.0200	K XVII	$1s^2 2p {}^2P_{1/2}$ - $1s^2 3d {}^2D_{3/2}$	$3.5e{+}02$	15		
	22.0595	Si XIV	$2s \ ^2S_{1/2}$ - $5p \ ^2P_{3/2}$	4.8e+02			
22.100	22.1012	O VII	$1s^2 \ {}^1S_0$ - $1s \ 2s \ {}^3S_1$	$3.5e{+}04$	$1,\!15,\!18$		
	22.1140	Ca XVII	$2s \ 2p \ ^1P_1$ - $2s \ 3s \ ^1S_0$	3.7e + 03			
	22.1980	Fe $XXIV$	$1s^2 \ 3p \ ^2P_{3/2}$ - $1s^2 \ 5s \ ^2S_{1/2}$	$2.9e{+}03$			
22.722	22.7250	Ca XV	$2p^2 \ ^3P_0$ - $2p \ ^3D_1$	2.3e+03	$1,\!15$		
22.778	22.8210	Ca XV	$2p^2$ 3P_2 - $2p$ $3d$ 3D_1	5.5e+02	15		
	23.0050	S XIV	$1s^2 2s \ ^2S_{1/2}$ - $1s^2 \ 4p \ ^2P_{3/2}$	7.4e + 03			
	23.0150	S XIV	$1s^2 2s {}^2S_{1/2}$ - $1s^2 4p {}^2P_{1/2}$	$3.9e{+}03$			
	23.5460	Ar XVI	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{3/2}$	$3.2e{+}04$			
	23.5900	Ar XVI	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{1/2}$	$1.6e{+}04$			
24.09	24.1100	Ca XIV	$2p^{3} {}^{4}S_{3/2} - 2p^{2} ({}^{3}P) 3d {}^{4}P_{5/2}$	•••	1		
24.13			, , , , , , , , , , , , , , , , , , , ,		1		
	24.2000	S XIV	$1s^2 2p {}^2P_{1/2}$ - $1s^2 4d {}^2D_{3/2}$	3.8e+03			
	24.2850	S XIV	$1s^2 2p {}^2P_{3/2}$ - $1s^2 4d {}^2D_{5/2}$	$6.9e{+}03$			
24.38					1		
	24.4180	S XIV	$1s^2 2p \ ^2P_{1/2}$ - $1s^2 \ 4s \ ^2S_{1/2}$	$1.6e{+}03$			
	24.5080	S XIV	$1s^2 2p \ ^2P_{3/2}$ - $1s^2 \ 4s \ ^2S_{1/2}$	$3.2e{+}03$			
24.53	24.5199	Si XIII	$1s 2s {}^{3}S_{1}$ - $1s 5p {}^{3}P_{1}$	$3.2e{+}02$	1		
24.68	24.6955	Si XIV	$2p {}^{2}P_{1/2} - 4d {}^{2}D_{3/2}$	5.2e + 02	1		
	24.6987	Si XIV	$2 { m s} \ ^2 { m S}_{1/2}$ - $4 { m p} \ ^2 { m P}_{3/2}$	9.8e + 02			
24.78	24.7792	N VII	$1 { m s} \ ^2 { m S}_{1/2}$ - $2 { m p} \ ^2 { m P}_{3/2}$	9.0e + 04	1		
	24.7846	N VII	$1 { m s} \ ^2{ m S}_{1/2}$ - $2 { m p} \ ^2{ m P}_{1/2}$	$4.5e{+}04$			
24.86	24.8540	Ar XVI	$1s^2 2p {}^2P_{1/2}$ - $1s^2 3d {}^2D_{3/2}$	2.4e+04	1		
	24.9910	Ar XVI	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{5/2}$	$4.2e{+}04$			
	25.0130	Ar XVI	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{3/2}$	4.6e + 03			
	25.5160	Ar XVI	$1s^2 2p \ ^2P_{1/2}$ - $1s^2 \ 3s \ ^2S_{1/2}$	$9.9e{+}03$			
	25.6840	Ar XVI	$1s^2 2p \ ^2P_{3/2}$ - $1s^2 \ 3s \ ^2S_{1/2}$	2.0e+04			
26.03	26.0000	Ca XIII	$2p^4 {}^{3}P_2 - 2p^3 (^{2}D) 3d {}^{3}P_2$		1		
	26.0330	Ca XIII	$2p^4 \ {}^{3}P_2$ - $2p^3 \ (^{2}D) \ 3d \ {}^{3}D_3$				
26.22	26.2190	Ca XIII	$2p^4 \ {}^{3}P_1$ - $2p^3 \ (^{2}D) \ 3d \ {}^{3}D_2$	•••	1		
26.36	26.3572	C VI	$1{ m s}~^2{ m S}_{1/2}$ - $5{ m p}~^2{ m P}_{3/2}$	$3.6e{+}03$	1		
	26.3574	C VI	$1s\ ^2S_{1/2}$ - $5p\ ^2P_{1/2}$	1.8e+03			
26.59			· · ·		1		
26.64					1		
26.71	26.7190	Ca XIII	$2p^4 {}^{3}P_2$ - $2p^3 ({}^{4}S) 3d {}^{3}D_3$	•••	1		

CHIANTI XUV Line List (cont.)

	CHIANTI XUV Line List (cont.)						
$\overline{\lambda_{solar}}$ (Å)	λ (Å)	Ion	Transition	Int	Refs		
27.01	26.9896	C VI	$1s {}^{2}S_{1/2}$ - $4p {}^{2}P_{3/2}$	7.7e + 03	1		
	26.9901	C VI	1s ${}^{2}S_{1/2}^{'}$ - 4p ${}^{2}P_{1/2}^{'}$	$3.8e{+}03$			
27.15					1		
•••	27.4100	Ar XV	$2s 2p {}^{1}P_{1} - 2s 3d {}^{1}D_{2}$	$5.3e{+}03$			
	27.4700	Ar XIV	$2p \ ^2P_{1/2}$ - $2s^2 \ 3d \ ^2D_{3/2}$	2.7e+03			
	27.5304	S XV	$1s \ 2s \ {}^{3}S_{1}$ - $1s \ 3p \ {}^{3}P_{2}$	3.7e + 03			
27.56	27.5598	S XV	$1s 2s {}^{3}S_{1} - 1s 3p {}^{3}P_{1}$	1.4e+03	1		
27.60	27.6080	Ca XII	$2p^5 \ ^2P_{1/2}$ - $2p^4 \ (^1S) \ 3d \ ^2D_{3/2}$	•••	1		
27.65	27.6420	Ar XIV	$2p \ ^{2}P_{3/2}$ - $2s^{2} \ 3d \ ^{2}D_{3/2}$	5.4e + 02	1		
27.98	27.9730	Ca XII	$2p^5 {}^2P_{3/2}$ - $2p^4$ (¹ S) 3d ${}^2D_{5/2}$		1		
28.13	28.1310	Ca XII	$2p^5 \ ^2P_{1/2}^{-}$ - $2p^4 \ (^1D) \ 3d \ ^2D_{3/2}^{-}$		1		
28.40	28.3860	Ar XV	$2s 2p P_1 - 2s 3s S_0$	$3.4e{+}03$	1		
28.46	28.4652	C VI	1 s $^2{\rm S}_{1/2}$ - 3p $^2{\rm P}_{3/2}$	$2.2e{+}04$	1		
	28.4663	C VI	$1s {}^{2}S_{1/2}^{'}$ - $3p {}^{2}P_{1/2}^{'}$	$1.1e{+}04$			
28.56			, , ,		1		
28.78	28.7870	N VI	$1s^2$ 1S_0 - $1s$ $2p$ 1P_1	3.7e + 03	1		
28.91	28.9084	Si XIII	1 s 2p $^1\mathrm{P}_1$ - 1s 4d $^1\mathrm{D}_2$	$3.5e{+}02$	1		
	28.9382	S XV	$1s 2p {}^{3}P_{1}$ - $1s 3s {}^{3}S_{1}$	$3.6e{+}02$			
29.07	29.0840	N VI	$1s^2 {}^1S_0$ - 1s 2p 3P_1	2.6e+02	1		
29.53	29.5343	N VI	$1s^2 {}^1S_0$ - $1s 2s {}^3S_1$	1.7e+03	1		
	29.5438	S XV	$1s 2p P_1 - 1s 3s S_0$	2.3e+03			
29.65	29.5740	Si XII	$1s^2 2p {}^2P_{1/2}$ - $1s^2 5s {}^2S_{1/2}$	7.4e+02			
	29.6450	Si XII	$1s^2 \ 2p \ ^2P_{3/2}$ - $1s^2 \ 5s \ ^2S_{1/2}$	4.4e+02	1		
29.99					1		
30.09		~			1		
30.45	30.4270	S XIV	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$	4.2e + 04	1		
	30.4690	S XIV	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{1/2}$	2.2e + 04			
30.56					1		
•••	30.7260	Fe XXIV	$1s^2 3s {}^2S_{1/2} - 1s^2 4p {}^2P_{3/2}$	7.4e + 03			
•••	30.8780	Fe XXIV	$1s^2 3s {}^2S_{1/2}$ - $1s^2 4p {}^2P_{1/2}$	4.0e + 03			
31.01	31.0120	Si XII	$1s^2 2s {}^2S_{1/2} - 1s^2 4p {}^2P_{3/2}$	5.2e + 03	1		
	31.0230	Si XII	$1s^2 2s {}^2S_{1/2}$ - $1s^2 4p {}^2P_{1/2}$	2.7e+03			
	31.6160	Fe XXIV	$1s^2 3p {}^2P_{1/2}$ - $1s^2 4d {}^2D_{3/2}$	4.4e+03			
31.74	31.7460	Fe XXIII	2 s $3\mathrm{s}~^3\mathrm{S}_1$ - 2 s $4\mathrm{p}~^1\mathrm{P}_1$	$6.9e{+}02$	1		
31.77					1		
31.83					1		
31.94	31.9590	Fe XXIV	$1s^2 3p {}^2P_{3/2}$ - $1s^2 4d {}^2D_{5/2}$	7.9e + 03	1		
32.01	32.0100	Fe XXIV	$1s^2 3p^2 P_{3/2}$ - $1s^2 4d^2 D_{3/2}$	8.7e + 02	1		
32.19	32.1910	S XIII	$2s^2 {}^{1}S_0 - 2s {}^{3}P_1$	1.0e+0.3	1		
32.24	32.2420	S XIII	$2s^2 {}^{1}S_0$ - $2s {}^{3}p {}^{1}P_1$	1.9e+03	1		

	CHIANII XUV Line List (cont.)						
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
32.29					1		
32.41	32.4040	Fe XXIV	$1s^2 3p {}^2P_{1/2}$ - $1s^2 4s {}^2S_{1/2}$	3.8e + 03	1		
	32.4160	S XIV	$1s^2 2p {}^2P_{1/2}$ - $1s^2 3d {}^2D_{3/2}$	2.8e + 04			
32.50	32.4890	Fe XXIII	$2s \ 3s \ {}^{1}S_{0}$ - $2s \ 4p \ {}^{1}P_{1}$	4.5e + 03	1		
32.55	32.5600	S XIV	$1s^2 2p \ ^2P_{3/2}$ - $1s^2 \ 3d \ ^2D_{5/2}$	$4.9e{+}04$	1		
•••	32.5750	S XIV	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{3/2}$	5.5e + 03			
32.66	32.6520	Fe XVI	$3p \ ^{2}P_{3/2}$ - 7d $\ ^{2}D_{5/2}$	•••	1		
	32.8190	Fe XXIV	$1s^2 \ 3p \ ^2P_{3/2}$ - $1s^2 \ 4s \ ^2S_{1/2}$	$8.1e{+}03$			
32.97	32.9730	Si XII	$1s^2 2p {}^2P_{3/2}$ - $1s^2 4d {}^2D_{5/2}$	4.9e+03	1		
33.22	33.2220	Si XII	$1s^2 2p {}^2P_{1/2}$ - $1s^2 4s {}^2S_{1/2}$	$1.1e{+}03$	1		
33.30	33.3023	Si XIV	$2p \ ^{2}P_{1/2}$ - $3d \ ^{2}D_{3/2}$	1.4e + 03	1		
	33.3081	Si XIV	$2s {}^{2}S_{1/2}$ - $3p {}^{2}P_{3/2}$	2.2e + 03			
	33.3130	Si XII	$1s^2 2p {}^2P'_{3/2}$ - $1s^2 4s'^2S_{1/2}$	2.2e + 03			
33.38	33.3810	S XIV	$1s^2 2p {}^2P_{1/2} - 1s^2 3s {}^2S_{1/2}$	$1.2e{+}04$	1		
	33.4340	Fe XXIII	$2s 3p {}^{1}P_{1}$ - $2s 4d {}^{1}D_{2}$	$9.1e{+}03$			
33.50	33.5069	Si XIV	$2p^{2}P_{3/2}$ - $3s^{2}S_{1/2}$	$3.5e{+}03$	1		
33.54	33.5490	S XIV	$1s^2 2p {}^2P_{3/2}^{-} - 1s^2 3s'^2S_{1/2}^{-}$	$2.5e{+}04$	1		
33.73	33.7342	C VI	$1s {}^{2}S_{1/2}^{-} - 2p {}^{2}P_{3/2}^{-}$	1.4e + 05	1		
	33.7396	C VI	$1 \text{s} {}^{2}\text{S}_{1/2}$ - $2 \text{p} {}^{2}\text{P}_{1/2}$	6.8e + 04			
33.96	33.9510	S XIII	$2s 2p {}^{3}P_{2} - 2s 3d {}^{3}D_{3}$	4.0e + 02	1		
34.86	34.8570	Fe XVI	$3p \ ^{2}P_{1/2}$ - 6d $^{2}D_{3/2}$		1		
34.99	34.9730	C V	$1s^2 {}^1S_0^{'}$ - 1s 3p 1P_1	4.9e + 02	1		
35.10	35.0950	P XIII	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{3/2}$	$3.9e{+}02$	1		
	35.1060	Fe XVI	$3p {}^{2}P_{3/2}$ - 6d ${}^{2}D_{5/2}$				
35.21			, , ,		1		
35.36	35.3680	Fe XVI	$3d \ ^{2}D_{5/2}$ - $8f \ ^{2}F_{7/2}$	•••	1		
	35.3530	Si XI	$2s \ 2p \ ^{3}P_{0}$ - $2s \ 4d \ ^{3}D_{1}$				
	35.3830	Si XI	$\rm 2s~2p~^3P_1$ - $\rm 2s~4d~^3D_2$				
35.46	35.4460	Si XI	$2\mathrm{s}~2\mathrm{p}~^3\mathrm{P}_2$ - $2\mathrm{s}~4\mathrm{d}~^3\mathrm{D}_3$	•••	1		
35.57			1 . 1		1		
35.67	35.6670	S XIII	$2s 2p {}^{1}P_{1} - 2s 3d {}^{1}D_{2}$	4.1e + 03	1		
35.73	35.7100	Fe XVI	$3p\ ^2P_{1/2}$ - $6s\ ^2S_{1/2}$	•••	1		
35.80					1		
36.01	36.0100	Fe XVI	$3p \ ^2P_{3/2}$ - $6s \ ^2S_{1/2}$	•••	1		
36.12		a			1		
36.40	36.3980	S XII	$2s^2 2p {}^2P_{1/2} - 2s^2 3d {}^2D_{3/2}$	1.5e+03	1		
	36.4333	Si XIII	1s 2s $^{\circ}S_1$ - 1s 3p $^{\circ}P_2$	5.1e + 03	1		
36.52	00 F040	O VII	$a^2 a^2 b a^2 a^2 b$	7.0 + 00	1		
30.50	30.5640	S All C VII	$2s^{-}2p^{-}P_{3/2} - 2s^{-}3d^{-}D_{5/2}$	(.0e+02)	1		
	30.5730	$S \Lambda \Pi$	$2s^{-} 2p^{-}P_{3/2} - 2s^{-} 3d^{-}D_{3/2}$	3.0e + 02			

CHIANTI XUV Line List (cont.)

	CHIANTI XUV Line List (cont.)						
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs		
36.75	36.7490	Fe XVI	$3s\ ^2S_{1/2}$ - $5p\ ^2P_{3/2}$	2.9e+03	1		
36.80	36.8030	Fe XVI	$3s\ ^2S_{1/2}^{'}$ - $5p\ ^2P_{1/2}^{'}$	$1.6e{+}03$	1		
36.89			, , ,		1		
37.35					1		
37.42					1		
37.60	37.5980	S XIII	$2s 2p {}^{1}P_{1} - 2s 3s {}^{1}S_{0}$	2.6e + 03	1		
37.71	37.7060	P XIII	$1s^2 2p \ ^2P_{3/2}$ - $1s^2 \ ^3d \ ^2D_{5/2}$	5.1e + 02	1		
	37.7150	S XII	$2s 2p^2 {}^2D_{3/2} - 2s 2p ({}^3P^*) 3d {}^2F_{5/2}$	3.7e + 02			
	39.4147	Si XIII	$1s 2p {}^{1}P_{1} - 1s 3s {}^{1}S_{0}$	3.1e+03			
39.66	39.6680	Mg X	$1s^2 2s \ ^2S_{1/2}$ - $1s^2 \ 5p \ ^2P_{3/2}$	2.9e+02	1		
39.75					1		
39.83	39.8270	Fe XVI	$3p \ ^2P_{1/2}$ - 5d $\ ^2D_{3/2}$	2.7e+03	1		
39.89					1		
39.94	10 1500			4.0 1.00	1		
40.14	40.1530		$3p - P_{3/2} - 5d - D_{5/2}$	4.8e + 03	1		
40.19	40.1990	Fe XVI	$3d^{2}D_{3/2} - 6t^{2}F_{5/2}$		1		
40.27	40.2680		$1s^2 + S_0 - 1s + 2p + P_1$	3.2e+03	1		
40.72	40.7307	Cν	$1s^2 + S_0 - 1s + 2p + P_1$	2.4e+02	1		
40.80	40.0110	Si XII	$1s^2 2s^2 S_{1} = 1s^2 3n^2 P_{2}$	3 0₀⊥04	1		
40.91	40.9110	Si XII	$15^{2} 25^{2} 5_{1/2} = 15^{2} 5p^{2} 1_{3/2}$ $15^{2} 25^{2} 25^{2} = 15^{2} 25^{2} p^{2} p^{2}$	1.50 ± 0.4	17		
40.35	40.3010		15 25 $S_{1/2}$ - 15 5p 1 $1/2$	1.06±04	1,1		
41.01					$\frac{1}{7}$		
41.22					1		
41.47	41.4721	C V	$1s^2 {}^1S_0$ - 1s 2s 3S_1	1.9e+03	1,7		
41.94	41.9320	Fe XVI	$3p {}^{2}P_{1/2} - 5s {}^{2}S_{1/2}$	3.0e+03	1,7		
42.27	42.3040	Fe XVI	$3p^{2}P_{3/2}^{-7} - 5s^{2}S_{1/2}^{-7}$	6.2e + 03	1		
42.55	42.5430	S X	$2p^{3} {}^{4}S_{3/2}$ - $2p^{2} ({}^{3}P) 3d {}^{4}P_{5/2}$		1,7		
42.61			, ,, _		1		
43.31	43.3149	Ne X	$2 { m s} \ ^2 { m S}_{1/2}$ - $5 { m p} \ ^2 { m P}_{3/2}$	$4.6e{+}02$	1,7		
43.65			, , ,		1		
43.76	43.7630	Si XI	$2s^2 {}^1S_0$ - $2s {}^3p {}^1P_1$	1.0e+03	1,7		
43.80					1		
44.02	44.0190	Si XII	$1s^2 2p {}^2P_{1/2} - 1s^2 3d {}^2D_{3/2}$	1.9e+04	1		
44.17	44.1650	Si XII	$1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{5/2}$	3.4e + 04	1,7		
	44.1780	Si XII	$1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{3/2}$	3.8e+03			
44.20	44.1780	Si XII	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3d {}^2D_{3/2}$	3.8e + 03	1		
44.36					1		
44.55					7		
44.86					7		

CHIANTI XUV Line List (cont.)

	CHIANTI XUV Line List (cont.)							
λ_{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs			
45.06					1,7			
45.51	45.5210	Si XII	$1s^2 2p \ ^2P_{1/2}$ - $1s^2 \ 3s \ ^2S_{1/2}$	8.4e + 03	1,7			
45.68	45.6910	Si XII	$1s^2 2p {}^2P_{3/2}$ - $1s^2 3s {}^2S_{1/2}$	1.7e+04	1,7			
45.73					1			
45.76					1			
46.00					7			
46.18		0. TT			1			
46.33	46.2980	Si XI	$2s 2p {}^{3}P_{1} - 2s 3d {}^{3}D_{2}$	1.3e+02	1,7			
	46.3140	Al XII	$1s 2p P_1 - 1s 3s S_0$	1.5e+02				
46.40	46.3990	Si XI	$2s 2p {}^{3}P_{2} - 2s 3d {}^{3}D_{3}$	3.6e + 02	1			
46.66	46.6610	Fe XVI	$3d {}^{2}D_{3/2} - 5f {}^{2}F_{5/2}$	2.6e+03	1			
46.72	46.7180	Fe XVI	$3d^{-2}D_{5/2} - 5f^{-2}F_{7/2}$	3.6e + 03	1,7			
47.33	47.3100	Mg X	$1s^2 2p {}^2P_{3/2}$ - $1s^2 4d {}^2D_{5/2}$	7.7e + 02	1,7			
47.60					7			
47.67	47.6630	Ni XVII	$3s 3p {}^{1}P_{1} - 3s 4d {}^{1}D_{2}$	• • •	1			
47.79	47.7720	Ni XVI	$3s^2 3p {}^2P_{3/2} - 3s^2 4d {}^2D_{5/2}$	•••	1			
47.85	47.8790	Mg X	$1s^2 2p {}^2P_{3/2}$ - $1s^2 4s {}^2S_{1/2}$	3.4e + 02	7			
48.25					1			
48.29	48.2970	Al XI	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{3/2}$	9.5e + 02	1			
48.33	48.3380	Al XI	$1s^2 2s {}^2S_{1/2}$ - $1s^2 3p {}^2P_{1/2}$	4.8e + 02	1			
48.51	48.5010	Ne X	$2p \ ^{2}P_{1/2}$ - $4d \ ^{2}D_{3/2}$	5.0e + 02	7			
	48.5048	Ne X	$2s \ ^2S_{1/2}$ - $4p \ ^2P_{3/2}$	$9.4e{+}02$				
	48.5113	Ne X	$2p\ ^{2}P_{1/2}$ - $4s\ ^{2}S_{1/2}$	4.2e+02				
	48.5156	Ne X	2s ² S _{1/2} - 4p ² P _{1/2}	4.7e+02				
48.97	48.9530	Fe XVI	$3d {}^{2}D_{5/2}$ - $5p {}^{2}P_{3/2}$	$5.1e{+}02$	1			
	48.9790	Fe XVI	$3d {}^{2}D_{3/2} - 5p {}^{2}P_{1/2}$	3.0e+02				
49.18			, , ,		1			
49.22	49.2220	Si XI	$2s~2p~^1P_1$ - $2s~3d~^1D_2$	$1.9e{+}03$	1,7			
49.31					1			
49.49					1			
49.64					1			
49.71					1			
49.76					1			
49.81					1			
49.88					1			