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Gauge/Gravity Examples Sheet #1

1. There are a variety of different concepts of “weight” in the literature and it
can be confusing to keep track of all of them. To help sort things out in your
mind, consider a dilation in a scale-invariant QFT in d-dimensional Minkowski
spacetime. The dilation is parameterised by a positive real number Ω. This
symmetry transformation consists of performing the following three transfor-
mations:

Coordinates A uniform rescaling of the d coordinates: x′ = Ωx,

(also causes tensors to transform according to their index structure)

Metric A constant Weyl transformation of the metric: g′ab = Ω2gab

Fields A further rescaling of any weighted fields e.g. φ′ = Ω−∆φφ.

Under a dilation, a quantity Q will transform as

Q′ = Ω−∆Q; ∆ = wC + wM + wF (1)

where the three weights wC , wM , wF represent the power of the transformations
under the coordinate, metric, and field transformations respectively.

Consider now the following free field actions:

Iscalar = −
∫
ddx
√
−g ∂aϕ∗ ∂aϕ; (2)

IWeyl = i

∫
ddx
√
−g ψ†γa∂aψ; (3)

IMaxwell = −1

4

∫
ddx
√
−gFabF ab, (4)

where Fab = ∂aAb − ∂bAa.
(Note that the determinant of the metric is defined as

g = gabgcdgef...ε
ace...εbdf... (5)

where εabc... is the permutation symbol with d indices. Like the Kronecker delta
δab , it is defined to take the same value in every coordinate system. Also recall
that {γa, γb} = 2gab.)

Complete the following table:
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Q wC wM wF ∆

gab
δab
gab

εabc...√
−g
γa

∂a
ddx∫
ϕ

ψ

Aa

Ja(φ)
Ja(ψ)
T ab(φ)
T ab(ψ)
T ab(A)

where Ja is the conserved U(1) Noether current associated with multiplying φ
or ψ by a phase eiα, while T ab is the conserved stress-energy tensor derived from
any of the three actions.

You may assume that: (a) all weights are additive under multiplication, (b) the
action I is dilation invariant (∆I = 0), and (c) in the case a quantity Q(x) that
is a function of position, by convention the weights are assigned based on how
Q(0) transforms.

2. Consider now a general Weyl transformation, in which Ω(x) is a arbitrary func-
tion of position, and there is also a rescaling of fields according to their field
weight wF .

(a) Show that, although the actions (2) and (4) in problem #1 are scale-
invariant, they are not invariant under Weyl transformations unless d = 2
(scalar) or d = 4 (Maxwell).

(b) Suppose you have a scalar primary operator O with weight ∆. How does
the derivative ∂aO transform under the Weyl rescaling? Is ∂aO primary
under special conformal transformations?
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(c) Show that the non-minimally coupled scalar action

I = −1

2

∫
ddx
√
−g
(
∂aϕ∂

aϕ+ ξRϕ2
)

(6)

is Weyl invariant (up to total derivative terms), for a particular choice of
ξ (“conformal couping”) which depends on d. [Hint: use an infinitesimal
Weyl rescaling ω = δ ln Ω to keep the calculation cleaner.]

3.* In Euclidean field theory, the adjoint operation † also reverses the direction
of the imaginary time coordinate, e.g. if we Wick rotate in the usual way
from Minkowski spacetime, τ † = (it)† = −it = −τ since i† = −i. A peculiar
consequence of this, is that the definition of the adjoint actually depends on
the choice of foliation; in particular it is not the same in radial quantization as
in temporal quantization!

(a) Find the adjoints of each of the generators of the conformal group in radial
quantization, where the Hilbert space lives on slices of constant radius r
from the origin, and the analogue of “time translation” is given by the
dilation operator D = −i(x · ∂). [You may assume that all generators of
the conformal group are self-adjoint in Lorentzian signature when acting
on the Einstein universe Sd−1 × R.]

Is the spectrum of D real or imaginary? What does this imply about
the values of ∆ for the corresponding operators (under the state-operator
map)?

(b) In a CFT in d > 2 dimensions, a primary field is defined as one that
transforms trivially under special conformal transformations. This implies
that if |p〉 is the corresponding prmary state on the cylinder Sd−1 × R,
then

Ka|p〉 = 0. (7)

The n-th order ‘descendents’ of the primary are defined by acting on the
primary with n momentum operators:

PaPb . . . |p〉 (8)

Show that the structure of a unitary irrep of the conformal symmetry group
is fully determined by the dimension ∆ and SO(d) spin of the primary
operator.

(c) By evaluating the norm of the n = 1 descendents of a primary operator,
derive the following unitary bounds:

∆φ ≥ 0 (scalar) (9)

∆V a ≥ d− 1 (vector) (10)

∆Sab ≥ d (sym. traceless tensor) (11)
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What is the significance of the cases where the equality is satisfied?

(d) By evaluating the norm of the n = 2 descendent PaP
a|φ〉 (a.k.a. the

Laplacian), show that any scalar (besides the identity) must satisfy the
stronger unitarity bound:

∆φ ≥ d−2
2

(scalar). (12)

4.* The vacuum 2 point function of a scalar operator φ of dimension ∆ > 0 in
d-dimensional Minkowski spacetime is

〈φ(y)φ(x)〉 = lim
ε→0

C

|x− y + iεt̂|2∆
, (13)

where t̂ is a unit time vector in the usual Minkowski coordinates x = (t, ~x),

(a) Assuming a free field in d = 3 + 1 spacetime dimensions (so ∆ = 1), show
that the imaginary part of this expression (which is the commutator) is
proportional (when t > 0) to the usual retarded Green’s function for the
3+1 Laplace operator:

Im 〈φ(x)φ(0)〉 =
〈

1
2
[φ(x), φ(0)]

〉
∝ 1

4πt
δ(t− |~x|), (14)

where we have used translation symmetry to send one of the operators to
the origin.

(b) Now consider the case of general d and a general scalar operator with
∆ = d−2

2
+ η. When does the commutator [φ(y), φ(x)] vanish at timelike

separation?

(c) For what values of η is the following spatially smeared expectation value
finite (and hence, a well-defined operator acting on the CFT Hilbert space):〈(∫

dd−1~xf(~x)φ(t = 0, ~x)

)2
〉

= finite? (15)

where f is a smooth test function that falls off faster than any power at
large spatial values (e.g. a Gaussian).

Hint: Do a spacetime Fourier transform, a.k.a. a spectral decomposition.
Note that there is no time ordering symbol in this expression so the mo-
mentum space result will differ from the Feynman propagator, instead (as
discussed in the lectures) it is given by

〈0|φ(−q)φ(p)|0〉 ∝ δd(p− q)θ(E − |~p|)

{
(−p2)∆−d/2 ∆ > d−2

2

δ(p2) ∆ = d−2
2

(16)
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(d) What happens if we smear in time instead?〈(∫
dtf(t)φ(t, ~x = 0)

)2
〉

= finite? (17)

5. Consider the following weight d tensor operator in a free massless Klein-Gordon
scalar field in d > 2 dimensions:

Xab = α ∂aϕ∂bϕ+ β ϕ∂a∂bϕ+ γ ηab∂cϕ∂
cϕ. (18)

Using the fact that the 2 point function vanishes between two primary opera-
tors of different ∆ (and therefore also between the corresponding descendants),
determine which linear combinations of α, β, γ are primary, and which is a
descendant of a primary.

Verify that the traceless primary tensor is conserved, and therefore functions
as a stress-tensor Tab, even though it differs from the usual Klein-Gordon stress
tensor. Looking at (6), what do you think is the cause of this difference?

6. Using conformal symmetry, show that the 3 point function of three different
scalar primary operators φ1,2,3, with dimensions ∆1,2,3 respectively, is given in
Euclidean signature by:

〈φ1(z)φ2(y)φ3(x) 〉 =
C123

|x− y|∆1+∆2−∆3|x− z|∆1+∆3−∆2|y − z|∆2+∆3−∆1
(19)

where C123 is a constant which you need not determine (which is related to the
‘OPE coefficients’ which depend on the specific CFT).

[Hint: first check that the above expression is invariant under Poincaré gen-
erators, dilations, and inversions. Can you use these to get any 3 points into
specified positions?]

7. Check that the following metrics each describe a D-dimensional anti-de Sitter
spacetime with unit radius (or a subset or quotient thereof). Identify coordinate
transformations which connect them to each other.

ds2 = η̃AB dX
AdXB, w/ constraint: η̃ABX

AXB = −1; (20)

ds2 = dρ2 − cosh(ρ)2dt2 + sinh(ρ)2dΩ2
D−2; (21)

ds2 =
1

cos(θ)2

[
−dt2 + dθ2 + sin(θ)2dΩ2

D−2

]
; (22)

ds2 =
1

z2

[
dz2 + ηij dx

i dxj
]

; (23)

ds2 = −dT 2 + cos(T )2
[
dr2 + sinh(r)2dΩ2

D−2

]
; (24)
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where ηij is the D − 1 dimensional Minkowski metric, and η̃AB is a flat metric
in a space-time-time with D + 1 total dimensions.

[Note that (24) looks like a recollapsing FLRW cosmology with k = −1 (negative
curvature), but the apparent ‘Big Bang’ and ‘Big Crunch’ singularities are
actually just coordinate artifacts. You may find it illuminating to sketch the
patch of AdS which this geometry covers on the ‘tin can’ diagram.]

8. Identify the D(D+ 1)/2 Killing vectors of AdS which satisfy Killing’s equation

∇aξb +∇bξa = 0 (25)

by writing them down explicitly in AdS-Poincaré coordinates (23).

Show that on the conformal boundary (z = 0), these Killing vectors reduce to
the (d+ 1)(d+ 2)/2 conformal Killing vectors on Minkowski spacetime.

9. I stand at a point p in the the middle of AdS and shoot a lightray out to the
boundary. When the lightray hits the conformal boundary, is its integrated
affine parameter finite or infinite? Explain your answer.

Please email me at aw846@cam.ac.uk if you find any errors.

If you wish to sign up for the online examples class and have not yet done so,
please email Gonçalo Araujo-Regado (ga365@cam.ac.uk) as soon as possible, with
your CRSid, student status (part III, PhD, etc.), and personal timezone. Problems
with a star (*) will be marked.
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