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4.6 Adiabatic Invariants

It turns out that action variables play central role in the theory of Adiabatic Invariants. Assume, that
Hamiltonian depends on some time-dependent parameter λ(t), H(q, p;λ(t). Total energy, E, is no longer
conserved. However, if λ(t) changes very slowly with time (adiabatically1), then there exist combinations of
E and λ, which remains approximately constant. These are called adiabatic invariants (AI).

We gave a formal definition of AI 2.

Definition 4.1 Let T be an arbitrary fixed time (say one period). ∀ ε > 0 consider variations λ(t) ≡ λ(ε, t),
s.t. λ̇ = O(ε), λ̈ = O(ε2) (i.e. λ(t) = h(εt) for some function h). We say that a quantity I(t) is an adiabatic
invariant of the dynamical system if for any such variations of λ we have

|I(t)− I(0)| = O(ε), ∀ 0 ≤ t ≤ T

ε
. (1)

We postulated without proof that AI are the angle-actions variables of the system. For the purpose of
finding of AI we treat λ as constant over a period and calculate the action variable as in Section 4.5. We
have illustrated this idea with few examples. Two of them are given below.

4.6.1 AI of a 1-d Harmonic Oscillator

Consider the case when the frequency of the oscillator changes slowly, i.e. λ(t) = ω(t). We have already
shown, that in such case the action variable (and hence the AI) is I = E/ω. Thus, when frequency of a HO
changes slowly with time the energy changes proportionally to frequency, E ∼ ω.

4.6.2 Example: (after Wells-Siklos’s paper)

Consider the following Hamiltonian

H =
p2

2m
+
λ

2
q4 = E. (2)

First, we solve for p:

p =
√
m(2E − λq4). (3)

Then we calculate the action variable

I =
1

2π

∮
pdq =

√
m

2π

∮ √
2E − λq4dq =

√
m

π
(2E)3/4λ−1/4

∫ 1

−1

√
1− x4dx. (4)

Thus the AI is I ∼ (E
3

λ )1/4, i.e. energy varies as λ1/3 for slowly varying changes in λ.

4.6.3 The Two-Body Problem

This example is discussed during the lecture. Explicit calculation of the corresponding integral was not
shown - see Problem 11 in Example Sheet 4, where one of the masses is much larger than the other.

4.6.4 A particle in a magnetic field

Detail discussion of this example is presented in Section 4.6.2 of David Tong’s notes:
http://www.damtp.cam.ac.uk/user/tong/dynamics.html

1Adiabatic change corresponds to changes of energy small comparing to energy itself.
2See C. Wells and S. Siklos, Europ. J. of Phys., 28, 105-112 (2007).
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4.7 Miscellaneous applications of Hamiltonian Formalism

4.7.1 Classical spin in a magnetic field.

Consider a particle with magnetic dipole moment µ, which encounters a region of inhomogeneous magnetic
field B(r). The Hamiltonian of the particle is

H =
p2

2m
− µ ·B, (5)

where −µ · B is the potential energy of µ in B(r). Let us choose the coordinate axes, so the particle
moves initially along x̂. As particle passes through the field its momentum changes according to Hamilton’s
equation

ṗ = −∂H
∂r

= ∇(µ ·B). (6)

Let’s us assume that B is nearly parallel to ẑ, with Bz = B z for simplicity 3.
Thus, for the z-component of (6) we have

ṗz =
∂

∂z
(µz ·Bz) = µz

∂Bz
∂z

, (7)

and the change in p is

∆pz = µz
∂Bz
∂z

T = µzBT, (8)

where T is the time the particle spends interacting with the field. Thus, the spin changes its transverse
momentum, and this change is proportional to µz. This process is the basis for measurement of magnetic
moments.

4.7.2 Motion of 2-d vortices.

Detail discussion of this example is presented in Section 4.3.3 of David Tong’s notes:
http://www.damtp.cam.ac.uk/user/tong/dynamics.html

3It cannot be exactly parallel, otherwise ∇ · B = 0 will not be satisfied. However, this assumption will do the job for the
purposes of our discussion.
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