
Classical Dynamics Michaelmas 2014

Lectures 9 and 10 (28th and 30th of October 2014)

Comments and questions should be sent to Berry Groisman, bg268@ (few minor modifications
made on 30/10/14)

2.7 Quadratic Lagrangians; Small Oscillations, Stability and Normal Modes

Key concepts: equilibrium, normal modes

Consider a general form of the kinetic energy term in Lagrangian, which results from the transformation
from Cartesian to generalised coordinates.

Case 1 - Scleronomic constraints: xk = xk(q) and therefore

ẋk =
n∑

i=1

∂xk

∂qi
q̇i.

Thus,

T =
1

2

3N∑
k=1

mkẋ
2
k =

1

2

∑
i,j

(∑
k

mk
∂xk

∂qi

∂xk

∂qj

)
q̇iq̇j =

1

2

∑
i,j

Tij(q) q̇iq̇j , (1)

where the (symmetric) matrix Tij(q) depends on coordinates only. Thus, T is still quadratic in velocity, but
can also depend on coordinates.

An excellent example is a double pendulum (see Example sheet 1), where

L =
1

2

[
(m1 +m2)l

2
1θ̇

2
1 +m2l

2
2θ̇

2
2 + 2m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

]
+ (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2. (2)

Thus,

T11 = (m1 +m2)l
2
1, T22 = m2l

2
2, T12 = T21 = m2l1l2 cos(θ1 − θ2)

Corollary 2.7.1 For closed and scleronomous systems Hamiltonian equals total energy of the system.

Proof From (1) it follows that T is a homogeneous function of degree 2 in q̇. Indeed, T (αq̇) = α2T (q̇),
∀ α ∈ R.

By Euler’s Theorem for homogeneous functions

n∑
i=1

q̇i
∂T

∂q̇i
= 2T.

Thus,

H =
∑
i

q̇i
∂L

∂q̇i
− L =

∑
i

q̇i
∂T

∂q̇i
− L = T + V = E.

⊓⊔
Case 2 - Rheonomic constraints: xk = xk(q, t) and therefore

∑
k

ẋ2
k =

∑
i,j

(∑
k

∂xk

∂qi

∂xk

∂qj

)
q̇iq̇j + 2

∑
i

(∑
k

∂xk

∂qi

∂xk

∂t

)
q̇i +

∑
k

(
∂xk

∂t

)2

,

that is T is not homogeneous in q̇. Lagrangian might still not depend on time explicitly, in which case
Hamiltonian will be conserved. However, total energy will not be conserved (as in the example of the bead
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on rotating hoop - application II).

Purely Kinetic Lagrangians in GR:

In General Relativity the potential is incorporated in the geometry of space-time through the metric. Hence,
Lagrangians in GR do not have a potential term - they are purely kinetic Lagrangians, describing particle
which moves in curved space-time. The most general form of such Lagrangian is discussed in Example Sheet
1, Problem 11.)

Small Oscillations, Stability and Normal Modes

We consider equations of motion of a physical system with n degrees of freedom. The system is said to
be at equilibrium at q = q0 if q̇0 = 0 and q0 is the critical (stationary) point of the potential, i.e.

∂V (q)

∂qi

∣∣∣∣
q0

= 0 ∀ i.

The point q0 is an equilibrium point. If the system is initially at equilibrium, then it will continue to be at
equilibrium indefinitely. An equilibrium point is classified as stable if a small disturbance from equilibrium
results only in a small bounded motion about the equilibrium.

We are now ready to write the Lagrangian in the form

L =
1

2
Tij(q)q̇iq̇j − V (q). (3)

We may consider small perturbations away from the equilibrium, qi(t) = q0i + ηi(t), and linearise L in the
neighbourhood of q0i . As a result we obtain equation of motion expanded in linear order in η.

Alternatively, we may introduce linearization once the equations of motion have been obtained. From
Euler-Lagrange equation we obtain

Tij(q)q̈j = −∂V (q)

∂qi
. (4)

Now, consider small deviations ηi, so qi = q0i + ηi, and

Tij(q)η̈j = −∂V (q)

∂ηi
. (5)

and expand Tij in linear order in η, while V (q) in quadratic order.

Tij(q) = Tij(q
0) +

∂Tij

∂qk

∣∣∣∣
q0

ηk +O(η2), (6)

where it is clear why we don’t need quadratic terms - they clearly will not contribute as T will be multiplied
by η̈ (in fact we don’t need the linear order either). For V (q), however it is essential to include quadratic
the term.

V (q) = V (q0) +
∂V (q)

∂qk

∣∣∣∣
q0

ηk +
1

2

∂2V (q)

∂qk∂ql

∣∣∣∣
q0

ηkηl +O(η3). (7)

Here the second term on RHS vanishes as q0 is the point of minimum of V .
Thus

∂V (q)

∂ηi
=

∂2V (q)

∂qi∂qk

∣∣∣∣
q0

ηk. (8)

Therefore (5) becomes
Tij(q

0)η̈j = −Vijηj , (9)
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were

Vij =
∂2V (q)

∂qi∂qj

∣∣∣∣
q0

. (10)

In the matrix form
T η̈ = −V η, (11)

where both matrices are symmetric.
Thus,

η̈ = −T−1V η, and F = −T−1V. (12)

We have reduced the linearised equations of motion of a system with n degrees of freedom to the form
η̈ = Fη. It is not very difficult to prove that F has real eigenvalues.1 Consider an eigenvector µ of matrix
F with eigenvalue λ2.

Fµ = λ2µ ⇒ TT−1V µ = −λ2Tµ ⇒ V µ = −λ2Tµ ⇒ µ∗V µ = −λ2µ∗Tµ, (13)

were µ∗V µ ∈ R, µ∗Tµ ∈ R, because T and V are symmetric. Also detT ̸= 0 since T is invertible. Thus,
λ2 ∈ R and this completes the proof.

Thus, consider eigenvalues and eigenvectors of F :

Fµ(a)(t) = λ2
aµ(a)(t), (14)

where λ2
a are real and µ(a) are linearly independent (index a labels the eigenvectors, not their components).

We can write characteristic equation

µ̈(a)(t)− λ2
aµ(a)(t) = 0. (15)

The most general solution is

η(t) =
∑
a

µ(a)

(
Aae

+λat +Bae
−λat

)
, (16)

where Aa and Ba are integrating constants (2n in total). Consider two cases.

1. Case 1: λ2
a < 0, i.e. it can be written as λa = iωa, where ωa ∈ R (frequency). Here (15) takes the

form of harmonic oscillator, µ̈(a)(t) + ω2
aµ(a)(t). This corresponds to stability of the corresponding

direction µa in the vector space of eigenvectors.

2. Case 2: λ2
a > 0, i.e. λa ∈ R. This corresponds to linear instability in µ(a)-direction.

The eigenvectors µ(a) are called normal modes and are not associated with a single degree of freedom of the
system. Equilibrium point q0 is only stable if λ2

a < 0 for all a = 1, ..., n. In this case, the system will typically
oscillate around the equilibrium point as a linear superposition of all the normal modes, each at a different
frequency. Normal modes are the new coordinates in which oscillations are decoupled. We will illustrate this
with the example of the double pendulum - see Lagrangian (2).

1Note that F is not necessarily symmetric.
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