
Classical Dynamics Michaelmas 2014

Lectures 7 and 8 (23rd and 25th of October 2014)

Comments and questions should be sent to Berry Groisman, bg268@
Section 2.6 of these notes is likely to be updated after the lecture 7.
A note on notation: Einstein summation convention will be used throughout this course, however, in some
places I will put an emphasis on summation by explicitly writing the sign.

2.5 Noether’s Theorem and Symmetries

Key concepts: Noether’s Theorem, symmetry.

This sections discusses appearance of conservations laws in Lagrangian formalism. In particular, we state
and prove Noether’s Theorem, which relates conserved quantities to symmetries.

Definition 2.5.1 We say that F (qi, q̇i, t) is a constant of motion (conserved quantity) if

dF

dt
=

n∑
i=1

(
∂F

∂qi
q̇i +

∂F

∂q̇i
q̈i

)
+
∂F

∂t
= 0, (1)

where qi satisfies E-L equations, i.e. F remains constant along the path followed by the system.

We give two examples:

• If ∂L∂t = 0 then H(qi, pi) =
∑n
i=1 q̇i

∂L
∂q̇i

−L (the Hamiltonian) is conserved, which can be easily verified.

• If ∃ qj s.t. ∂L
∂qj

= 0 then pj is conserved. Such a coordinate is called ignorable or cyclic.

Noether Theorem (NT) - proved by Emmy Noether in 1918:
Consider continuous one-parameter1 family of transformations for the coordinates of the system

qi(t) → Qi(s, t), (2)

where s ∈ R (continuous parameter of the transformation), such that Qi(0, t) = qi(t).

If L is invariant under this transformation, i.e.

L(Qi(s, t), Q̇i(s, t), t) = L(qi, q̇i, t), (3)

then it must not depend on s:
d

ds
L(Qi(s, t), Q̇i(s, t), t) = 0. (4)

If this is the case, then the transformation is said to be a continuous symmetry of L.

Theorem 2.5.2 NT states that for each such symmetry there exists a conserved quantity.

Proof (The proof constitutes in deriving such a quantity and providing the recipe for its calculation.)

dL

ds
=

∂L

∂Qi

dQi
ds

+
∂L

∂Q̇i

dQ̇i
ds

=
d

dt

(
∂L

∂Q̇i

)
dQi
ds

+
∂L

∂Q̇i

dQ̇i
ds

. (using E-L equations)

(5)

1Generalisation to several parameters is trivial.
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Thus,
dL

ds

∣∣∣∣
s=0

=
d

dt

(
∂L

∂q̇i

dQi
ds

∣∣∣∣
s=0

)
= 0. (6)

Thus, there is a conserved quantity, which is ∑
i

pi
dQi
ds

∣∣∣∣
s=0

. (7)

⊓⊔
In other words, NT provides the recipe: the conserved quantity can be found by differentiating each coor-
dinate with respect to the parameters of the transformation in the immediate neighbourhood of the identity
transformation, multiplied by corresponding generalised momentum and summing over all degrees of freedom.

Let us apply NT to the symmetries corresponding to three elements of the Galilean Group. For this
purpose we use a closed system of N interacting particles with potential forces. The Lagrangian of such
system is

L =
1

2

∑
i

miṙ
2
i −

∑
i,j(i<j)

V (|ri − rj |). (8)

• Homogeneity of Space =⇒ Translational Invariance of L =⇒ Conservation of Total Linear Momentum

Consider a translation of a system as a whole by an arbitrary vector sn̂. Thus, ri → ri + sn̂, ∀ n̂, s.

Let us clarify notation in this part. In Eqn. (7) the index i runs over degrees of freedom/components
in C. For Lagrangian (8) of N interacting particles it is convenient to work in a vector form in real
space, in which case (7) can be rewritten (in a vector form) as

∑
i

pi ·
dQi

ds

∣∣∣∣
s=0

, (9)

where summation index i is over particles. The scalar product of the two vectors takes care of summa-
tion over all three degrees of freedom for each particle.

Translation of the system as a whole does not change equations of motion, hence

L(ri + s n̂, ṙi, t) = L(ri, ṙi, t). (10)

NT provided us with a recipe for computing the conserved quantity associated with this translation.

∑
i

pi ·
d(ri + sn̂)

ds

∣∣∣∣
s=0

=
∑
i

pi · n̂, (11)

which is the total linear momentum along n̂. As this holds for any n̂, the total momentum, P =
∑
i pi,

is conserved.

• Isotropy of Space =⇒ Rotational Invariance of L =⇒ Conservation of Total Angular Momentum

Consider a rotation of a system as a whole around an arbitrary n̂. For an infinitesimal rotation the
corresponding transformation of the coordinates is

ri → ri + δri ≈ ri + s (n̂× ri), (12)

where s is assumed to be very small.

Lagrangian of a closed system of N particles (Eqn. (8)) is invariant under such transformation, i.e.
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L(ri + δri, ṙi + δṙi, t) = L(ri, ṙi, t), (13)

that is in linear order

L(ri + s n̂× ri, ṙi + s n̂× ṙi, t) = L(ri, ṙi, t) +
dL

ds

∣∣∣∣
s=0

s, (14)

where the second term must be zero due to symmetry and the conserved quantity is calculated as

∑
i

pi ·
d

ds
(ri + s n̂× ri)

∣∣∣∣
s=0

=
∑
i

pi · (n̂× ri) = n̂ ·
∑
i

ri × pi, (15)

which is total angular momentum in the direction of n̂. As n̂ is arbitrary we conclude that the total
angular momentum is conserved.

• Homogeneity of Time: L is invariant under t→ t+ s, that is ∂L
∂t = 0, which implies (as we have shown

earlier) that Hamiltonian

H =
∑
i

q̇i
∂L

∂q̇i
− L. (16)

is conserved.
For a closed system (and more generally for systems with scleronomic constraints) Hamiltonian equals
to the total energy, therefore we have the fundamental link

Homogeneity of Time =⇒ Conservation of Total Energy (for scleronomous systems)

It is worth noting that for some rheonomous systems Lagrangian does not depend on time explicitly,
in which case H is conserved. However it is not necessarily equal to the total energy, which might not
be conserved (as in the example of the bead on rotating circular hoop - see Application II in the next
lecture).

2.6 Applications

Key concepts: effective potential.
Some general remarks.

Remark 2.6.1 In Applications I - V the main strategy is to exploit the constraints and symmetries in
order to reduce the problem to a 1-d problem, that is to a single parameter problem (one degree of free-
dom/generalised coordinate q). The intermediate step is to identify effective potential Veff(q) and derive the
2nd order differential equation for q:

q̈ = −∂Veff(q)
∂q

, (1)

which has a form of Newton’s equation. The form of Veff(q) in each particular problem will determine the
solution. We then either solve (1) or determine main qualitative and quantitative features of the solution
by analysing Veff(q).

Remark 2.6.2 In Applications I, II we are interested in the motion of the bead relative to the hoop. We start
with writing the Cartesian coordinates (x, y, z) of the bead (in the rest frame/frame of stationary observer
- not rotating frame), which we parameterize by suitably chosen generalised coordinate. In both cases the
constraint is rheonomic (time dependent).

Application I: Bead on a square horizontal rotating hoop(based on Dynamics&Relativity, Exam-
ple 3, Problem 8.)

A square hoop ABCD is made of fine smooth wire and has side length 2a. The hoop is horizontal and
rotating with constant angular speed ω about a vertical axis through A. A small bead which can slide on
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the wire is initially at rest at the midpoint of the side BC. Let ξ be the distance of the bead from the vertex
B on the side BC. Determine the second order differential equation for parameter ξ. Solve this equation. Is
it possible to describe the motion of the bead qualitatively without solving the equation of motion? (Hint:
what is the form of the effective potential?)

(This example will be discussed in detail during the lecture.)

Application II: Bead on circular vertical rotating hoop (first part is addressed in Example Sheet
1, Problem 2)

We start by parameterizing the constraint by writing the coordinates of the bead in terms of ψ and t:
x =a sinψ cosωt

y =a sinψ sinωt

z =a(1− cosψ).

(2)

This is a rheonomic (t-dependent) constraint.

In the example question you are asked to derive 2nd order DE for ψ, so I will skip this step. The resulting
equation can be brought to the form

ψ̈ = −
∂Veff(ψ)

∂ψ
, (3)

where

Veff(ψ) = −1

2
ω2 sin2 ψ − g

a
cosψ. (4)

In terms of Veff(ψ) the Lagrangian has a very elegant and simple form

L(ψ, ψ̇) = ma2

(
ψ̇2

2
− Veff(ψ)

)
. (5)

Let us analyse the behaviour of the system by examining the form of Veff(ψ) starting with determining
stationary solutions, which correspond to ψ̈ = ψ̇ = 0, i.e.

∂Veff
∂ψ

= 0 ⇒ g sinψ = aω2 sinψ cosψ. (6)

Thus, there are three stationary solutions:

(1) ψ = 0: always exists; stable for ω <
√
g/a, unstable for ω ≥

√
g/a.

(2) ψ = π: always exists; unstable.

(3) ψ = arccos(g/aω2): exists only if the hoop is spinning fast enough, ω ≥
√
g/a; stable. This is the

interesting solution amongst the three.

It follows that if the hoop is spinning very fast, then ψ = π/2, which is what we expect.

An important remark: Lagrangian does not depend on time and therefore the Hamiltonian

H = ψ̇
∂L

∂ψ̇
− L =

ma2

2

(
ψ̇2 − ω2 sin2 ψ

)
−mga cosψ

is conserved. The last term in the RHS is obviously the potential energy. However, the first term is not
kinetic energy. The kinetic energy is

T =
ma2

2

(
ψ̇2 + ω2 sin2 ψ

)
.
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This is a typical situation corresponding to rheonomic constraint, that is time dependent constraint with L
which is not explicitly time dependent. The bead on rotating hoop is an excellent example of such a system.
H is conserved, but total energy is not. There is a flow of energy from outside, e.g. from the motor which
rotates the hoop. In this system the change in kinetic energy of the bead does not account for the change in
potential energy. To maintain the angular velocity of rotation constant we need to supply energy from outside.

Application III: Spherical Pendulum
Particle of mass m is constrained to move on a surface of a sphere of constant radius l. The constraint is
scleronomic. The suitable generalised coordinates are the polar, θ, and azimuthal, ϕ, angles (for convenience
we will measure θ from the downward direction).

In Cartesian coordinates of the particle the Lagrangian is

L(z, ẋ, ẏ, ż) =
m

2
(ẋ2 + ẏ2 + ż2)−mgz. (7)

Parametrisation of the constraint 
x =l cosϕ sin θt

y =l sinϕ sin θt

z =− l cos θ,

(8)

yields

L(θ, θ̇, ϕ̇) =
ml2

2
(θ̇2 + ϕ̇2 sin2 θ) +mgl cos θ. (9)

Now, we identify the first conserved quantity: ϕ is ignorable, therefore the corresponding generalised mo-
mentum

pϕ =
∂L

∂ϕ̇
= ml2ϕ̇ sin2 θ (10)

is conserved. This is in fact, z-component of the angular momentum. Indeed, its conservation follows from
rotational symmetry around z-axis.

Now we can write E-L equation for θ:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= ml2θ̈ −ml2ϕ̇2 sin θ cos θ +mgl sin θ, (11)

from which we can obtain an equation for θ by substituting for ϕ̇ in terms of pϕ and θ from (10). The value
of pϕ is fixed by the initial conditions of the problem. This yields the familiar form

θ̈ = −
∂Veff(θ)

∂θ
, (12)

where

Veff(ψ) =
p2ϕ

2m2l4 sin2 θ
− g

l
cos θ. (13)

Now we identify the second conserved quantity. As ∂L/∂t = 0, the Hamiltonian is conserved. In lecture 9
we will prove a theorem, stating that for scleronomic constraints Hamiltonian equals total energy. Thus,

H = θ̇
∂L

∂θ̇
+ ϕ̇

∂L

∂ϕ̇
− L =

1

2
ml2θ̇2 +ml2Veff = Ẽ, (14)

where the total energy Ẽ is conserved. Hence we obtain an elegant equation for rescaled total energy:

θ̇2

2
+ Veff(θ) = E. (15)

For given E the motion is restricted to Veff ≤ E, i.e. to the range between angles θ1 and θ2, which are
solutions of Veff = E.
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The ultimate aim is to solve for θ(t) and ϕ(t) or ϕ(θ). One of the possible ways to proceed is to rearrange
(15) for

dt =
dθ√

2(E − Veff)
, (16)

then substitute it into (10) to obtain

ϕ(θ) =
pϕ√
2ml2

∫
dθ√

(E − Veff) sin
2 θ
. (17)

This leads to elliptic integrals of 2nd and 3rd type.

Notice that we used the constraint to reduce the number of degrees of freedom to two, then two conserved
quantities to solve the problem.

Application IV: Two-body Problem (not discussed during the lecture: handout available)

Application V: Charged particle in a background electro-magnetic field (This overlaps with ex-
ample sheet 1)

Consider a particle with charge e and mass m moving in the e-m field. We will postulate the form of
Lagrangian for this case and show that corresponding Euler-Lagrange equation leads to Lorentz force law
mr̈ = eE + e ṙ ×B.
Working in SI units we write the fields in terms of vector, A(r, t), and scalar, ϕ(r, t), potentials as

B = ∇×A, E = −∇ϕ− ∂A

∂t
.

The Lagrangian of a charged particle in e-m field is

L =
mṙ2

2
− e(ϕ− ṙ ·A). (18)

Notice that the form of the momentum

p =
∂L

∂ṙ
= mṙ + eA.

E-L equation yields

mr̈ = −e∂A
∂t

− e∇ϕ+ e∇(ṙ ·A). (19)

Working in components we recover Lorentz force law.

Gauge invariance: Consider Gauge transformation

ϕ→ ϕ− ∂Λ

∂t
,

A → A+∇Λ,
(20)

for any function Λ(r, t). How does it affect the Lagrangian?

L→ L+ e
∂Λ

∂t
+ eṙ∇Λ = L+ e

dΛ

dt
. (21)

But the last term is a full t-derivative of an arbitrary function of coordinates and time, hence L is gauge
invariant.
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