
Classical Dynamics Michaelmas 2014

Lecture 5 and 6 (18th and 21st of October 2014)

Comments and questions should be sent to Berry Groisman, bg268@

2.4 Constraints and Generalised Coordinates

Key concepts: constraints (holonomic: rheonomic and scleronomic), generalized coordinates, Lagrange mul-
tipliers, generalised velocities and momenta, conjugate quantities.

So far we have considered systems of N particles. Such systems have 3N degrees of freedom and hence
require 3N equations of motion to determine their dynamics. Many physical systems, however, move under
constraints. The typical example is a rigid body. Under reasonable approximation the constraints are
expressed in the form

fij(ri, rj) = (ri − rj)
2 − a2ij = 0, (1)

where aij are fixed distanced between the corresponding pairs of particles. These constraints are written in
terms of particles’ positions in real space, but they can be stated in terms of coordinates of x in C. Expression
(1) is a typical example of what is known as holonomic constraints.

Holonomic Constraints (HC) are relationships between the coordinates of the form

fα(x, t) = 0, (2)

where α = 1, ..., 3N − n is the number of constraints and 0 < n < 3N .

HC can be solved in terms of n generalized coordinates qi, i = 1, ..., n, so the old coordinates x = x(q)
contain the constraints implicitly. The system is said to have n degrees of freedom. If (2) do not contain time
explicitly then the HC is called scleronomic and the system is said to be scleronomous. If (2) does contain
t explicitely then the HC is called rheonomic and the system is said to be rheonomous.

Examples: Three examples of HC have been discussed in detail during the lecture:

(1) Planar Pendulum: motion on a circle (2 constraints, 1 degree of freedom (DofF))

(2) Spherical Pendulum: motion on the surface of a sphere (1 constraint, 2 DofF)

(3) Bead sliding on a flat wire (2 constraints, 1 DofF). If radii or the circle/sphere or the shape of the wire
are fixed, then the constraint is scleronomic. Constrains before rheonomic if these quantities change
with time.

Difficulties in incorporating constraints into Newtonian Formalism:
Constraints introduce two types of difficulties in the solution of mechanical problems. In order to illustrate
the idea consider the equation of motion of a constrained system of N particles written in Newtonian form -
see Equations (9) and (10) in Section 1.2 (for convenience lets work in real space). The problem constitutes
in solving the set of differential equations for coordinates

mir̈i =
∑
j 6=i

Fij + F ext
i . (3)

First difficulty: due to the constraints the coordinates ri are no longer all independent. Second difficulty:
Constraint forces are among the unknowns of the problem. They are not know a priori and known rather in
terms of their effect on the motion of the system.

Using a simple example of a planar pendulum (with mass m and length l) we illustrate how these difficulties
are dealt with in the framework of Newtonian formalism.
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We write the Newton’s equations of motion{
mẍ = mg − T cos θ,

mÿ = −T sin θ,

and then impose the constaint x2 + y2 = l2 which is parametrized by{
x = l cos θ,

y = l sin θ.

Once the contraint is incorporated into the Newton’s equations we (eventually) obtain θ̈ =− g

l
sin θ,

T =mlθ̇2 +mg cos θ.

It is evident that a considerable effort has been put into dealing with the constraint force (tension of the
string, T ). Lagrangian formalism allows us to avoid the extra work associated with the contraint force(s),
which is useful if we are not interested in them.

Difficulties in incorporating constraints into Lagrangian Formalism:
Recall the action principle (written with explicit summation over all components of x)

δS =

∫ t2

t1

[∑
k

(
d

dt

∂L

∂ẋk
− ∂L

∂xk

)
δxk

]
dt = 0.

To conclude that E-L equation is satisfied for each component independently we used an implicit assump-
tion, that all components of x are independent and so δxk can be varied independently. However, when
constraints are imposed we cannot conclude that each coefficient of the variations δxk vanishes by itself and
so there is no justification for writing 3N independent E-L equations.

During the lecture in the class we show how constraints can be incorporated into Lagrangian formalism with
the help of Lagrange multipliers. We introduce modified Lagrangian

L′ = L(x, ẋ, ) + λαfα

and obtain the following modification of E-L. equations, where the term in the RHS is a manifistation of the
contraints:

d

dt

∂L

∂ẋk
− ∂L

∂xk
= λα

∂fα
∂xk

. (8)

Thus, we demonstrate that we can easily incorporate constraint forces into the Lagrangian set-up using
Lagrange multipliers.

In many situations, however, we might not be interested in contraint forces, but just in the dynamics of the
generalised coordinates, qi. We prove the following statement.

Theorem 2.1 For constrained systems we may derive the equations of motion directly in generalised coor-
dinates, i.e. using

L(qi, q̇i, t) = L (xk(qi, t), ẋk(qi, q̇i, t))

and E-L equations written purely in terms of generalised coordinates.

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

In other words, we may ignore λα and work with unconstrained Lagrangian where we substitute xk = xk(q, t).
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Summary: General form of the Lagrangian Formalism

A mechanical system is described by n generalised coordinates (degrees of freedom), qi, which define a
point in a n-dimensional configuration space C.
The time evolution is a curve in C governed by the Lagrangian L(qi, q̇i, t), such that qi obey n coupled 2nd
order differential equations (Euler-Lagrange equations)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

Some definitions:

• q̇i - generalised velocities.

• pi = ∂L
∂q̇i

- generalised momenta conjugate to qi.

• E-L eqns can be rewritten as

ṗi =
∂L

∂qi
.

A note: sometimes q̇i and pi coincide with real velocities and momenta in Cartesian coordinates, however
generally this is not the case. Consider, for example, polar coordinates ṙ = (ṙ, rθ̇). For the planar pendulum
ṙ = (0, lθ̇), but it is natural to choose generalised velocity as q = θ̇ (not lθ̇), which does not have a dimension
of L/T . In this case generalised momentum is pθ = ∂L

∂θ̇
= ml2θ̇, while the real momentum is mlθ̇.

2.5 Noether’s Theorem and Symmetries

This sections discusses appearence of conservations laws in Lagrangian formalism. In particular, we state
and prove Noether’s Theorem, which relates conserved quantities to symmetries.

Definition: We say that F (qi, q̇i, t) is a constant of motion (conserved quantity) if

dF

dt
=

n∑
i=1

(
∂F

∂qi
q̇i +

∂F

∂q̇i
q̈i

)
+
∂F

∂t
= 0,

where qi satisfies E-L equations.
F remains constant along the path followed by the system.

We give two examples:

• If ∂L
∂t = 0 then H(qi, pi) =

∑n
i=1 q̇i

∂L
∂q̇i
− L (the Hamiltonian) is conserved.

• If ∃ qj s.t. ∂L
∂qj

= 0 then pj is conserved. Such a coordinate is called ignorable or cyclic.
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