
Classical Dynamics Michaelmas 2014

The derivation below is an elaborated version of the corresponding chapter from Landau-Lifshitz. This hand-
out is available at http://www.damtp.cam.ac.uk/user/bg268/
Questions and corrections are welcome: write to Berry Groisman on bg268@

Euler Top (free asymmetric top): solution of Euler’s equations in terms of
elliptic integrals

Let us start with rewriting the Euler’s equations

I1ω̇1 = (I2 − I3)ω2ω3 (1)

I2ω̇2 = (I3 − I1)ω1ω3 (2)

I3ω̇3 = (I1 − I2)ω1ω2 (3)

and the two conserved quantities: the rotational kinetic energy and the angular momentum
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2
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2
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2
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2
2 + I23ω

2
3 = L2 (5)

During the lecture we used Eqns. (4),(5) in order to introduce a nice geometic qualitative representation of
the solutions - the Poinsot Construction.

Now, we are going to derive the solution of Euler’s equations in terms of the elliptic integrals. (Let us
assume, without loss of generality, that I1 < I2 < I3.)
First, from (5) obtain

I3ω
2
3 =

L2

I3
− I21

I3
ω2
1 −

I22
I3

ω2
2 (6)

and substitute it into Eq. (4) to eliminate ω3. We can now express ω1 in terms of ω2, Ia, L
2 and T :

ω2
1 =

1

I1(I3 − I1)
[2TI3 − L2 − I2(I3 − I2)ω

2
2 ]. (7)

Similarly, by eliminating ω1 we obtain

ω2
3 =

1

I3(I3 − I1)
[L2 − 2TI1 − I2(I2 − I1)ω

2
2 ]. (8)

Now substitute the expressions for ω1 and ω3 into Eqn. (2):

ω̇2 =
1

I2
√
I1I3

([
2TI3 − L2 − I2(I3 − I2)ω

2
2 ]× [L2 − 2TI1 − I2(I2 − I1)ω

2
2

])1/2
. (9)

As it will become evident below, the choice of the component to work with, i.e. ω2, is related to the fact that
I2 was chosen to be the principal moment of the intermediate value.

Let us factor out the first two terms in both brackets, i.e. 2TI3 − L2 and L2 − 2TI1 respectively:

ω̇2 =

√
(2TI3 − L2)(L2 − 2TI1)

I2
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I1I3

[
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ω2
2

]1/2 [
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ω2
2

]1/2
. (10)
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We introduce three new variables starting with

s2 =
I2(I3 − I2)

2TI3 − L2
ω2
2 , (11)

positivity of which follows from our choice of the balance of the principal moments of inertia. Remember
from Poisont construction, that for the solution to exist the magnitude of the angular momentum has to be
bounded by the semi-axes of the intertia ellipsoid, i.e. 2TI1 < L2 < 2TI3? Note, that if we were to choose
I3 < I2 < I1 the RHS in (11) still would be positive.

Thus,

ω̇2 =

√
(2TI3 − L2)(L2 − 2TI1)

I2
√
I1I3

[1− s2]1/2
[
1− I2(I2 − I1)

L2 − 2TI1
ω2
2

]1/2
. (12)

Now we substitute for ω̇2 and ω2
2 in terms of s and introduce the second variable

k2 =
(I2 − I1)(2TI3 − L2)

(I3 − I2)(L2 − 2TI1)
> 0, (13)

where we use the fact that I1 < I2 < I3 and 2TI1 < L2 < 2TI3 again.

We obtain √
2TI3 − L2

I2(I3 − I2)

ds

dt
=

√
(2TI3 − L2)(L2 − 2TI1)

I2
√
I1I3

√
[1− s2][1− k2s2], (14)

which is simply
ds

dt
=

√
(L2 − 2TI1)(I3 − I2)√

I1I2I3

√
[1− s2][1− k2s2]. (15)

What is left is to introduce a new variable for time,

τ =

√
(L2 − 2TI1)(I3 − I2)√

I1I2I3
dt (16)

and finally obtain the Jacobi elliptic integral

τ =

∫ s

0

ds√
[1− s2][1− k2s2]

, (17)

where we have chosen t = 0 when ω2 = 0.

There is one issue we need to resolve, namely that we should assertain that in the elliptic integral k2 < 1.
Let us return to Eqn. (13). If L2 > 2TI2 then it is not difficult to see that the above condition is satisfied.
This is because

(I2 − I1)(2TI3 − L2) < 2T (I2 − I1)(I3 − I2), (18)

(I3 − I2)(L
2 − 2TI1) > 2T (I3 − I2)(I2 − I1). (19)

If L2 < 2TI2, then we could rename the moments I1 and I3, in which case we simply need to interchange
them in all the above formulae. It was already mentioned that such interchange will not change the sign of
s2 and k2. Thus, let us assume, without loss of generality that L2 > 2TI2.
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Inverting (17) gives us s as a Jacobian elliptic function of τ :

s = sn(τ, k) (20)

Thus, from Eqn. (11)

ω2 =

√
2TI3 − L2

I2(I3 − I2)
sn(τ, k), (21)

Using the definitions of the other two elliptic functions, namely cn(τ, k) =
√
1− sn2(τ, k) and dn(τ, k) =√

1− k2sn2(τ, k) we obtain the relations for the two remaining components of ω.

ω1 =

√
2TI3 − L2

I1(I3 − I1)
sn(τ, k), (22)

ω3 =

√
L2 − 2TI1
I3(I3 − I1)

dn(τ, k). (23)

Functions (21), (22) and (23) are periodic. The period in τ equals 4K, where K is the complete elliptic
integral

K =

∫ 1

0

ds√
[1− s2][1− k2s2]

. (24)

Thus, the period in t is

T = 4K

√
I1I2I3

(I3 − I2)(L2 − 2TI1)
. (25)

After this time the vector ω returns to its initial position relative to the body frame. The top itself is not
in the same position relative to the space frame, though!

Let us quickly test the obtained solution for the components of ω by applying it first to the symmetric
top with I1 = I2. Clearly,

k2 = 0,

sn(τ, 0) = sin τ,

cn(τ, 0) = cos τ,

dn(τ, 0) = 1,

(26)

which is consistent with the results we have obtained for the symmetric top.
Second, if L2 = 2TI3, then ω1 = ω2 = 0, while ω3 is constant. This corresponds to uniform rotation

about axis e3 as we have seen before. The similar behaviour is observed when L2 = 2TI1.
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