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2 The Lagrangian Formalism

2.1 Configuration Space

Key concepts: configuration space C, degrees of freedom, constraints, Lagrangian

Consider a mechanical system of N particles. Their positions are specified by N vectors, {ri}Ni=1, in 3-
dimensional Euclidean space. We rewrite these vectors as a single vector in 3N -dimensional configuration
space, C, x = (x1, x2, ..., xk, ..., x3N ). Now, the position of all particles is specified by a single point in C and
the dynamical evolution of a system is represented by a single trajectory in C.

For many systems dimensionality of C can be reduced due to constraints, thus the number of degrees of
freedom is often less than 3N (e.g. solid bodies do not require ∼ 1023 dimensions). In such cases we will
introduce a different set of coordinates, generalized coordinates, which do not have to correspond directly
to real coordinates in Euclidean Space. We will return to generalized coordinates in Section 2.4. For now,
let us assume that C is an 3N -dimensional direct-product of N real spaces, R3, of individual particles, as
defined above.

Postulate 2.1 The system is fully characterised by the Lagrangian function, L(x, ẋ, t), the form of which
will be specified in the next section.

2.2 The Principle of Least Action

Key concepts: action, functional, variational calculus, Hamilton Principle, Euler-Lagrange equation, con-
straints

(Without loss of generality, in this section we will consider a single component xk and omit the index k.)

Assume that at times t1 and t2 the system’s position in C is fixed: x(t1) = x1 and x(t2) = x2. We consider
all smooth paths x(t) in C with these fixed points. To each path let us assign a number

S[x(t)] =

∫ t2

t1

L(x, ẋ, t)dt, (1)

which is a functional (the action integral).

Postulate 2.2 The Principle of Least Action (Hamilton Principle) states that the actual path taken by the
system corresponds to a stationary value of S.

Using the tools of Variational Calculus we deduce that the condition for extremum, δS = 0 is equivalent to

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (2)

3N Euler-Lagrange equation(s) (1 for each component of x).

Derivation of E-L equation: Proof Assume that x(t) is the actual path. Fix t and vary x(t), ẋ(t), i.e.
x(t) → x(t) + δx(t). For a ‘stationary value’ of S small variations in x(t) (once it’s found) can produce only
2nd-order variations in the integral.

δS = S[x+ δx]− S[x] =

∫ t2

t1

L(x+ δx, ẋ+ δẋ, t)dt−
∫ t2

t1

L(x, ẋ, t)dt.
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We expand L in Taylor series in two variables (δx, δẋ) at a fixed value of t:

L(x+ δx, ẋ+ δẋ, t)dt = L(x, ẋ, t) +
∂L

∂x
δx+

∂L

∂ẋ
δẋ+O(δx2, ...).

Thus, in the limit δx → 0, δẋ → 0

δS =

∫ t2

t1

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ

)
dt,

up to the second order. The second term of the integrand is calculated by parts:

∫ t2

t1

∂L

∂ẋ
δẋdt =

∫ t2

t1

∂L

∂ẋ

(
d

dt
δx

)
dt =

[
∂L

∂ẋ
δx

]t2
t1

−
∫ t2

t1

d

dt

(
∂L

∂ẋ

)
δxdt = −

∫ t2

t1

d

dt

(
∂L

∂ẋ

)
δxdt.

Thus,

δS =

∫ t2

t1

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
δxdt = 0.

As δx is arbitrary we deduce that the expression within the brackets must be zero.
⊓⊔

Let us review several main properties of the Lagrangian, in particular:

Property 1: Lagrangian is defined up to a full derivative of an arbitrary function of coordinates and time.

Consider L′(x, ẋ, t) = L(x, ẋ, t) + d
dtf(x, t).

S′ = S +

∫ t2

t1

d

dt
f(x, t)dt = S + f(x2, t2)− f(x1, t1).

Hence, δS′ = δS, that is adding f does not change the equations of motion.

Property 2: (form of the Lagrangian): For a system of particles L = T − V , where T and V are total
kinetic and potential energies respectively: T = 1/2

∑
k mkẋ

2
k, V = V (x), where the mass mk is traced back

to a corresponding particle.

E-L eqns take the form (for each component): ∂L
∂ẋ = mẋ = p, so

ṗ = −∂V

∂x
Newton’s Equation

Property 3: Since T can be made arbitrary large, S is not bounded from above. It can be a minimum or
a saddle point.

Let us also discuss three benefits of using the Lagrangian:

Benefit 1: Unlike Newton’s equation, E.-L. equation holds in any reference frame (coordinate system).

Benefit 2: It is easier to deal with constraints in Lagrangian formalism.

Benefit 2: All fundamental laws of physics (and even beyond) can be written in terms of the action
principle.

Let us discuss these benefits in detail.
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2.3 Changing coordinate systems

Here we show that E-L equation holds in any coordinate system.

The Principle of Least Action is a statement about paths, not coordinates, so intuitively we should expect
that E-L equations will hold in any coordinate system. We can prove this statement explicitly.

We introduce new coordinates qa = qa(x, t) (which could be t-dependent) and prove that if E-L equation
holds in x-system, then it holds in q-system, i.e.

Statement 2.3

If
d

dt

∂L

∂ẋk
− ∂L

∂xk
= 0 then

d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0.

Proof Let us invert the coordinate relationship, which is possible under condition det (∂xk/∂qa) ̸= 0,

xk = xk(q, t),

and calculate the velocity

ẋk =
∂xk

∂qa
q̇a +

∂xk

∂t
, (3)

where Einstein summation convention is used.

We then substitute xk(q, t) and ẋk(q, q̇, t) into L(xk, ẋk, t) and calculate its derivatives:

∂L

∂qa
=

∂L

∂xk

∂xk

∂qa
+

∂L

∂ẋk

∂ẋk

∂qa
=

∂L

∂xk

∂xk

∂qa
+

∂L

∂ẋk

(
∂2xk

∂qa∂qb
q̇b +

∂2xk

∂t∂qa

)
. (4)

∂L

∂q̇a
=

∂L

∂xk

∂xk

∂q̇a
+

∂L

∂ẋk

∂ẋk

∂q̇a
=

∂L

∂ẋk

∂xk

∂qa
, (5)

where we used ∂xk/∂q̇a = 0 and ∂ẋk/∂q̇a = ∂xk/∂qa. The latter is a corollary of (3). Thus,

d

dt

∂L

∂q̇a
=

d

dt

(
∂L

∂ẋk

)
∂xk

∂qa
+

∂L

∂ẋk

d

dt

(
∂xk

∂qa

)
=

d

dt

(
∂L

∂ẋk

)
∂xk

∂qa
+

∂L

∂ẋk

(
∂2xk

∂qa∂qb
q̇b +

∂2xk

∂t∂qa

)
. (6)

From (4) and (6) it follows that

d

dt

∂L

∂q̇a
− ∂L

∂qa
=

[
d

dt

∂L

∂ẋk
− ∂L

∂xk

]
∂xk

∂qa
.

Recall that for invertible transformation the partial derivative in the RHS is non-zero and deduce that if E-L
eqn is satisfied in x-coordinate system, then it is satisfied in q-coordinate system.

⊓⊔

Example: Consider a free particle moving with velocity ṙ (in Cartesian coordinates r = (x, y, z)). The
Lagrangian of a free particle in the inertial frame is L = mṙ2/2. We introduced a coordinate system, which
rotates with velocity ω = (0, 0, ω) about z-axis and show that L takes the form

L =
m

2
(ṙ′ + ω × r′)2.

From E-L equations we then derive equations of motion

r̈′ = 0− ω × (ω × r′)− 2ω × ṙ′,

where the three terms in the RHS are associated with real force, centrifugal and Coriolis forces.
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