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Comments and questions should be sent to Berry Groisman, bg268@

3.5 Euler Angles

It is time to introduce explicit parametrization of the rotation matrix R, which rotates the space frame {ẽa}
to the body frame {ea}, i.e. ea = Rbaẽb. As it was mentioned earlier, R is a real orthogonal matrix and
hence requires three parameters. We need to impose a stronger condition on R, however, namely that it
should correspond to a physical rotation (detR = 1) and not reflection (detR = −1). This is achieved by
the following explicit construction. The overall rotation is decomposed into three consecutive rotations of
the space frame. We are starting with the body frame, which is aligned (coincides) with the space frame and
perform three consecutive rotations. (Below we use the following notation: R(â, α) is a rotation by angle α
about unit axis â.)

(1) R(ẽ3, ϕ), i.e. rotation by angle ϕ about the third axis of the space frame, ẽ3. This results in the new
frame {e′a}. (Notice that e′3 = ẽ3.)

(2) R(e′1, θ), i.e. rotation by angle θ about the axis e′1 of the new frame. We obtain a new frame, {e′′a} as a
result. (Notice that e′′1 = e′1.)

(3) R(e′′3 , ψ), i.e. rotation by angle ψ about the axis e′′3 of the new frame. (In fact e′′3 is already the axis e3
of the body frame.) This accomplishes the entire rotation.

The three rotations are characterised by the following three rotation matrices.

R(e′′3 , ψ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 , R(e′1, θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , R(ẽ3, ϕ) =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1


(1)

The resulting matrix is

R = R(e′′3 , ψ)R(e
′
1, θ)R(ẽ3, ϕ). (2)

It might not be immediately obvious how to calculate the above product, because each matrix describes
rotation in a new frame. It is possible to show, that (see handout - non-examinable), that it can be replaced
by rotation matrices about the original space-axes {ẽa} multiplied in the reversted order, i.e.

R = R(ẽ3, ϕ)R(ẽ1, θ)R(ẽ3, ψ) (3)

Now, the matrices can be multiplied in a normal way, which yields

R =

 cosψ cosϕ− cos θ sinψ sinϕ − sinψ cosϕ− cos θ cosψ sinϕ sin θ sinϕ
cosψ sinϕ+ cos θ sinψ cosϕ − sinψ sinϕ+ cos θ cosψ cosϕ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

 . (4)

The transposed matrix

R⊺ = (R(ẽ3, ϕ)R(ẽ1, θ)R(ẽ3, ψ))
⊺ = R⊺(ẽ3, ψ)R⊺(ẽ1, θ)R⊺(ẽ3, ϕ)

describes how components of a vector are changed due to the change of frame.

The angles ϕ, θ and ψ play the role of generalised coordinates in the parametrization of configuration of a
rigid body and known as Euler Angles.

We can write ω in body frame and in space frame using Euler Angles. To this end we recall that ω is
instantaneous angular velocity and therefore
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ω = ϕ̇ẽ3 + θ̇e′1 + ψ̇e3. (5)

If we want to write ω in the body frame, then we expand ẽ3, e
′
1 in the body frame basis and substitute.

Similarly, if we want to write ω in the body frame, then we expand e′1, e3, in the space frame basis and
substitute.
Let us write components of ω in the body frame. We could work with the matrix R. This is what you are
expected to do in question 2, example sheet 3 (there you will also write the angular velocity in the space
frame). Here we will simply inspect the diagram sketched in the class, which shows that

ẽ3 = sin θ(sinψe1 + cosψe2) + cos θe3, e′1 = cosψe1 − sinψe2. (6)

As a result

ω = [ϕ̇ sin θ sinψ + θ̇ cosψ]e1 + [ϕ̇ sin θ cosψ − θ̇ sinψ]e2 + [ψ̇ + ϕ̇ cos θ]e3 (7)

First application of Euler Angles: calculating angular frequency of precession of e3 about ẽ3 for free
symmetric top (ϕ̇). Recall that ω3 = ψ̇ + ϕ̇ cos θ is conserved. Also, L3 = I3ω3 is conserved. θ is the angle
between L and e3, so θ̇ = 0.

In addition, we note that

ψ̇ = −Ω = ω3
I1 − I3
I1

. (8)

Hence,

ϕ̇ =
ω3

cos θ

I3
I1
, (9)

and we conclude that ϕ̇ is constant.

3.6 Heavy Symmetric Top (known as Lagrange Top)

Armed with the parametrization of ω in terms of Euler angles, we can analyse the problem of rotation of
a symmetric top pinned at a point, P (which lies on the axis of symmetry of the top), and acted upon by
gravity. We assume that I1 = I2 ̸= I3 are known 1. Also we are given its mass, M , and the distance, l, of
the centre of mass from P .
We write the Lagrangian of the top (assuming that {ea} are chosen to be the principal axes),

L =
1

2
I1(ω

2
1 + ω2

2) +
1

2
I3ω

2
3 −Mgl cos θ, (1)

and use Euler angles to obtain

L =
I1
2
(θ̇2 + sin2 θϕ̇2) +

I3
2
(ψ̇ + cos θϕ̇)2 −Mgl cos θ. (2)

There is no explicit time dependence in L and ϕ, ψ are ignorable, so there are three conserved quantities.

(a) pψ = ∂L
∂ψ̇

= I3(ψ̇ + cos θϕ̇) = I3ω3. Hence, as with free symmetric top, ω3 - the spin - is conserved.

(b) pϕ = ∂L
∂ϕ̇

= I1 sin
2 θϕ̇+ I3ω3 cos θ.

(c) E = T + V = 1
2I1(θ̇

2 + sin2 θϕ̇2) + 1
2I3ω

2
3 +Mgl cos θ.

1Strictly speaking I1 and I2 are meant to be given w.r.t. P . We will immediately see that due to conservation of ω3 we
can use values calculated w.r.t the centre of mass as the additional term in the Lagrangian (from parallel axis theorem) will be
constant.
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We will treat ω3, pϕ, pψ, and E as fixed parameters.

Our general aim is to obtain solutions θ(t), ϕ(t), ψ(t). Following tradition established in the literature let
us define two parameters

a =
I3
I1
ω3, b =

pϕ
I1
. (3)

Thus, (a) and (b) can be rewritten as

ϕ̇(θ) =
b− a cos θ

sin2 θ
,

ψ̇(θ) =
I1
I3
a− (b− a cos θ) cos θ

sin2 θ
.

(4)

Therefore, if we solve for θ(t), then we can solve the above equations to obtain ϕ(t) and ψ(t). Notice,
that Lagrange Top is a generalisation of a spherical pendulum. As with spherical pendulum, we will try to
reduce the problem to 1 DoF, θ. One possibility is to write E-L equation for θ and obtain

I1θ̈ = −∂Veff
∂θ

, (5)

where

Veff(θ) =
I1(b− a cos θ)2

2 sin2 θ
+Mgl cos θ. (6)

Hopefully, this approach looks familiar! We reduced the problem to a single variable.

Alternatively, we could start with the expression for total energy, (c).

Ẽ = E − 1

2
I3ω

2
3 =

1

2
I1(θ̇

2 + sin2 θϕ̇2) +Mgl cos θ, (7)

where the reduced energy Ẽ - total energy less rotational kinetic energy about e3 - is conserved as well.
Substitute for ϕ̇ from (4) and obtain

Ẽ =
1

2
I1θ̇

2 + Veff(θ). (8)

We can now analyse the shape of Veff(θ), as we did for spherical pendulum. For fixed Ẽ the motion is
confined to the range θ1 ≤ θ ≤ θ2, where θ1 and θ2 are roots of Ẽ = Veff(θ). The character of the motion
depends on the signs of ϕ̇ at θ1 and θ2. There are three possibilities.

1. Case 1: ϕ̇ has a same sign.

2. Case 2: ϕ̇ changes sign.

3. Case 3: ϕ̇ becomes zero at θ1. Note that it cannot be zero at θ2, which follows from the expressions
for energy and pϕ.

The motion in ϕ is called precession of the top. The motion in θ is called nutation of the top.

Uniform precession
Can precession be uniform with no nutation, i.e. θ̇ = 0, while ϕ̇ is constant? Such a motion will correspond
to the minimum of the potential. The equilibrium value θ0 satisfies

∂Veff
∂θ

= I1a sin θ0ϕ̇− I1 sin θ0 cos θ0ϕ̇
2 −Mgl sin θ0 = 0, (9)

which leads to a quadratic equation for ϕ̇

ϕ̇ =
I3ω3 ±

√
I23ω

2
3 − 4I1 cos θ0Mgl

2I1 cos θ0
. (10)
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Thus, condition for uniform precession to exist is

ω2
3 ≥ 4I1

I23
Mgl cos θ0, (11)

that is the top needs to spin fast enough about its axis of symmetry.
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