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Numerical Analysis – Lecture 16

4 Iterative methods for linear algebraic systems

Technique 4.1 (Splitting) For n ≥ 0 let A ∈ Rn×n, b, x ∈ Rn. One way of solving a linear system
Ax = b is to write it in the form

(A−B)x = −Bx + b,

where the matrixB is chosen in such a way that it is relatively easy to solve the system (A−B)x =
y for any given y (this also requires A−B to be nonsingular). Then the iteration commences with
an estimate x(0) of the required solution, and generates the sequence (x(k)) by solving

(A−B)x(k+1) = −Bx(k) + b, k = 0, 1, 2, . . . (4.1)

If the sequence converges to a limit, x(k) → x∗, say, then the limit has the property (A − B)x∗ =
−Bx∗ + b. Therefore x∗ is a solution of Ax = b as required.

Discussion 4.2 (Conditions for convergence) Suppose that A − B is nonsingular and let H :=
−(A − B)−1B the iteration matrix and c := (A − B)−1b, hence x(k+1) = Hx(k) + c. Define x∗

by Ax∗ = b. Thus, since (A − B)x∗ = −Bx∗ + b, we have x∗ = Hx∗ + c. Then, denoting by
e(k) := x(k) − x∗ the error of the k-th iteration and subtracting equations, we have

e(k+1) = He(k) = · · · = Hk+1e(0) .

In other words, if Hk k→∞−→ O then the iteration converges for all e(0).

Lemma 4.3 Suppose that H has n linearly independent eigenvectors and that the moduli of all its eigen-
values are less than one. Then e(k)

k→∞−→ 0.

Proof. LetHvj = λjvj , j = 1, . . . , n, where ‖vj‖ = 1 (the Euclidean length). We can expand every
vector in Rn as a linear combination of v1, . . . ,vn. Thus, e(0) =

∑n
j=1 θjvj , say. But Hkvj = λkjvj ,

hence e(k) =
∑n

j=1 θjλ
k
jvj . Consequently,

‖e(k)‖ ≤
n∑

j=1

∥∥θjλkjvj

∥∥ =

n∑
j=1

|θjλkj | ≤

 n∑
j=1

|θj |

 max
j=1,...,n

|λkj |.

Since |λj | < 1, j = 1, . . . , n, it follows that e(k) → 0. �

Lemma 4.4 If the modulus of an eigenvalue of H is ≥ 1 then there exists a choice of x(0) s.t. the iteration
fails to converge.

Proof. We use the notation from the last proof and assume that |λ1| > 1. If λ1 is complex then
Hv̄1 = λ̄1v̄1. We choose e(0) = 1

2 (v1 + v̄1) (clearly, if λj is real then e(0) = v1). Therefore
e(k) = 1

2 (λk1v1 + λ̄k1 v̄1). Except for the case λ1 = 1 (when e(k) = v1) this precludes convergence.
Finally, in the case λ1 = 11 we choose x(0) = c = v1. It follows by induction that x(k) = (k + 1)v1

– again, no convergence. �

Theorem 4.5 The iteration x(k+1) = Hx(k) + c, k ∈ Z+, converges to x∗ for every choice of x(0) and c
if and only if all the moduli of eigenvalues of H are less than 1.

1This may happen only if A is singular – verify!
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Proof. If there are n independent eigenvalues, the theorem follows from the last two lemmas.
Otherwise we can use the Jordan canonical form, but we leave out this analysis. �

Remark 4.6 In other words Theorem 4.5 states that convergence e(k) → 0 is achieved for any choice of
x(0) if and only if H has the property ρ(H) < 1. Here ρ(H) is the spectral radius of H , which means the
largest modulus of an eigenvalue of H . (Some of the eigenvalues may have nonzero imaginary parts.)

Example 4.7 An example of the situation mentioned above is when

H =

[
λ 1
0 λ

]
.

In that case

Hk =

[
λk kλk−1

0 λk

]
,

therefore Hk → O iff |λ| < 1, as claimed in the theorem.
Note: There is more to iteration than just ‘convergence’! For example, we achieve convergence with

H =

 0.99 106 1012

0 0.99 1020

0 0 0.99

 ,
but it will take quite a long time. . .

Method 4.8 (Jacobi and Gauss–Seidel) Both of these methods are versions of splitting which can
be applied to any A with nonzero diagonal elements. We write A as the sum of three matrices
L0 +D+U0: subdiagonal (strictly lower-triangular), diagonal and superdiagonal (strictly upper-
triangular) portions of A, respectively.

1) Jacobi method. We set A−B = D, the diagonal part of A, and we obtain the next iteration by
solving the diagonal system Dx(k+1) = −(L0 + U0)x(k) + b.

2) Gauss–Seidel method. We take A − B = L0 + D = L, the lower-triangular part of A, and
we generate the sequence (x(k)) by solving the triangular system (L0 +D)x(k+1) = −U0x

(k) + b.
There is no need to invert (L0+D), we calculate the components of x(k+1) in sequence by forward
substitution:

aiix
(k+1)
i = −

∑
j<i aijx

(k+1)
j −

∑
j>i aijx

(k)
j + bi, i = 1..n.

As we mentioned above, the sequence x(k) converges to solution of Ax = b if the spectral
radius of the iteration matrix, HJ = −D−1(L0 +U0) orHGS = −(L0 +D)−1U0, respectively, is less
than one. Our next goal is to prove that this is the case for two important classes of matrices A:
a) diagonally dominant and b) positive definite matrices. We start with recalling the simple, but
very useful Gershgorin theorem.

Revision 4.9 (Gershgorin theorem) All eigenvalues of an n×n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z − aii| ≤ ri}, ri :=
∑

j 6=i |aij | .
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