
Classical Dynamics Michaelmas 2014

Lectures 16 - 21 (13th - 25th of November 2014)

Comments and questions should be sent to Berry Groisman, bg268@

5 The Hamiltonian Formalism

5.1 Phase Space, Legendre Transform, Hamilton’s Equations, the Principle of
Least Action

Key concepts: phase space, Hamiltonian, Legendre Transform.

The basic motivation behind Hamiltonian Formalism is to eliminate generalised velocities in favour of
generalised momenta and place generalised coordinates and conjugate momenta on equal footing.
We introduced the concept of Phase space and then defined the Hamiltonian to be the Legendre transform
of the Lagrangian with respect to generalised velocities q̇i,

H(q,p, t) = piq̇i − L(q, q̇, t). (1)

The recipe for eliminating q̇i in the RHS is simple: we invert pi(q, q̇, t) = ∂L
∂q̇i

to obtain q̇i(q,p, t) and

substitue it into (3). Hamiltonian acts on the phase space, i.e. H = H(q,p, t).
We then derived Hamilton’s Equations

ṗi = −∂H
∂qi

,

q̇i =
∂H

∂pi
.

(2)

These are 2n 1st order differential equations for qi and pi. (Compare with n 2nd order DE for qi and q̇i in
Lagrangian formalism.) We derived (2) using two methods.

(a) First, by considering the differential of (1). On the one hand,

dH = q̇idpi −
∂L

∂qi
dqi −

∂L

∂t
dt.

On the other hand,

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt.

(b) Second, by varying the action integral,

S =

∫ t2

t1

[piq̇i −H(q,p, t)]dt.

We pointed out that, unlike in Lagrangian formalism where q̇ varied authomatically with q, here we have
to vary q and p independently. This supports our vision that q and p can be treated equally. However,
there is a difference after all. We only have to require that δqi(t1) = δqi(t2) = 0, while pi can be free at
t1 and t2. To restore the symmetry between q and p we can simply impose δpi(t1) = δpi(t2) = 0. This
will have an additional advantage of us being able to add full time derivatives of arbitrary functions
F (q, p) to the action inside the integral.

We discuss two conservation laws, namely

(a) If ∂H
∂t = 0 then H is a constant of motion. It follows trivially from ∂H

∂t = −∂L
∂t .
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(b) If q is ignorable (cyclic) with respect to the Lagrangian, then it is also ignorable w.r.t the Hamiltonian.

This follows by construction, indeed p = ∂L(q̇)
∂q̇i

= p(q̇), since L does not depend on q.

We consider two examples:

(1) A particle moving in 3-dimensional potential (trivial example)

(2) A charged particle in electro-magnetic field.
We derive the Hamiltonian in the form

H =
1

2m
(p− eA)2 + eφ.

One can now write Hamilton’s equations and verify that they give Lorentz force law. We didn’t do it
explicitly. We consider a particular case with A = (−By, 0, 0), which corresponds to uniform magnetic
field of magnitude B is z-direction. We show that for a particle which moved in (x,y)-plane the motion
will be circular.

5.2 Liouville’s Theorem

We stated and proved Liouville’s theorem: the volume of a region in phase-space is conserved under Hamil-
tonian time evolution.

We introduce the phase-space density function ρ(q, p, t). This can be interpreted in two different ways.
First interpretation is probabilistic: ρdV is the probability that the system will be found in dV . The second
is ensemble interpretation: ρdV is the number of particle confined by dV . Since the number of particle in a
given co-moving volume is conserved, we can rephrase the Liouville’s Theorem as follows.

dρ

dt
= 0, (1)

that is the phase-space density is conserved along the trajectories of the system.

We can express this in terms of partial derivatives

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi =

∂ρ

∂t
+
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
= 0.

Hence we derive Liouville’s Equation

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
= 0.

This is an immediate consequence of Liouville’s Theorem and Hamilton’s Equations of motion.

5.3 Poisson Bracket

In last lecture we have derived Liouville’s Equation

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi
= 0,

which follows Liouville’s Theorem and Hamilton’s Equations of motion. The structure of Liouville’s Equa-
tion has a wider application.

For two functions on phase space, f(q, p, t) and g(q, p, t) the Poisson bracket is defined as

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(1)

Properties of Poisson brackets:

(1) Anti-commutativity: {f, g} = −{g, f}.
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(2) Linearity: {αf + βg, h} = α{f, h}+ β{g, h}, ∀ α, β ∈ R.

(3) Leibniz rule (follows from the chain rule): {fg, h} = f{g, h}+ {f, h}g.

(4) Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

(5) ∀ f(q, p, t)
df

dt
= {f,H}+

∂f

∂t
. (2)

The latter expression is very useful. It can be interpreted as a generalization of Liouville’s Theorem and
is proved in exactly the same way.

Conserved quantities: An important consequence of (2) is that a function g(q, p) on phase-space, which
does not depend on time explicitly (i.e. ∂g

∂t = 0) and satisfies {g,H} = 0, is a constant of motion.

It also follows from Jacobi identity that if g and h are constants of motion, then {g, h} is also a constant
of motion.

We discuss two examples:

(1) Angular Momentum L = r × p: in the example sheet 4 you will be asked to calculate several Poisson
brackets for the AM. In particular, you can show that

{L1, L2} = L3, (3)

thus if two of its components are conserved, so is the third. In other words, AM is completely determined
by any two of its components.

(2) (Laplace-)Runge-Lenz vector:
Consider motion of a particle of mass m. Let us define Laplace-Runge-Lenz vector

A =
p×L

m
− r̂, (4)

where p, L and r̂ are linear and angular momenta, and (normalized) position vector respectively.
From definition of L it follows that A · L = 0. In Example Sheet 4 you will be asked to show that
{La, Ab} = εabcAc.

If the particle moves in a central force-field F = −kr−2r̂ (without loss of generality, let us assume that
k = 1), then its Hamiltonian is

H =
p2

2m
− 1

r
. (5)

In this case A is conserved (you will be asked to prove this statement by proving that {A, H} = 0).

Conservation of L follows from the symmetry of the force field. Thus, L, A and H form a closed algebra
under the Poisson bracket.

Runge-Lenz vector has clear geometric interpretation. It is easy to show that the trajectory of the
particle lies in the plane perpendicular to L (just calculate scalar product of L with r and ṙ - you must
have done it in 1A Dynamics). Constant vector A also lies in the same plane. Let us calculate scalar
product of A with r. On the one hand,

A · r = Ar cos θ, (6)

where θ is the angle between the two vectors. On the other hand,

A · r =
(p×L) · r

m
− r =

L2

m
− r. (7)
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Hence we obtain the (familiar from 1A Dynamics) orbit equation

r =
L2/m

1 +A cos θ
, (8)

where A = e is the eccentricity of the orbit. Thus, A is directed along the axis of symmetry of the orbit
with its magnitude being the eccentricity.

5.4 Canonical Transformations

In Hamiltonian Formalism we can treat generalized coordinates and momenta (almost) equally. This allows
for a wider class of transformations, comparing with Lagrangian formalism. We can “mix” coordinates and
momenta, so to speak: {

Qi = Qi(q, p),

Pi = Pi(q, p),
(1)

where Qi and Pi, i = 1, ..., n, are 2n new independent variables. Of course, not any transformation will be
good for us. We require that this transformation preserves canonical form of equations of motion, Hamilton’s
Equations, that is. Such transformations are called canonical. While Hamiltonian itself is not preserved
necessarily, i.e. the new Hamiltonian H ′(Q,P ) might not equal to H(q, p), the equations of motion take the
same form 

Q̇i =
∂H ′

∂Pi
,

Ṗi = −∂H
′

∂Qi
.

(2)

How do we construct such transformations? We derive the formulae for canonical transformation (q, p) →
(Q,P ) using what is known as generating function F (q,Q, t). It goes as follows.

Let us write the expression for the action integral in terms of q and p

S =

∫ t2

t1

(piq̇i −H(q, p))dt =

∫ t2

t1

(pidqi −Hdt), (3)

where qi and pi are varied independently when we consider a variation δS = 0.
For Qi and Pi to satisfy Hamilton’s equations we require

S′ =

∫ t2

t1

(PiQ̇i −H ′(Q,P ))dt =

∫ t2

t1

(PidQi −H ′dt), (4)

where Qi and Pi are varied independently when we consider a variation δS′ = 0. For δS = δS′ = 0
the intergrands in (3) and (4) must differ only by a full differential of an arbitrary function F (q,Q, t)1 (a
generating function). Hence,

dF = pidqi − PidQi + (H ′ −H)dt, (5)

and therefore 

pi =
∂F

∂qi
,

Pi = − ∂F

∂Qi
,

H ′ = H +
∂F

∂t
.

(6)

Thus, F determines the relation between (q, p), (Q,P ) and (H,H ′). If F does not depend on time explicitly
then new Hamiltonian H can be obtained by substituting q(Q,P ) and p(Q,P ) into H.

1There is not dependance on p and P because we do not neccessarily keep them fixed at t1 and t2 (see section 5.1)
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(An alternative way to introduce canonical transformations is via Jacobian of the transformation. You will
explore this route in the example sheet.)

We discuss the the following theorem.

Theorem 5.1 The Poisson Bracket is invariant under Canonical Transformations, i.e. if the transforma-
tion (q, p) → (Q,P ) is canonical, then for two function on phase-space, f(q, p) and g(q, p), the following
relation holds

{f, g}q,p = {f, g}Q,P . (7)

We prove the sufficient condition in the lecture and leave the necessary condition for the example sheet.

Example: free particle
In order to appreciate the power of CT lets discuss a simple example of a free particle again. The Hamiltonian
is H = p2/2m, where p = mṙ. The Hamilton’s equations take trivial form

ṙ =
∂H

∂p
= p/m,

ṗ = −∂H
∂r

= 0.

(8)

Try the following generating function to find a new set of variables, Q and P : F (r,Q) = r ·Q. This yields
p =

∂F

∂r
= Q,

P = −∂H
∂Q

= −r,

H ′ =
Q2

2m
.

(9)

Hence, in this example the roles of spacial coordinate and momentum have been swapped! Thus the more
general class of transformation allowed in Hamiltonian Formalism effectively removes the boundary between
q and p. From now on we will call them simply canonical conjugate variables.
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