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1 Introduction

Quantum field theory was developed in order to describe natural
phenomena that are both relativistic and quantum. The prototype,
quantum electrodynamics (QED), described the physics of electrons
and photons. Since then, the quantum field theory framework has
been found to be rich, forcing on us constraints which allow firm
theoretical predictions (e.g. the charm quark) yet allowing the de-
scription of a wide range of physical phenomena. Ideas such as
renormalization carry over to the theory of critical phenomena.
Ongoing research is exploring dualities between field theories and
gravity theories (gauge-gravity dualities, of which AdS/CFT corre-
spondence is one).

The Standard Model is the most successful application of quan-
tum field theory when it comes to experimental verification. Over
the four decades since its ingredients were combined thousands of
measurements have been made, all apparently consistent with the
Standard Model. Even the physics of quark flavour-changing inter-
actions, which could be sensitive through quantum loops to new
particles as heavy as 10° TeV/c?, is well-described by the Standard
Model.

The Standard Model describes the physics of three fundamental Table 1.1: Standard Model bosons
forces, each mediated by gauge bosons. The electromagnetic force

is described as electrically charged particles exchanging photons, as eledrsvrzaaf netic Wﬁ, 70
in QED. The weak force is responsible for particles changing their strong g
“flavour” as occurs in neutron B-decay. The W boson is responsible higgs h
for weak decays; its large mass is the reason for the weakness of
this force. (The Z boson also carries the weak force, but does not
cause a change in flavour.) The strong force binds quarks into nu-
cleons and nucleons into nuclei; the carrier of the strong force is
appropriately called the gluon.
The matter content (the fermions) of the Standard Model are Table 1.2: Standard Model fermions

the neutral leptons (the neutrinos), which feel only the weak force; , ) )

the charged leptons, like the electron which interact weakly and leptons <; > (;) <TT )

electromagnetically; and the quarks, which are sensitive to all 3 <u) <c> (t)

quarks , ,

forces. d)’\s)" \b
Finally there is the Higgs boson, a consequence of the Higgs

mechanism for generating masses for the W and Z, as well as for

the fermions. In 2012 we saw convincing evidence that the Higgs

boson, or a Higgs-like boson, has been discovered at the LHC.
As in QED, the gauge bosons are manifestations of local symme-



tries. The standard model gauge group is the direct product of the
3 Lie groups
SU(3)C X SU(Z)L X U(l)y .

The electroweak theory is described by the product of the chiral
gauge theory SU(2)-left times U(1)-hypercharge. The separate
weak and electromagnetic forces we observe are due to the spon-
taneous breaking of this symmetry down to just U(1)gps. The next
lectures will gradually explain the details of what is written above.
SU(3)-colour describes the strong force (this part of the theory
is called quantum chromodynamics or QCD)." We shall not discuss
QCD much until later in the course. The strong interactions make
for rich but complicated behaviour, difficult to study theoretically.
In the first half of this course, we shall focus on the electroweak sec-
tor of the Standard Model. The strong sector of the Standard Model
is fascinating for its richness, the electroweak sector is intriguing
because of its persistent mysteries.

THESE NOTES APPEAR ONLINE” and will be updated as the course
progresses. They are based on Dr Wingate’s notes3 from 2015 with
some modifications. Prof. Osborn has lecture notes* for an earlier
version of this course that he gave a few years ago.

I will generally follow the conventions used in Prof Tong’s
notes for Part Il Quantum Field Theory.> For example, I will use
a Minkowski metric with signature (4, —, —, —) and mostly use
the chiral representation of the Dirac matrices instead of the non-
relativistic, or Bjorken-Drell, representation. However, I will use
the (perhaps more conventional) definition of 7° = +iy%q19%43.
Romao & Silva® have recently performed a service to the commu-
nity by carefully noting the various sign conventions which appear
in texts and reviews. These notes shall use the convention such that
n=rmns=1n =nz =1y =ny =1 = +1. Another thing to watch
out for is the definition of hypercharge Y (see Section 5.2): we use
Q = T3 + 57yY but some references use Q = T° + 7yY/2).

The QFT text by Peskin & Schroeder” is a good reference on
many topics covered in this course; however, be aware that they
differ with the sign conventions here by using 7 = 7, = ' =
—1. The books by Halzen & Martin® and Aitchison & Hey? are
pitched at readers unfamiliar with QFT, but contain physically-
motivated discussions and arguments which complement the more
field-theoretic treatments. Donoghue, Golowich & Holstein™® is
another good general reference. Thomson" gives an up to date
overview of experimental results and their connection with the
theory; Perkins'® provides a more historical experimental picture.
The Review of Particle Physics by the Particle Data Group'3 gives
an up to date summary of experimental data along with reviews
of various aspects of particle physics — unless otherwise stated
the experimental data quoted will be from that review. I will cite
other references if they are particularly helpful with respect to a
particular topic.

' Do not confuse the SU(3)-colour
gauge symmetry with the SU(3)-
flavour global symmetry which gives
approximate relations between bound
states of u, d, and s quarks.

> www.damtp.cam.ac.uk/user/cet34/teaching/
3 www.damtp.cam.ac.uk/user/wingate /StdM

+www.damtp.cam.ac.uk/user/ho/SM.ps

5 www.damtp.cam.ac.uk/user/tong/qft.html

6] C Romado and J P Silva. A resource
for signs and Feynman diagrams of
the Standard Model. Int. |. Mod. Phys.,
A27:1230025, 2012. arXiv:1209.6213

?M E Peskin and D V Schroeder. An
Introduction to Quantum Field Theory.
Addison Wesley, 1995

8 F Halzen and A D Martin. Quarks and
Leptons. Wiley & Sons, 1984

91.J. R. Aitchison and A. J. G. Hey.
Gauge theories in particle physics: A
practical introduction. Vols. 1 & 2. 10P,
2004

] F Donoghue, E Golowich, and B R
Holstein. Dynamics of the Standard
Model. Cambridge University Press,
1992. Also 2nd edn. 2014

" M. Thomson. Modern Particle Physics.
Cambridge University Press, 2013

> D. H. Perkins. Introduction to High
Energy Physics. Cambridge University
Press, 2000

3 M. Tanabashi et al. Review of
Particle Physics. Phys. Rev., Dg8(3):
030001, 2018. URL http://pdg.1lbl.
gov/
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2 Chiral and gauge symmetries

In this chapter we present a few concepts which may have been
introduced in last term’s courses, but which are crucial to construct-
ing the Standard Model. This also allows us to set our notation and
conventions. Throughout, we use natural units, i = c = 1.

2.1 Chiral symmetry

We begin with spin-1 fermions. Let ¢ (x) be a spinor field satisfying
the Dirac equation'4

(ig—m)yp = 0.
The Dirac-adjoint field ¢ = "7 satisfies’5

.
P(—ig —m) = 0.
The Dirac matrices satisfy the anticommutation relation
(77"} = 21 (211

where g¥ is the Minkowski metric and 1 is the 4 x 4 identity ma-
trix. From now on, we will dispense with the blackboard bold font
for identity matrices unless it is crucial for clarity. These notes will
use the signature (4+, —, —, —) as is usual in particle physics. When
we need an explicit representation for the Dirac matrices, we will
usually use the chiral representation; written as 2 x 2 block matrices
of 2 x 2 matrices they are

01 - 0 o
0
7—(19, V—Qﬁ J (2.1.2)

with Pauli matrices o. This choice for 4° differs from the Bjorken-
Drell (or the nonrelativistic) and Dirac representations, but is useful
when concerned with chiral symmetry.

Now we will consider the Dirac equation in the massless limit,
m = 0. Despite the fact that in Nature, all fermions appear to have
mass — in fact a diverse range of masses — the massless limit is the
natural foundation (from the theorist’s perspective) from which to
construct the Standard Model. We will see this when we treat the
electroweak theory in depth.

Let us introduce 7°:

-1 0
5 _ i, 0.1,.2.3 _ .
Y =iy Ty (o +J, (2.1.3)

4 The slash indicates contraction of

a 4-vector with the Dirac y-matrices:
J= "o,

5 The arrow above d indicates that the
derivative acts to the left.



the last equality holds only in the chiral representation. It is useful
later to note here that

() =1, {v. 7"} = o.

Since 75 anticommutes with ¥, if ¢ solves the massless Dirac equa-
tion, then 7%y is also a solution:

=0 = J+p)=0.

It is useful to work with the linear combinations
1

P = 20— = ).
() = SO+ = Prp(x) (2.1.4)

where we have implicitly defined the operators Py z. These are
projection operators:

(PLr)?> = PLr, PLPR=0=PgP,, PL+Pr=1.

With the convention (2.1.3) the upper (lower) 2 components of 4-
component spinors contain the left-handed (right-handed) degrees-
of-freedom. Because 7° anticommutes with ~°

pr(x) = p(x)Pr, and Pr(x) = P(x)Pr.

The field ¢ g are eigenvectors of 7°, with eigenvalues F1, and are
said to have definite chirality — this is why the representation (2.1.2)
is called “chiral.” We shall give further justification to the terms
“left-” and “right-handed” in the next chapter.

WE CAN SEE THAT a massless Dirac fermion possesses a U(1), x
U(1)g chiral symmetry as follows. Writing ¢(x) = ¢ (x) + r(x)
and similarly for i(x) the Dirac Lagrangian £ = {(ig — m)y
becomes
L = Pridyr + Pridpr — m(PrYL + PLYr) - (2.1.5)
Performing global rotations independently for the two chiralities
Pr(x) = e (x), Pr(x) = Pr(x)e '
Pr(x) — e"*RyPp(x), Pr(x) — Pr(x)e 'R (2.1.6)

it is clear that the kinetic term is invariant while the mass term is
not. The mass term explicitly breaks the chiral symmetry down to a
single vector-like one: U(1); x U(1)g — U(1)y, corresponding to
(2.1.6) with a; = ap.

2.2 Gauge symmetry

If we “gauge” the symmetry (2.1.6)

pr(x) = ety (x), Pr(x) = Pr(x)e L)
Yr(x) > &%y (x), Pr(x) — Pr(x)e *x) (2.2.1)



then the kinetic term in the Lagrangian (2.1.5) is no longer invari-
ant. Dropping the L and R subscripts and thinking generally about
U(1) gauge transformations, another term is generated due to the
spatial dependence of the transformation parameter(s)

Pidy = 9idy — (Pr"y)(pua).
We need a gauge covariant derivative D, which acts on ¢ so that
Dyp(x) — exp(ia(x)) Dyp(x).
We obtain this by introducing gauge fields A; ), (x).

with the gauge fields transforming as
1
Au(x) = Au(x) — gaya.

Now iIp i is invariant under gauge transformations, and so is

L= 1I_J(ID - m)lP~16 1 Note that one can flip some signs in
these formulae by flipping the sign in

The gauge fields contribute a kinetic energy term to the La- E
the gauge transformation (¢ — —a).

grangian. This is given in terms of the field strength Other additional signs can differ due
to how the fields are introduced. See
FP‘V = aVAV — aVAM , the Introduction and

J C Roméo and ] P Silva. A resource
. . for signs and Feynman diagrams of

or equivalently by solving the Standard Model. Int. ]. Mod. Phys.,
A27:1230025, 2012. arXiv:1209.6213

[Dy,Dy] = igFu,

as .
ﬁgauge = - EF;WFHV-

QED has a U(1) gauge symmetry which treats left- and right-
handed components equivalently, so we set a; = ar above. For
a theory which only involved interactions between left-handed
particles, we would only need to introduce Aj. In fact, the weak
gauge bosons do only couple to the left-handed components of
particles; however, U(1) is not the appropriate local symmetry. The
weak interactions change one particle into another, predominantly
a specific partner. This is realized theoretically through an SU(2)
gauge symmetry.

THE INTRODUCTION OF nonabelian gauge fields proceeds along
similar lines to those above. The field transformations (2.2.1) are
generalized to introduce a transformation for each generator of
the gauge group. (In order to avoid cumbersome writing, let us
not specify whether the gauge group couples to one or both of the
chiral eigenstates.)

Pi(x) = exp(it"07(x))ipi(x) = Uipi(x),
Pi(x) — @(x)exp(—it“@“(x))ﬁ = 4_7]-(x)(ll+)jl- (2.2.2)
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where the t? are the Hermitian generators in an n-dimensional
representation R (i,j = 1,...,n) of a given gauge group whose
dimensionis D (a = 1,...,D). (For SU(N), D = (N? —1).) We
implicitly specialized to unitary groups and introduced U as an
element of the group. The generators form a Lie algebra, i.e.

[t7,87] = ifobese (2.2.3)

where £ are called structure constants and are normalized such

that
Tr(tt") = T(R)4&™. (2.2.4)
T(R) is the Dynkin index of the representation, e.g. is equal to 3
for generators in the fundamental representation (n = N)."7 In 17 See Peskin & Schroeder §15.4 for a
the Standard Model, the fermion fields belong to either the trivial more thorough introduction.

(n = 1) or fundamental representations of the 3 constituent gauge
groups.
In the nonabelian case the covariant derivative becomes

(Du)ij = 9ud;; + ig(f”Aﬁ)ij (2.2.5)

so that (D,9(x)); = (U(x)Dyp(x));. It is usual to drop the index i
which runs from 1 to n. Note that

AL — U AU + ;(ayu)u—l,
or, writing as an infinitesimal transformation,
SAL = Lo - foreoP AL
8
The nonabelian gauge-i Lagrangian is
L = §; (il — mé;) ¢j. (2.2.6)
Constructing the field strength from
[Dy, Dy] = igt"Fj, (2.2.7)
we find

Fi, = 9,A7 — 9, Al — gf " AL A (2.2.8)

The gauge-field-only term in the Lagrangian is then

1 1
Egauge = - ZF::VF‘I’PV = - ETI‘FMVFVV. (2.2.9)



2.3 Symmetry, a synopsis

Following Donoghue, Golowich & Holstein, §I-5'® let us enumerate
the possible ways symmetries may manifest themselves

1. The symmetry may be intact. For example, the gauge symme-
tries U(1)gp and SU(3)¢ are manifestly respected in QED and
QCD.

2. A symmetry of the Lagrangian may be broken by an anomaly.
We say the symmetry holds classically, but then is broken by
quantum effects. (More on anomalies later, perhaps.) In this case,
the symmetry is not a true symmetry of the theory. The global
axial symmetry suffers this fate in the Standard Model.

3. The symmetry may hold for some terms in the Lagrangian,
but not others. The symmetry is said to be broken explicitly. If
the symmetry-breaking terms are small, then the approximate
symmetry still is a leading-order picture which one can refine
perturbatively. Isospin symmetry relating # and d quarks is

explicitly broken by electromagnetic and quark mass effects, both

of which can be treated as small corrections for most purposes.

4. The Lagrangian may possess a certain symmetry, but the vac-
uum may not respect it. In this case we say the symmetry is
spontaneously broken. Actually, there are physical consequences
when a symmetry is spontaneously broken rather than explic-
itly broken, so really this is a case of a hidden symmetry. The
SU(2)r x U(1)y gauge symmetry is broken down to U(1)gy by
spontaneous symmetry breakdown. We shall study this in depth
shortly.

The Standard Model contains examples of all of these possibili-
ties, perhaps one of the most fascinating aspects of particle physics
as we understand it. Although much has been written about beauty
and symmetry, the ways in which symmetries are broken or hidden
are even more interesting.

11

T F Donoghue, E Golowich, and BR
Holstein. Dynamics of the Standard
Model. Cambridge University Press,
1992. Also 2nd edn. 2014






3 Discrete symmetries

The preceding chapter reviewed chiral symmetry and gauge theo-
ries. This puts us in a good frame of mind to begin discussing the
electroweak theory, which turns out to be a chiral gauge theory in-
volving only left-handed particles. This fact has consequences for
discrete symmetries. Unlike gauge theories which have vector-like
couplings to Dirac fermions, such as QED and QCD, chiral gauge
theories are not symmetric under the operations of parity-flip or
charge conjugation.

In fact it turns out that the combination of parity and charge
conjugation is also violated by the weak interactions. This CP viola-
tion is one important ingredient in the evolution of the cosmos. As
realized by Sakharov, CP violation, nonequilibrium thermodynam-
ics, and particle number violation are all necessary conditions for
generating more matter than antimatter in the universe. According
to the CPT theorem we will discuss later, CP violation implies a
violation of time reversal symmetry.

Before we can appreciate these statements, first we must inves-
tigate the consequences for theories which do respect the discrete
symmetries P, C, and T; that is, theories which would hold equally
well in our laboratories as well as in mirror-world laboratories, lab-
oratories made out of antimatter, and laboratories where time runs
backwards.

3.1 Symmetry operators

Before we investigate the behaviour of quantum fields under par-
ity, charge conjugation, and time reversal, we must introduce the
quantum operators corresponding to these transformations.

Parity and time-reversal are special cases of Lorentz transforma-
tions. Including rotations, boosts, and translations, a Poincaré (or
inhomogeneous Lorentz) transformation is a change of coordinate
frame:

= X = AF XY+ alt .

If det A = 1, the Lorentz transformation is said to be proper. Parity
and time-reversal are improper transformations, with A respec-

00 0
701 —01 8 ) and 7 = ( ) . (3.1.1)
0 0 -1

tively given by

o

OO
coo !
—_
oo~ O
oOROo O
OO O
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In order to introduce quantum operators, let ¥, ¥/ and ® be
generic vectors in some Hilbert space. Wigner showed that if
physics is invariant under a transformation ¥ +— ¥/, then there
is an operator W such that ¥/ = WY where (for a, § € C) either

(WO, WY) = (d,Y) W is unitary (3.1.2)
W(ad + BY) = aWP + BWY  and linear 34
or
(WO, WY) = (®,¥)* W is anti-unitary (3.1.3)
W(ad + BY) = a* W + B*WY  and anti-linear. 313

Let W now be the operator corresponding to a Poincaré transfor-
mation for a given rotation/boost A¥, and translation a¥,

Y ¥ =W(A,a)¥.

Note that the Poincaré transformation operators obey the following
composition rule which we will need shortly:

W(Az,a2)W (A1, a1) = W(A2A1, Aoay + a2) . (3.1.4)

We wish to consider the special operators for parity and time-
reversal. Let us denote these by

P=W(2,0) and T =W(7,0). (3.1.5)

Let us look at how these transformations combine with an infinites-
imal, proper Poincaré transformation

A.ul/ :(Syl/—f—w'ul// gt = et

with w#, and & small parameters. In this case we expand the cor-
responding quantum operator as'?

i )
Wl+w,e) =1+ Ewwﬂ‘” —igy Pl 4 ... (3.1.6)

where P* = H is the energy operator, i.e. the Hamiltonian; P =
(P!, P2, P3) is the linear momentum operator, generator of transla-
tions; T =(J =N ELN | 12) is the angular momentum operator, genera-
tor of rotations; and K = (JO1, 192, 193) generates Lorentz boosts. Let
us consider how the parity and time-reversal operators act on these
operators. Using the composition rule (3.1.4),

{ PW(A,a)

W(ZAP~, Pa)

—W(TAT, Ta) (31.7)

1571
TW(A,a)T!

Inserting (3.1.6) and equating the coefficients of —¢;, we find

piprp~t =i rpv
{ ! iZy (3.1.8)

TiPFT-1 =iZF PV
and focusing on the y = 0 component

PiHP 1 =iH
(3.1.9)

TiHT 1= —iH

S Weinberg. The Quantum Theory of
Fields, Volume I. Cambridge University
Press, 1995
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In §3.4 we will also want to look at the

. . 1
In order to understand the properties of the operators corre- coefficients of 3wy

sponding to parity and time-reversal, let ¥ be an energy eigenstate Tip T = i 7" P
with energy E: (¥,iHY) = iE. Assuming P and T are symmetries Tt =if
of our theory, then the energy of the transformed states PY and T7r-1=—J. (3.1.10)

T¥ should also be E. As we show below, this implies that P must

Thus we see that angular momentum
be linear and unitary, while T" must be anti-linear and anti-unitary. flips sign under T.

Treating as P as linear
(PY,iHPY) = (PY, PiHY) = (PY, PiEY) = iE(PY, PY¥) = iE.
For unitary p:
(PY,iHPY) = (PY, PiHY) = (¥,iHY) = iE.
For anti-linear T
(TY,iHTY) = —(TY¥, TiHY) = —(TY, TiEY) = —(iE)*(TY¥, TY) = iE.
For anti-unitary T:
(TY,iHTY) = —(TY, TiHY) = —(¥,iHY)* = iE.

Choosing otherwise would imply that parity or time-reversal
mapped positive energy states to negative energy states.

3.2 Parity

To say that physics is symmetric under parity transformations
implies that reflections do not change the laws of physics. We wish
to investigate the consequences of moving from our world to a
mirror world, mapping left to right, etc, as follows

s al = (20, -%) (3.2.1)

imposing the requirement that physical results are unchanged. First
we consider bosonic fields, then Dirac fermion fields.

Boson field

Let us consider the quantum scalar field ¢(x), which we can write
as a sum of plane waves (using relativistic normalization)

p(x) = ¥ [a(p)e ¥ + ct(p)en] . (32.2)
P

We have introduced a shorthand notation for the momentum inte-
grals

)3

d3p
- / (2r)3(2E;) (3-2:3)

The operator a'(p) creates a particle with momentum p and ¢ (p)
creates an antiparticle with momentum p. Given the parity transfor-
mation (3.2.1), which in momentum space is equivalent to

ppp= " -0,
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the unitary operator P should map the momentum eigenstate |p) =
at(p)|0) to |pp) = a’(pp)|0), up to a complex phase 7%, i.e.

Pa*(p)|0) = 4™ a*(pp)|0).
Using P~!P = 1 and assuming the uniqueness of the vacuum?® we = Plo) = |0)
find

Pat(p)P™" = "' (pp).

Similarly for antiparticle excitations

Pct(p)P~t =y (pp).

In order to conserve normalizations (of wavepackets for example)
P should be unitary and Pa(p)P~! = n%(pp). Applying the parity
transformation to the scalar field (3.2.2), we find

In the penultimate step we note that

Pp(x)Pt = Y [Pa(p)P~le=irx Pc+(p)15_1ei”'x}

P Yoalpp)e =} a(p)e >
- L . 7 ,
_ 2 U”a(Pp)e ipx 4 e C’r(PP) olP x] . . P
P - and in the final step we note that

pp-X=p-xpand

Yoa(p)e ¥ =Y a(p)e P

— _Ua Cl(p) efipp-x + UC* C'l'(p) eipp.x]

Pp 3

_ a —ip-x ok ip-x

- Z [77 a(p) e P+ /Y (P) e'? P} : because Zp is invariant under P
p

dpim =[5 dpi = [Z dpo).
Presently, ¢F(x) = Pg(x)P~! looks like a different field from ¢(xp).

This is not what we expect physically; in a P-symmetric theory, we

should not need different rules for how to combine particle and an-

tiparticle plane waves into a scalar field. Furthermore, inconsisten-

cies with Lorentz invariance: for general 7% and ¢, [¢(x), ¢™" ()]

does not vanish for spacelike x — y. These problems are solved if

n* =5 = np, hence

Po(x)P! = ypp(xp) = ¢F(x). (3.2.4)

The phase 7, is the intrinsic parity of ¢. If ¢ is a real field, then
c(p) =a(p). Then

* scalar
=t = e =np = Mp = £ { j; pseudoscalar.
In other words, the intrinsic parity of real (and therefore neutral)
fields has definite meaning. On the other hand, for a complex ¢(x)
which has a conserved charge Q (corresponding to a continuous
internal symmetry), using the fact that the corresponding operator
Q, the Hamiltonian H and P are all mutually commuting, we can
redefine P by multiplying by a phase, P’ = Pe~*Q, with & chosen
so that P> = 1. There’s no reason why we can’t take this new
operator to be the parity operator and this gives intrinsic parities of

+1. (Further discussion appears in Weinberg §2.2 and §3.3.%") 'S Weinberg. The Quantum Theory of
For vector fields Fields, Volume 1. Cambridge University
Press, 1995

VEx) = T [ (p)at (p)e P+ e (p) M (pet| 29)
pA



where SA’V( p) are polarization vectors (say, A = —1,0,1). In order
to consider how V# is transformed under P we perform the same
steps as with the scalar field. Additionally we need the relation
between polarization vectors when p +— p),

e (pp) = — 21t (p). (3-2.6)

This can be shown using Lorentz boosts. For example, one chooses
the polarization vectors in the particle’s rest frame in some basis,
such as

0 0 0
-1, _ 1 1 0, _ 1, _ 1
=5 (1), o0 =(8) do=%(!).

and boosts to a frame moving with respect to the particle with mo-
mentum p or pp, e.g. e (p) = L¥,(p)e*(0), with L(p) a standard
Lorentz boost. The conclusion one reaches is that

PVH(x)P~l = —5, 2F VY (xp) . (3-2.7)

With the conventions above polar vector fields have 7, = —1 while
axial vector fields have 17, = 1.
Dirac field

Recall the solution of the free Dirac equation can be expressed as a
combination of plane waves

p) = L[Emuwp)e v+ atp)o(p)er] .

ps

(3.2.8)

The operators bt (p) and d*(p) respectively create positive and

negative frequency particles.>* u°(p) and v°(p) are 4-component

spinors satisfying (# — m)u =0 and (¥ + m)v =0 and s = £3.
In the chiral representation (2.1.2) we can write,

w(p) = (V” ' "CS> (3.29)

VPoE

where ¢ = (1,0) and ¢ = (1,—7).23 The &° are 2-component
spinors; as a convenient basis we take &/2 = (1,0)T and ¢~1/% =
(0, 1)T. We can also at this stage deduce that

s _ \/p'UCS
U(P) - (_mgs)

for some 2-component spinors ¢°. We will find a relation between

(3.2.10)

¢* and ¢° when we discuss charge conjugation in § 3.3.

To see why we associate this property with a type of handedness
(left or right), we will make use of the total angular momentum
operator, the sum of orbital and spin angular momentum operators:

J=—i7xV + 8§ (3.2.11)

17

22 We will mostly use relativistically
normalized states |p) = bf(p)|0).
These are related to nonrelativistically
normalized states, |F), by |p) =

\/2E51P) = 2Eﬁb;\0>.

» You can check this by showing (3.2.9)

solves ( - p”0y> <u1> =0.Tt
puc?  —m U

may be useful to note that (p-o)(p -

7) = (p°)? = p'pldij = p* = m* (recall

dij = —gij)-

In order to deal with the square root
of a matrix like p - o, we should work
in its eigenvector basis. In this case

it amounts to rotating the spatial
coordinates so that the 3-momentum is
in the €3 direction. Then

VEEREEI e
(5.
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where
i 1({c" 0
S5i= *ez]k’Y]’Y 5 (O 0’i> (3.2.12)
is the spin operator and satisfies 7°S' = %’yofyi = SipP. If we

consider the massless spinor 1°(p) and multiply the Dirac equation
#u = 0 by 7/ p° we obtain

where § = p/|p|, and |p| = p° in this massless case. By inserting
(P, + Pr) = 1in front of the spinor, using 7°P g = FPp g and the
linear independence of u; and ug we conclude

(125 P)ui p(p) = 0. (3:2.13)

Note that the scalar product it = S - j = J - j is the projection of
angular momentum in the direction of the linear momentum, i.e.
the helicity.*4 Rewriting (3.2.13) one finds that u  are eigenvectors
of the helicity operator with eigenvalues F1:

1
huj g = 4:5”%,1{ :

Therefore we can think of the eigenvectors with positive helicity,
uRg, as obeying a right-hand rule for spin; correspondingly we call
ur, spinors left-handed. The annihilation part of the field ¢y g)
annihilates particle states with left-handed (right-handed) chirality,
which for massless particles corresponds to annihilating negative
(positive) helicity particle states. 2>

One can also show the Dirac adjoint field ¢; (g) is left-handed
(right-handed). Given

() = 1 [BH () (p)e™* + & (p)7 (p)e ]
p,s

we can apply the same steps as before. Looking at the antiparticle
spinor, we find

o (p)(Pr+ PL)(1+29°S ﬁ):o
% r(p)(1+27°S-p) =0
UL,R(P)(lizs‘ﬁ) =0

o1 x(P)h = F5012(p)

The annihilation part of {1 () annihilates antiparticle states with
left-handed (right-handed) chirality, which in the massless case
corresponds to annihilating negative (positive) helicity antiparticle
states.

2+ Above we used p? = ||, true only
for m = 0. Nevertheless the definition
of helicity is in terms of § even for

m > 0.

> The handedness indicated by the
helicity is not Lorentz invariant for
massive particles; one can always boost
to a frame where the momentum and
hence the helicity flips sign. However
for massless particles helicity and
chirality coincide.



HAVING ESTABLISHED the notations and conventions for Dirac
fields, we consider their behaviour under parity transformations.
The creation operators (and hence annihilation operators) should
transform as in the case of bosons: under parity a particle’s spa-
tial momentum switches directions; the spin component s is left
unchanged. For the moment, we assign a different phase to the 2
operators:

Py (p)P~! = b (pp)
Pat(p)P~t = 4™ d (pp). (3.2.14)

When we transform the Dirac field (3.2.8), we find

)P = Y [PU (p) P (p)e™P + P (p) P~10% (p)e]

I
B agi] agl

1 (pp ) (p)e P + 7@ (pp)o? (p)ei?|

10 (P (pp)e™ P20y d (p)* (pp)el? e

S

=

Finally we must determine the relationship between the spinors
as p — pp. Using Lorentz boosts, one finds

w(pp) = 7"’ (p) and ©°(pp) = —1"°(p). (3.2.15)

This can be verified as well in a particular basis such as the chiral
basis used in (3.2.9) and (3.2.10). 2% Requiring 4’ = —%* = p SO
that the transformed field takes the form of the original field, we
find

N

PP (x) = Py(x) P! = 1p7 "y (xp). (3-2.16)
Likewise
P (x) = PP(x) P~ = 1 (xp) 7. (3-2.17)

From (3.2.16) and (3.2.17) we can easily show

=)

YL ()P~ =17 yr(xp)
Pr(x) P =nppr(xp)7" .

=

(3.2.18)

Therefore, an interaction involving only left-handed fields will
transform to an interaction involving only right-handed fields and
vice-versa, e.g.

Ppr(x) pr(x) P71 = Pr(xp) Pr(xp) .

We can check that y” satisfies the Dirac equation, assuming
does:

(i — m)yp" (x) = 1,490 — i7 - V — m)y"p(xp)
= 1p(iv°90 + i7 - V — m)7 "y (x)
=1p7°(i7%0 — i - V — m)p(x)
=1p7° (19— m)yp(x) = 0.

* Note that p - = pp - 0.

19
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With (3.2.16) and (3.2.17), one can determine the transformation
properties of composite operators such as bilinears:

P(x)p(x) = P(xp)P(xp) scalar,
P(x)YyP(x) — —¢(xp)7’¢(xp) pseudoscalar,
P(x)y'p(x) —  P(xp)y°¢(xp) charge density,
P(x)y'P(x) — —P(xp)y'P(xp) current density.

Note the last two lines show ¢ transforms as a vector field as
discussed earlier in this section. Similarly $y#7°¢ transforms as an
axial-vector field.

3.3 Charge conjugation

We now investigate the behaviour of fields in theories which treat
particles and antiparticles on equal footing.

Boson field

Consider how the scalar field ¢ transforms under C. The corre-
sponding unitary operator C should transform a momentum eigen-
state of a particle to one of its antiparticle. Defining the phase ¢

such that?7 27 We could introduce different phases
for the 2 operators, but Lorentz invari-
-1 (p) ance requires the choice given here,
p similar to what we saw in the previous

¢ C(p) ¢l = e a(p) section.
we find
C|p, particle) = Ca®(p)|0) = y&c’(p)|0) = n&|p, antiparticle) .

In the decomposition of ¢(x) in terms of plane waves (3.2.2), a(p)
annihilates particles while ¢(p) annihilates antiparticles. Then

Co(x) ¢l = ’7c4’+(x)

Co'(x)C! = nEg(x). (3:3.1)

If ¢ = ¢ then the field has definite intrinsic charge-conjugation
parity: #c = £1. However, if ¢ is complex, then 7¢ is arbitrary. Say
nc = €*P, then we can perform a global U(1) rotation ¢ + ¢' =
e~ so that C¢'C~1 = (¢')*. That is, we can redefine a complex ¢
so that it has ¢ = 1.

For real fields 77 = £1 has physical significance. As we shall see,
the photon field A, (x) must obey

N

CA;{(X>CAil = _Au(x) (3-3-2)

in order for the interactions with Dirac fermions to be C-invariant.

As a consequence, a particle with 7c = +1 such as the 7° cannot

8 8 We know experimentally that the 7z

can decay to 2 photons, thus we can
infer that 7% = (—1)2.

decay to an odd number of photons.?



Dirac field

As with the scalar field, the particle and antiparticle operators are
swapped under C

Co*(p)C~! = ned®(p)
Cat(p)C™1 = b (p).

Operators on the left-hand sides of the above equations appear in
the field ¢, while those on the right-hand sides appear in .

We will see that the transposes of the Dirac matrices are neces-
sary ingredients in working out the charge conjugated Dirac field.
In conventional representations, 7% and 7?2 are symmetric while 7!
and 73 are anti-symmetric. Let us define a matrix C which gives
symmetric matrices when multiplied by any *

(v o) =9*C. (3-3:3)
One choice is
j 0
C=—ir"2 =" 3
iy ( 0 _io (3:3-4)

with the last equality holding in our -matrix basis. One can check
that C is anti-symmetric, real, and unitary:

C=-Cl=—ct=—c.
Thus the transposed y-matrix is given by

T = —Cc 1ytC. (3-3-5)

The 7*T form an equivalent Clifford algebra to the
{7y =28".

We also note
7T =C9C. (3:36)

Thus the charge conjugated field is

Cp()C = UCZ[dS(P) us(p) e P + b (p) v* (p) eiw} '
p,s

(3:3.7)
We can compare this to the transpose of the Dirac-adjoint field

P = D[ aT (et + d(p)oT(pe ] (638)
p.s

In fact for the spinors (3.2.9) and (3.2.10), taking * = ic?&* allows
us to write

v*(p) = Ci*'(p) and u*(p) = Co*T (p). (3:3-9)

Thus
P(x) = Cp(x)C1 = 5.CPT (x) (3.3.10)

21
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where we can think if ¢¢ as a particle transforming in the complex-
conjugated representation representation to ¥, or as an antiparticle.
Similar steps as those above lead to

(x) = CP()C = ey ()C = —ncyp’ ()CT (33.11)
Finally, we can see that C maps, for example, left-handed particles
to left-handed antiparticles

CyL(x)C" = 5cCPr(x) = i (x)
CPL(x)C = —neyr(x)C = i (x) . (33.12)
Let us explicitly check that ¢f (x) is left-handed as our notation
suggests. Given 72y r = F¢ r (and hence P ry° = £ r), then
Y’ Cr = Cv*"fr = C(Pr7°)" = —Cii .
Thus the y°-eigenvalue of ¢ (x) is that of a left-handed field.

We can show that °(x) satisfies the Dirac equation. Consider
the Dirac equation for ¢, times 7¢:

Hep(x)(~id —m) =0.
Take the transpose
ne(=i(y") oy —m)$! (x) = 0.

Insert C~!C between the Dirac operator and the field and left-
multiply the equation by C to find

(—iC(y")TC™ 0y —m)y(x) = 0.
Applying (3.3.5), we arrive at
(id —m)yp*(x) =0
as required.
Majorana fermions are ones where b°(p) = d°(p); that is, the
particle is its own antiparticle. In that case ¢° = . It is not yet

known whether the only neutral fermions in the Standard Model,
the neutrinos, are Majorana fermions.

LET Us CONSIDER THE behaviour of fermion bilinears under C. It
is convenient to work with anti-symmetrized operators, as this will
make the transformation properties manifest. For example let us
take the as the vector current (corresponding to Py* )

) 1, - 1 -

(x) = 5@y =TT = S ()0, ()] (3:3.13)
In the last step we label the spin indices explicitly. Then j* has well-
defined behaviour under C. Using (3.3.10) and (3.3.11) we find

Ay A 1 Ao A A A
Gjiret = E(W”)ij[cwic_lrc%c_l]
1 _
= —5(7*‘)1‘]‘[(1/]%71)1'/(ClPT)j]
= (T Chiel B

(Y k[, o] = —j".

N —
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(In the above argument, we drop the c-number arising from anti-
commuting ¢ and )

Recalling the transformation of the photon field (3.3.2), we see
that the interaction j#(x)A,(x) is C-invariant; it induces transitions
only between states of equal charge.

One can undertake a similar calculation to show that the axial-
vector current

" 1 _
o (x) = E(v”vs)ij[tﬁi(X),le(X)] (3.3.14)
behaves as
ESET = 45,

Therefore (foreshadowing) a linear combination of j* and j#°, such
as the left-handed current j*L = 1(j# — j#5) cannot couple to a
single field in a C-invariant way.

3.4 Time reversal

The third and final discrete symmetry we investigate here is time
reversal
e ol = (=20,%). (3-4-1)

In T-symmetric theories, the physics would be unchanged if the
flow of time were to run backwards.

Boson field
Given (3.2.2) and
Ta(p)T~" = yra(pr)
T (p)T~' = e’ (pr) (34-2)

we find

In the first step we used anti-linearity of T~! to write e*'P*T~1 =
T—1eFir* In the second step we swapped integration variable
p <+ pr and noted ipr - x = —ip - xT.

Dirac field

In addition to taking p — pr = (p° —7), we saw from (3.1.10)
that T will flip the sign of a particle’s angular momentum. Thus the
creation/annihilation operators for a particle/antiparticle with spin
s = :i:% can be taken to transform as

~

T (p) T = yr(=1)2 b (pr)

Tat (p) 1 = pr(—1)2*d (pr) . (3-4-4)
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One can show that the spinors satisfy

(—1)2 5w (pr) = —C 1% (p)
1
(=1)27%0 " (pr) = —C 710 (p). (3-4-5)
We can define
B = C_1 5 = 1 . 4.6
Y < 0 io? (3-4.6)

Ty 1™ :WT): 1 S[ (pr)u (p)e™ +d=* (pr)o* (p)e™ ]

1

=T Z )2 [ (p)u* (pr)e 71 + d”(p)v*s*(pT)eip-xT]

=17 C” 175111(3@) = nrBy(xr). (3-47)
Similarly
T§(x)T~ = y7p(xr) B~
Exercise: Using B~19%*B = 7 verify
the following:
BILINEARS: It is straightforward to check that ¢(x)y(x) — P(x7)p(xT) Ty ()T = 5y Bypr (x7)
under T. For other cases, first let us note TL(x) T = y7dr(xp)B!
B_l'yO*B — ,YO
Thus?9 » Insert T-1T between ¢ and y*
then complex conjugate " when
lp( ),Yylp( B~ ,yy* BlP(XT> commuting it with T.

= ¥(x1)
1/3 xT) 7 1/; (x7) charge density
P(x7)Y'¢(xr) charge current

To CONCLUDE THIS section, we look at how the S-matrix trans-
forms under T. The S-matrix governing scattering is

S="Texp (—i/::dtV(t)) (3-4-8)

- /d3x L(x)

is the potential energy term in the Hamiltonian and £; contains

where

the interaction terms of the Lagrangian. For example, in QED the
electron-photon interaction term is

Li(x) = —ep(x)7" Ap(x)(x).

We have already investigated the transformations of the La-
grange density under P, C, and T:

PLi(x)P~" = Li(xp), CLI(x)CT = Li(x), TLI(x)T! = Li(xr).



The consequent effects on V are straightforward to deduce
pvinpt=v(t), CvinCt=v(), TVv(T 1 =V(-t).
However, while the properties of S under P and C are clear
pspl=s, CsC ' =5,

more care is needed to examine S under T.
Let us expand the time-ordered exponential as

S=Y (i) / dtl/ dty - - /t" "t V)V (E) - V().

i’l

Then

A

Sp = TsT!
by
=) / dt1/ dty - - / "t V(—t])V(—ty) -+ V(~ty)
n —00
t1 —th1
= L [ [Cedn - [ i) vV ) -
n [ee]
= Z / drn/ dt,_1 - / Ao V(t)V(t,-1) --- V(1)
n
= i"/ d'rl/ - - /n at, V(t)V(ty—1) -+ - V(1)
s (34.9)
where we changed variables 7; = —f(,,,1)_; and changed the limits

of integration.3°

Before looking at S-matrix elements, let us introduce some no-
tation which will allow us to use Dirac’s bra-ket notation, which is
not normally suited to dealing with anti-linear, anti-unitary opera-
tors. Recall we need T to satisfy (3.1.3):

(To, T¥) = (&, TTT¥)* = (&, %)" = (¥, D). (3.4.10)

[The following notation was not used in lectures in 2019.] We also
need to introduce some way of distinguishing whether an operator
acts on the bra or on the ket (i.e. whether it belongs on the left-hand
or right-hand side of the inner product in the (-, -) notation); let’s
use a semi-colon. Let |¢) and |¢) be the kets corresponding to the
vectors @ and ¥, then the equation above reads

(PIT" Tly) = (PIT Tly)" = (plg)" = (ylg). (3.4.11)
(The absence of a semi-colon implies the operators act on the ket.)
Taking the Hermitian conjugate of (3.4.9), i.e. S = Sk, and in-
troducing the time-reversed partners of two states |77) and |{) such
that |r) = T|y) and |{1) = T|Z), we find

(n7lSlgr) = (nrlStler) = (| THTSTTITIE)
= (Is'g)* = (@ISl (3412)
We see that, given TL;(x)T~! = L£;(x7), S-matrix elements are
equal for time-reversed processes, where initial and final states are

swapped. Correspondingly, observables such as decay rates and
cross-sections are related.

V(n)

% As in the simple example

Jodx [ydyf(x,y)

25

= Jody [ dxf(x,y).
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3.5 CPT theorem

There is a theorem that says any Lorentz-invariant Lagrangian
density should be invariant under the product of P, C, and T.3* In
other words, there is no way to distinguish, for example, a particle
propagating forward in time from an antiparticle propagating back-
ward in time. Define the shorthand notation for the product of the
3 transformations

O =CPT. (3.5.1)
Then

OL ()07 = Li(—x)

This will have consequences on the creation and annihilation oper-
ators of momentum states, as we saw throughout this section. For
example, for Dirac fermions, the operators satisfy

1o
OF (p)O~" = (=1)27°d"*(p)ycnpir -

Only the relative phase between the transformation of fermions
and anti-fermions under C, P, and T is observable and so, without
loss of generality, we can take 7c = #p = 51 = +1 here. In the
case of Dirac fermions, CPT maps a left-handed, spin-up, forward-
propagating particle to a right-handed, spin-down, backward-
propagating antiparticle.

3.6 Applications

We close by remarking on the role of these discrete symmetries in
baryogenesis, the generation of a matter-antimatter asymmetry in
the universe. Sakarhov is credited with enumerating 3 necessary
conditions in order for such an imbalance to occur.

The first is baryon-number violation. There must be some pro-
cess between state X and state Y which yields a baryon excess (B):
X —Y+B3?

The second is nonequilibrium so that the transition is not un-
done. In equilibrium, one would expect Y + B — X would be as
likely as X — Y + B, ie.

I'(Y+B— X) = I'(X = Y+ B) in equilibrium (3.6.1)
whereas
I'(Y4+ B — X) « exp(—Mx/T) out of equilibrium. (3.6.2)

where T is temperature and My is the mass of the state X.

The first part of the third condition is C violation. If the universe
starts with equal numbers of X and X particles, then baryons are
produced at a rate

dB

— « [(X—=Y+B)-T(X—Y+B).

T (3.6.3)

3 R.E Streater and A.S. Wightman.
PCT, Spin and Statistics, and All That.
Addison-Wesley, 1989

32 This is the simplest possibility.
Actually it is possible that it is a lepton
asymmetry which is initially created,
in which case we describe the process
as leptogenesis. Then excess baryons
can be generated through B + L
violation, which although conserved
at the level of the SM Lagrangian, is
violated by nonperturbative effects
related to the chiral anomaly; B — L is
still conserved.



C symmetry would imply that the two decay widths should be
equal, hence C must be violated in baryogenesis.

The final part of the third condition is CP violation. For simplic-
ity, let’s assume that the B is composed of n quarks and that there is
no extra Y left over.33 C-violation implies

I'(X —nqr) #T(X — ngp) (3.6.4)
Under CP, g1, — gr So even with C violation, CP symmetry would
imply
T(X = nqr) +T(X = nqr) = T(X = nd) +T(X = ngr) (3.6.5)

which would preclude baryogenesis. Therefore, baryogenesis re-
quires CP violation.

Nonrelativistic quantum mechanics

[This section is not being lectured in 2019.]

Newtonian dynamics is T-invariant: if ¥(t) is a solution to mX =
F(¥) then so is ¥(—t). Care is needed if time or time-derivatives
appear in the equations of motion. T-invariance in the presence of
a Lorentz force mX = q(E(¥) 4 ¥ x B(X)) implies we must flip the
sign of the magnetic field: ¥()|5 a solution implies ¥(—t)|_z is a
solution. In general under T, E(t,¥) ~ E(—t,%) and B(t,X) —
—B(—t,%). I time flows backwards, magnetic north becomes south
and vice versa.

If we consider the Schrodinger equation

vZ
ig‘}'(t, X) = (— + V(J‘c’)) ¥ (t,X)

2m

we can see that the left-hand side gets an extra minus sign relative
to the right-hand side when ¢ > —t. Thus in order to have a time-
reversed field which satisfies the Schrodinger equation, we make
use of the complex conjugate

Y(t, %) — n YRt X) where ¥TR(t,X) =Y*(~t,%). (3.6.6)

(We use the superscript TR to avoid confusion with the transpose
operation.) Since two applications of T should return the original
wavefunction up to a phase, || = 1.

The difference between transformations like (3.6.6) compared to
those for P and C is that the time-reversal transformation is anti-
linear. If we let ¥/ = a'¥ then T transforms ¥’ as

a¥(t,X) — a*nT‘PTR(t, X).
Under T, the direction of momentum should be reversed
Tp) =1-p)
A general state can be written as a linear combination of momen-
tum eigenstates

) = L )5
p

27

3 The argument can be generalized,
but we are more interested in the main
point which is conveyed most simply
here.
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Thus,34 34 In the penultimate step we change
the sign of the summed momentum
TY) =Y ¥ () -5 = LY (-pIp) = [¥75). variable
p P

We must be careful using anti-linear operators with Dirac’s bra-
ket notation. Let us use a semi-colon to separate operators which
act to the left from those which act to the right. Decomposing an-
other state |®) into its momentum components, we find

(@TRYTR) = (@[T T|¥) = (@, TT¥)* = (¥[®).



4 Spontaneous symmetry breaking

In this chapter we present the main ideas behind symmetries which
are hidden. That is, symmetries respected by the Lagrangian, but
not manifest in physical observables.

Some of this material was presented in Symmetries, Fields and
Particles course last term, but the ideas are important enough to
present again.

4.1 Spontaneous breaking of a discrete symmetry

Consider a real scalar field ¢(x) with Lagrangian

L= Joupdhy — V(g). (411

Let us assume a potential which is symmetric in ¢; as a concrete
example let us take that corresponding to ¢*-theory

V() = %m2¢2 + %cp‘*; A>0.

The theory has a discrete symmetry: £ is invariant under ¢ — —¢.

In the usual case describing the physics of a massive scalar field,
m? > 0 and V(¢) has a minimum at ¢ = 0. For small A, we can de-
velop a perturbative expansion about the minimum of the potential.

If, on the other hand, we allow ourselves to consider what hap-
pens if m?> < 0, we see quite different behaviour. Let us complete
the square in V, defining v = v/—m? /A and dropping the unimpor-
tant constant

vig) = 5 (9 —)

With this “double-well” potential, now ¢ = 0 corresponds to an
unstable vacuum. Instead there are two degenerate minima of the
potential, ¢ = +v, and hence two degenerate vacua. We say that ¢
has acquired a nonzero vacuum expectation value (VEV). Without
loss of generality, let us study a theory of small excitations from the
vacuum where ¢ = v, writing ¢(x) = v + f(x).

1 1
L= S0ufo'f—A <02f2 +of3 + 4f4> :
From the quadratic term, we see f(x) is a scalar field represent-

ing massive excitations with mass-squared m? = 2Av?. This La-
grangian, describing the leading-order behaviour in a perturbative

Figure 4.1: Double well potential with
m? <0
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expansion, is not invariant under sign flip, f — —f. The symmetry
of the original Lagrangian is broken by the VEV of ¢.

The fact that the vacuum is not unique can lead to interesting
nonperturbative consequences, but we will not explore these here.

4.2 Spontaneous breaking of a continuous symmetry

Let us begin our generalization to the case of spontaneous breaking
of continuous symmetries with a simple example, that of an N-
component real scalar field ¢ = (¢, ...,¢n)". The Lagrangian is

1
L= Soup- "9 — V(p) (42.1)

with35 1 A

V(p) = Engbz + Z4;4,- A>0.
and is invariant under global O(N) transformations of the field.

We are primarily interested in the case m? < 0. We can replace
the potential (up to an irrelevant constant term) by
_ A2 N2 o2 m
V(p) = Z(qb —v) ;v ——7>0.

This potential is often called the sombrero, or Mexican hat, potential

even though it clearly bears a much closer resemblance to the bot-
tom of a wine bottle (Fig. 4.2, right). Now there are a continuum of

<

S
Jo

25 - | ““‘0"‘ 00’”&"0%

Ty

¥
NS,
% 2 Ll TR

vacua satisfying ¢? = v2.

Without loss of generality let us choose the vacua such that
¢$o = (0,0,...,0, o)T. Studying small fluctuations from this field
configuration, let us define shifted fields, the N — 1 component
7(x) and 1 component o (x) so that

my(x)
7o (x)
P(x) =

N-1(x)
v+ 0(x)

B = - ¢; ¢t = (¢7)%.

ST

(2 "

s :
LA R R SO
'w.%q“.\. :

Figure 4.2: Symmetric (m? > 0) and
spontaneously broken (m? < 0)
potentials.
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In terms of these, the Lagrangian is
18 o 18 el
L = ST + Fouodlo — V(m, o) (4.2.2)
with

V(m,o) = %mgaz + Ao(o? + 1o + %(02 + 72)2.
Note that the o field has a mass m, = V2A02, but the N — 1 7t fields
are massless. This makes sense intuitively from the wine-bottle
shape of the potential (Fig. 4.2): radial excitations come with a large
energy penalty, whereas excitations in the field which locally seek
to transform the field to another of the equivalent vacua can be
made to have arbitrarily small energy difference from the vacuum.

LET US GENERALIZE to a symmetry group G of the Lagrangian,

which is broken down to a subgroup H C G by the vacuum.3° 36 We will always be interested in the
That is, for a transformation ¢(x) — g¢(x) with g € G (in some C;;i,eg_lat H is a normal subgroup,
representation)

V(gp) =V(¢) V(g€ G).

Let us assume though that G is spontaneously broken and hence
the vacuum is not unique but is described by a manifold &y =

{¢o : V(¢o) = Vmin }, the collection of all field configurations which
minimize V. The invariant subgroup (or stability group) H C G is
such that

H = {h:h(])ozq)o}.

The different vacua in ® are related by group transformations37 37 In other words we assume that G
acts transitively on ®g. This is true in
the cases of physical interest, but one
can concoct counterexamples.

¢y = gpo for some g € G.

Then the stability groups for the different vacua are isomorphic:
the invariant subgroup for ¢y is H' ~ gHg !. In fact the group
elements which map one vacuum to another belong to the coset
space G/ H and fall into equivalence classes: we say g1 ~ &7 if
Jh € H such that g1 = g>h. Correspondingly ¢ = g1¢0 = 290
implies g, '¢1 € H, so with each ¢y € @) we can associate an
equivalence class. Thus we say

$y~G/H. (4.2.3)
Let us consider infinitesimal transformations
gp = ¢ + o¢p, with d¢ =in"t"¢p

wherea = 1,...,dimG, t* are the generators of the Lie algebra of
G (in the representation of ¢) and the a” are small parameters. G-
invariance of the theory implies V(¢ + d¢) = V(¢), or expanding
V(¢ + d¢) about d¢ =0

aV

e 0. (4-2.4)

V(¢ +69) = V(p) = ia"(t"9)
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neglecting contributions higher order in the a®. Herer = 1... N is
the index for components of ¢ in its representation of G.
Let ¢g be a minimum of V. Considering small departures from
this particular minimum, we have
2’V

V@) Vi) = 30 goge| (8

The matrix of second derivatives can be equated with a mass-

squared matrix M2, If we differentiate (4.2.4) and evaluate at ¢,

then we find3® 3 The second term in the product rule
b Y% vanishes because V(¢p) is a minimum
— l:(ta(j)),, :| =0 and so the first derivative vanishes
a(Ps a(Pr $o there.
2’V
I — = 0. 2.
( (PO)V a¢sa¢r 4 (4 5)

If the symmetry is unbroken and the vacuum is unique, i.e. g¢g =
¢o for all g € G, then d¢ = 0 and (+"¢pp) = 0 for all a. Otherwise, if
there are some ¢ € G such that there exists some a with (t*¢y) # 0,
then ¢ is an eigenvector of the mass-squared matrix with zero
eigenvalue: (t¢g), M2 = 0.

We wish to find out how many eigenvectors of M? have van-
ishing eigenvalue. Let us denote using a tilde the generators of G
which satisfy Figg = 0. These generate a subgroup H C G, and
hence there are dimH of them. If G is compact and semi-simple
(as it usually is in cases interesting to us) then we can define a
group-invariant scalar product and therefore define the notion of
orthogonality. Then we can choose a basis for the Lie algebra of G
to be

o (Ei, 0ﬁ>
with the generators 67 orthogonal to the F': Trf’§? = 0. Each vec-
tor (0%¢y) is then a unique zero eigenvector and implies there are
dimG — dimH massless modes, one for each broken generator 67.
These massless modes are called Goldstone bosons.39 Since M? is 3 or Nambu-Goldstone bosons.
N x N, we should generically expect N — (dimG — dimH ) massive
modes (though some of these may be massless for other reasons).

In the O(N) model we saw at the beginning of this subsection,
the nonzero VEV broke the symmetry O(N) — O(N — 1). Given
that there are N(N — 1) /2 generators of O(N) (corresponding to
the same number of planes of rotation) and (N — 1)(N —2)/2
generators of O(N — 1), we should expect N — 1 massless modes
— one for each broken generator. This is what we found: N — 1
massless 7t fields and 1 massive ¢ field.

We have just seen a classical proof of Goldstone’s theorem. We will
outline a fully quantum proof next.

Aside: some group theory relevant for Example Sheet 2

Suppose a Lagrangian written in terms of a complex N X N matrix
field M is invariant under global transformations of the form

M — AMB™ !,



where A € U(N) and B € U(N).

It might look like the symmetry is U(N) x U(N). However,
there should only be one identity (Ay, B;) in the group with M =
AIMBfl for arbitrary M. This is true for M = [ andso I = AIBfl
= A = Bj. Therefore,

MA; =AM VM.

Therefore, Schur’s Lemma implies that Aj o< [ and so A; = e for
real 0. These elements form a U(1) subgroup of U(N) x U(N) and
so the symmetry of the Lagrangian

U(N) x U(N)
u@

and this is a group because U(1) is a normal subgroup.

4.3 Goldstone’s theorem

In this section, we discuss spontaneous symmetry breaking at the
fully quantum level, not resorting to arguments based on small
departures from the minimum of the classical potential.

Let us assume that the symmetry group G of the Lagrangian is
broken spontaneously down to a subgroup H. That is, a scalar field
gets a nonzero vacuum expectation value 4°

(0l¢(x)|0) = ¢o # 0. (4.3.1)

The VEV is invariant under transformations in H: (0|h¢(x)|0) = ¢o
for h € H. However the VEV is not invariant under transformations
§ € Gwhere § ¢ H. Let us distinguish between generators of

the Lie algebra of G: t* where a € [1,dim GJ; and those of the Lie
algebra of H: F' where i € [1,dim H]. Now, if G is a symmetry
group of the Lagrangian, there are conserved currents j**(x) and
charges, Q7 = [d3xj"(x) = i [d®x 7t(x)taqp(x), associated with
each generator, where 71(x) = 0L£/0ddg7. These charges induce a
representation of the Lie algebra of G on ¢

[Q% ¢(0)] = #¢(0), (4-3-2)

where we have used [77(%,t), (¥, t)] = —i6®) (¥ — ¥').

In order to investigate excitations which result from the spon-
taneous breaking of the global symmetry, we consider the VEV
of the commutator of the conserved current with the scalar field
(0][j*™ (x),¢(0)]|0). It will be most instructive to use the Killén-
Lehmann spectral representation of the two-point function. First define
the spectral density functions as

ip™ (27) 25 (k = px)(0]j*(0)|n) (n[(0)|0)

ip™" (27) 25 (k = pn){0[9(0)[n) (n|j*(0)[0) . (4:3.3)
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4 Here we consider scalar field theory,
but in general ¢ could be a composite
local operator constructed out of a
different type of fundamental field, e.g.
¢(x) = P(x)P(x) in a gauge theory
with Dirac fermion field i(x).
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Between the operators j(x) and ¢(0), we insert a complete set of
states, }_, [n)(n| = 1, and use the translation operator to write
j(x) = e’ *j (0)e~ ¥, obtaining

4 . .
O (3, 9(010) = if 55 [o (e =g (R (43

One can check this by inserting the expressions for ip?* (k) and

ip"* (k) into the right hand side above and doing the integral over k.
The spectral density function can be further simplified. Lorentz

invariance implies proportionality with k¥, physical states imply

kO >0

P (k) = K'O(k")p" (k)
(k) = K'O(K)p" (k).

After substituting these into the integral (4.3.4) we can equate it to
the derivative of another integral

4 , .
O (), 9(0))10) = —0" [ 555 @) [p7 ()e + p7(1)e]

Recalling the propagator given by

[P iy
OO = [t e ™|
- 4 .
= [ 50607 ~ )70 = Dlz o)

(4-3-5)

where ¢ = (mass of field)?. We can replace p(k?) by [do p(0)d(k* —
o). We can write

(0| (x), p(0))|0) = —a* [dor [0"(0)D(x;0) + " (0) D(~x;0)] .

For spacelike x? (i.e. x? < 0) then D(x;0) = D(—x;0).4" Requiring # E.g. see §5.2 of Weinberg or §2.4 of
that (0][j**(x),¢(0)]|0)],2.o = 0 implies that we must have p(0) = Peskin & Schroeder
—p?(0). Thus

(1] (x), 9(0)][0) = —o" [ dop®()iA(x; ) (4-3:6)
where
iA(x;0) = D(x;0) — D(—x;0)

d*k j
:/W(S(kz —0) (k%) ekx (4-3.7)

with e(k?) = F1 for k% < 0. In obtaining the last line above, we
changed integration variable k# — —k* in D(—x;0).

Current conservation d,j* = 0 and the Klein-Gordan equation
(0> 4+0)A =0 imply that when we differentiate (4.3.6) we obtain

0 = /da op?(0)iA(x;0)
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The fact that this is true for all x (in particular timelike x where
A(x;0) # 0) implies
op’(0) = 0. (4-3-8)

There are 2 cases for the dim G spectral densities.

1. p?(0) = 0. This implies (0|[j*#(x), ¢(0)]|0) = 0, i.e. that t* is not
a broken generator.

2. p*(o) = N%(0), with N* a dimensionful nonzero constant.

It is the second case which is interesting here. Write
(0[[j""(x),¢(0)]|0) = —o¥ [ do N?4(c) iA(x;0) = —iN"9"A(x;0) .

To get an expression for the commutator of the charge Q" with
the field, we will want to integrate the equation above for y = 0.
First let us prove an useful identity, [d®x A(x,0) = —xp. Since
[dPxexp(ik- %) = (2)%6C)(k),

/d3xiA(x,0) = lim dkog((k0)270-)6(k0)e—ik0x0
. o—0

0 _ 0 .
— lim dko {5(1( \/E) + 5(k + \/E)} €(k0)€71k0x0
00 27 NG
— —i oxg __ i g Xp [ —
(ITILI'(I) —zf (e e ) ixg .

Thus we find (4.3.2) becomes

t'o = (0[[Q", ¢(0)]]0) = —iN" ./‘d3x80A(x;0) =iN".  (43.9)

The fact that N* # 0 and ¢ # 0 implies some of the states in the
sums (4.3.3) have non-vanishing matrix elements. Let us label those
states by B and their momentum by p. Dimensional analysis and
Lorentz covariance implies we can parametrize the matrix elements
of the current and field as

(01j"(0)|B(p)) = iFgp" (4-3-10)
(B(p)lgp(0)|0) = Z° (4.3.11)

where the F% are dimension-1 constants and Z? are dimensionless
constants. Note the states |B(p)) are spinless since ¢(0)|0) is rota-
tionally invariant and massless since p?(¢)d(c) only contributes for
oc=p?=0.

Inserting p?(0) = N%(0) into (4.3.3), where now the sum over
complete states is an integral over the momenta of the Goldstone
boson states |B(p))

iK' © (k) N"5 Z/ (k= p)(01j*(0)|B(p)) (B(p)|$(0)[0).

Simplifying the right-hand side and expressing the left-hand side as
an integral we find

3
P S@ (k) ikt NT = )(k — p)iph F”ZB
27| P 2\| Pir
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which implies
N* = Y FiZP.
B

Since there are dim H generators of H which are unbroken, there
are exactly n = dim G — dim H broken generators, and the same
number of densities p?(c) which have nonzero contributions at o =
0. Therefore (Fg) is a matrix of rank n and there are n Goldstone
bosons.

Nota bene, we assumed that we were working with a Lorentz
invariant theory in spacetime dimensions greater than 2. The count-
ing of the number of Goldstone modes is more subtle in nonrela-
tivistic theories. The Coleman-Merman-Wagner theorem trumps
the Goldstone theorem in 1 and 2 dimensional theories. Finally,
the proof of Goldstone’s theorem requires the space of states to
have positive definite norm, therefore gauge theories are exempt
as we should expect from the success of the Higgs mechanism and
electroweak theory.

4.4 Higgs mechanism

Or the Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-t
Hooft mechanism.4*

Gauge theories do not satisfy all of the axioms supposed in
Goldstone’s theorem; depending on the choice of gauge, one of
the axioms must be violated. Taking QED as an example, if we
quantize imposing a Lorentz invariant gauge condition, such as
Lorenz gauge,*3 then the theory contains negative-norm states. On
the other hand, one can quantize in a gauge, e.g. radiation gauge,
which yields a theory without negative-norm states, but at the ex-
pense of breaking Lorentz invariance.

Let us consider a theory of scalar electrodynamics, i.e. a complex
scalar field ¢(x) which interacts with a photon A, (x) and with
itself. The Lagrangian is

L = —%FVVFVV 4 (DV(P)*(DF(P) _ V((P*(P) (4.4.1)

where F,y = 9,A, —d,A, and D, = 9, +igA,.4 U(1) gauge
invariance implies the fields transform as

¢(x) = & Wp(x)

1
Ap(x) = Ap(x) - ga;t“(x)- (4-4.2)
Let us take for the scalar potential
V(g 9) = lgl" + Mg, withA >0 (443)

If 42 > 0 then the quadratic term is a usual mass term, the potential
has a unique minimum, the U(1) symmetry is preserved by the
vacuum, and the physics is that of a massless photon and a massive
complex scalar.

#F Close. The Infinity Puzzle. Oxford
University Press, 2011. ISBN 978-

0199593507

4 The Dutch Hendrik Antoon Lorentz
(1853-1928) and the Danish Ludvig
Lorenz (1829-1891) are different
people. Neither should be confused
with chaos pioneer Edward Norton
Lorenz (1917-2008, Lorenz attractor),
nor with economist Max Otto Lorenz,
(1880-1962, Lorenz curve).

#If we write ¢ = % (p1 + i¢pp), with
real ¢, ¢ we see the kinetic term here
has the canonical normalization.



Now consider the case that 4> < 0. The minima of the potential
(4-4.3) satisty

N

2
2 _ K _ T
or

Po = \%eigo/y, with v > 0and {p € R.

Without loss of generality, let us choose to expand about the vac-
uum with o = 0. Then the field can fluctuate in modulus and in

phase
B ei@(x)/v
) = —7— @+n(x)

Assuming small fluctuations about the VEV, we can expand the

exponential
1 .
~ —(v+7+1
¢ = 5 lotntic)
to obtain the Lagrangian

1
4
where the last term represents the contributions from terms involv-

1 1
L = E(auﬂayﬂ + 2u%n%) + angaﬂg -

ing more than two fields. We appear to have mass terms for the 7
and A fields, but none for the ¢, the would-be Goldstone bosons.
Note the unusual term A;0"{, however. We can rewrite the terms
containing A, and  as

2.2
qv 1 W Lou
2 (s + 20,0) (a0 + o).

Then, we can transform gauge, making a very specific choice of
gauge called unitary gauge. We can work with new fields which
differ from the original ones by a gauge transformation, i.e. (4.4.2)
with a(x) = —1¢(x):

1
i 1
¢ = e = \ﬁ(v+’7)~

We could have begun working in unitary gauge simply by perform-
ing a U(1) gauge transformation at the start which ensured the
fluctuations in ¢(x) remained real. The unitary gauge Lagrangian is
L = L£aad ¢ £int 5lys an irrelevant constant:45

Equad _ 1(8 o +2 2 2) . 11: FHv + ﬁA AH
= 5(@und"n + 2p°n%) = 7 Fu > A

The photon now has a mass, m% = q*v?. There is a massive scalar4®
m% = —2u? = 2Av?. The Goldstone mode { has been “eaten” to
become the longitudinal polarization of the A,,.

The interacting part of the Lagrangian, in unitary gauge is

int 7 7] n Ay A3
L :3A},A77 +quAﬂA17—117 =m0

37

202

FuF" + qoAd'e + TEAAN + Liw (449)

45 Now dropping the primes from the
Ay field.

4 the Higgs boson for this theory
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4.5 Nonabelian theories

In the next chapter we come to the full electroweak theory, which
employs the Higgs mechanism to break SU(2);, x U(1)y down to
U(1)gym in order to give mass to the weak gauge bosons. In the
examples sheets you will consider other gauge theories, e.g. where
SU(2) is broken to U(1).

Usually the symmetry breaking follows a similar pattern to that
seen in § 4.2: the potential V is minimized when some components
of the scalar field ¢ are nonzero. This breaks a symmetry G of the
Lagrangian. The difference is that G is a gauge symmetry, so that ¢
is coupled to a gauge field through the covariant derivative

Dup = (9u +igt'A})¢.

The steps of § 4.4 are repeated, taking care with the noncommuting
generators 7.

In the examples sheet you consider not only the case where
the scalar field transforms in the fundamental (2-dimensional)
representation of SU(2) (where t* = ¢7/2), but also where ¢ is in
the adjoint (3-dimensional) representation. A convenient explicit
matrix representation of the generators in this latter case is given by

(t")jk = —ieqjk -



5  Electroweak theory

The electroweak theory is attributed primarily to Steven Wein-
berg and Abdus Salam with important work earlier by Sheldon
Glashow. The goal here is to construct a gauge theory for the weak
interactions of Nature utilizing the Higgs mechanism to give the
weak gauge bosons mass. Throughout this chapter we will make

a number of choices in order to construct a theory which is capable
of describing experimental data. One could write down consistent
field theories making different choices, but then these would likely
give predictions which contradict existing measurements.

5.1 Gauge theory

We work with a gauge symmetry that is the direct product SU(2) x

U(1).47 This gauge symmetry will be broken by the Higgs mech- 47 We probably should not say that we

have a unified theory of electroweak in-
. teractions, since we have to introduce 2
massive. gauge couplings. It is at most a unified

Introduce a complex scalar field (the Higgs field) in the doublet framework.
(fundamental) representation of SU(2) with a U(1) (hyper)charge
Y = 1. Under SU(2) x U(1) gauge transformations

anism in order to explain how the weak gauge bosons become

P(x) — ei“”(x)Tgeiﬁ(x)/zrp(x) (5.1.1)

with the SU(2) generators T = % In the unbroken theory, we
would have 3 + 1 massless gauge bosons. Let the scalar acquire a
VEYV, without loss of generality choose

This VEV breaks the SU(2); x U(1)y symmetry down to only a
U(1)gpm: the theory is still invariant under (5.1.1) with ! = a? = 0
and a3(x) = B(x).

The covariant derivative for the electroweak theory is

Dup = (ay + igWit" + %g’By)gb (5.1.2)

The W}, are the three SU(2) gauge bosons and B, is the U(1)y
gauge boson. The part of the electroweak Lagrangian concerned
solely with the gauge and scalar fields is then

1 1
Egauge,(p = *ETrFvaFW’HV - iF]/E[}vFB’VV + (DH¢)+(DH¢) - V2|¢|2 - /\|¢‘4

(5.1.3)
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where the SU(2) and U(1) field strength tensors are4® # Using f"¢ = e"* in the fundamental
representation of SU(2).

E = 9, Wi — 9, Wj; — ge™ WI W,
F7, = 9uBy, — 9By

Spontaneous symmetry breaking is assumed to occur, letting y? =
—Av? < 0.

As in § 4.4, the Higgs VEV generates mass. From the term in the
Lagrangian (D, ¢)"(D¥¢) we have

1 , i ) i 0
E(O,U) <—ngﬁ “— 2g’By) (ng””T” + 2g’B”> <0>

1w

= o7 [E WD+ W22 4 (—gW +¢'BY|  (5.4)

This term in the Lagrangian evidently generates 3 mass terms. Let
us define 4 new gauge boson fields in terms of the linear combina-
tions which appear above (as well as one which doesn’t). Let

Wi = \}E (w; T iwﬁ)
%= e ()
Ay = SN — (8/W;3¢ + 8Bz4> (5-1.5)

Then (5.1.4) endows these fields with with masses my = vg/2 and
mz = v+/g%+ ¢’2/2. Corresponding to the Ay field, we have the
massless photon m, = 0 of electromagnetism.

The mixing of the SU(2) and U(1) gauge bosons is governed by
the weak mixing angle, or the Weinberg angle, 8y defined by

Z0 cos 0 —sinf w3
= W (5.1.6)
A sinfy  cosfOy B

/

and
8

3 8

In terms of the Weinberg angle, myy = mz cos Oy.

cos OBy = sin By =

The Higgs boson gets a mass my = v2Av2 = /—2p2 asin

§ 4.4.4° 4 Experimentally, my = 80.379(12)
GeV and my = 91.1876(21) GeV,
my, < 10718 eV and my = 125.18(16)

. GeV.

5.2 COMPng to matter M. Tanabashi et al. Review of Particle
Physics. Phys. Rev., Dg8(3):030001,

Now we discuss how fermions participate in electroweak inter- 2018. URL http://pdg. 1bL.gov/

actions. We explicitly deal with lepton interactions in this section

although the general steps are the same for quarks. However, addi-

tional ingredients are necessary in the latter case, so we defer some

of those details to § 5.3.


http://pdg.lbl.gov/
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In terms of the physical gauge bosons in the spontaneously broken theory the covariant derivative may
be written

L gy —— igZy 2 3 2 I 3
9y + NG (W}, T +W, T ) + cos by (cos OwT> — sin QWY) + igsinfw A, (T° +Y)

where T* are generators in the appropriate representation and T+ = T' +iT2. We identify A, as the
photon, so to identify the physical couplings to fermions, e.g. the electron, we write

Q=T3+Y isthe U(1)gy charge matrix

e = gsinfy is the electron charge (magnitude). (5.2.1)
Therefore ‘ o7
_ 18 +t — 8y (r3 _ 2 ;
Dy = 2+ (wy TH 4+ W, T ) ot (T  sin GWQ> + ieA,Q (5.2.2)

In the Standard Model, the left-handed components of leptons
and quarks transform in the fundamental representation of SU(2);.
The corresponding generators are related to the Pauli matrices
T" = 1" = ¢%/2. Let us introduce a doublet to describe the left-
handed electron and electron neutrino

L(x) = (Ve(x)> (5.2.3)

where e, (x) = 3(1 — 7°)e(x). Guided by experiment, we do not

couple the right-handed components of the electrons to the weak

bosons. This means that R(x) = egr(x) transforms trivially under

SU(2), or that it transforms in the trivial representation where the

generator is T = 0. At this stage in the discussion we as-

sume that the neutrinos are massless

. and strictly left-handed. This assump-

the neutrinos are neutral: tion was consistent with experimental
results until 1998-2001 when neutrino

0 O oscillations were conclusively ob-
QL(X) = (0 -1 L(x) and QR(X) = _R(x) served. We will return to a discussion

of how to amend the Standard Model

We know that the electron has a negative electric charge and that

to account for neutrino oscillations

From this we can infer the hypercharges from Q = T3 +Y as later, but for most purposes we can
still treat the neutrinos as massless in
Q= 3 +Y S0 Y = _% for L(x) this course.

Q=0+Y so Y=-1 for R(x)

With these assignments, we can use (5.2.2) to write the lepton-
gauge boson part of the electroweak Lagrangian as

cg;’t = LipL + RiDR. (5.2.4)

A lepton mass, m,(érer + eger), cannot appear in £ in an
SU(2)r x U(1)y-invariant way (it explicitly breaks gauge invari-
ance). Instead the Higgs mechanism gives the charged leptons
mass. The interaction between leptons and the Higgs doublet ¢
with Y = % is,

Elept,qb = - \fZ/\e(igbR + R¢+L)
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Given that the symmetry is broken, we can expand about ¢,

1 0

X) = —&—=
$ () V2 (v + h(x))

where we have implicitly imposed the unitary gauge condition.>®

This gives,

Liepty = —Ae(v+h)(erer +ereL) = —meee—Achée  (5.2.5)

where the electron mass is m, = A,v and A, is the Yukawa cou-
pling.>*

Writing out the covariant derivative (5.2.2), we get the gauge
interactions of the leptons

. 1
ﬁiglgt gL'y”T”W“L -4 (L’YVL R’Y”R> BH

=" Zy.
(5.2.6)

We have introduced the charged weak current, the neutral weak

UTAT+ y‘r _LTH
(IW +] ) eJemAu — 2cos€

Z\f

current, and the electromagnetic current:

Jt = 2Lyt L = 74" (1—)e

h Ly (cos2 B> + sin? GW) L + 2sin® 8y Ry*R
1
=5 [m”(l — ) — ey (1— 9" —4sin® By e

1 S _
= Emﬂ(w”—l)L — Ry*R = —é&yle (5.2.7)

WE CAN INCLUDE MORE generations of leptons. In the Standard
Model, the electron has 2 heavy cousins, the y and the .

L1 = Ve 12 — Vu I3 = Vr
¢ L # L T L -
RlZ(?R RZI]/lR RSITR

Then the coupling of the leptons to the Higgs field is via
Liepry = — V2 (VTR + (ANIRGH) . (5.2.8)

The matrix A may be diagonalized as follows. AAT is a Hermitian
matrix and so there exists a unitary matrix K such that

AT = KAZKT,

where A? is a diagonal matrix with non-negative eigenvalues.5?
Now choose S = ATKA~L. From this it follows that S is unitary and
diagonalises the Hermitian matrix ATA (i.e. ATA = SA2ST) and that
A = KAS*.

We can transform the lepton fields

Lie KL, Lies U(K-[-)jil Rl SR/, R Rj(s+)fi

5> We could have chosen ¢(x) =
U(x)(0,0+ h(x))T/v/2 for U(x) €
SU(2). Then the transformation to
unitary gauge is the one which exactly
cancels out the U(x).

5' In tribute to Hideki Yukawa'’s the-
ory of nucleons interacting with a
(pseudo)scalar pion, we refer to any
local coupling of fermions to a scalar
field as a Yukawa interaction.

5 Let v be a normalized eigenvector
of AAY with eigenvalue a. Thus 0 <
IAT9))? = vt AAtY = a.
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lept
of (5.2.4)) invariant. The fact that we can perform this simulta-

which diagonalizes Lyept» while leaving £:7 (the generalization
neous diagonalization means that the freely propagating leptons
(sometimes called mass eigenstates) are also eigenstates of the weak
Hamiltonian which we will define next chapter.

5.3 Quark flavour

As far as we know, there are 6 quarks in Nature, each its own
“flavour.”>3 The weak interactions couple them in pairs through
SU(2);, doublets

o= (), ((),0).-6))

Each SU(2), doublet is assigned hypercharge Y = % in order that
we get the correct electric charges after the symmetry is broken. We
also have right-handed SU(2), singlets u% = (ug,cg, tr) and d% =
(dRr,sr, br) with hypercharges % and —% respectively. The quarks
couple to the SU(2) x U(1) gauge bosons via the Lagrangian

ﬁﬁﬁgrk = QuiPQr + driDug + drilDdg. (5.3.1)
The quark-Higgs couplings take the general form
Equark,qy = 7\6 [/\ld]Qngbd]R + /\Zea'BQDLC,igbﬂsu]R + h‘C':| (5’3-2)

where i,j = 1,2,3 are generation indices and &, § = 1,2 are SU(2)
representation indices. In order to have a hypercharge-neutral term
in the Lagrangian coupling Q; and ug, we need ¢’ instead of ¢.
Given Q transforms in the fundamental representation of SU(2),
Qr transforms in the antifundamental representation obtained by
complex-conjugating the generators of the group in the fundamen-
tal representation. In order to have an invariant Lagrangian, the Q.
must be multiplied by a field which transforms in the fundamental
representation. We can achieve this with e*f¢tf = (¢°)%, a field
which transforms in the fundamental representation.>*

Note that while [Zgw does not respect C and P invariance, the

uark
EW
quark”

are invariant under each of C, P, and T. Lgyark ¢ is CP invariant if

product CP as well as T are symmetries of £ Lgauge and Ly
and only if ) )
)\Zq] = ()\;])* withg=u,d,
that is, if and only if the matrix elements Alq] are real.
We expect Lgyark,¢ to contain mass terms for the quarks when we
expand about the Higgs VEV. We find these by diagonalizing the
Yukawa matrices A, and Ay:

A = KuAuSY , Ay = KgA4Sh

with K, S € U(3) and Ay, A diagonal. We transform the quark
fields as

up — Kyup , dp— Kygdp , ug v~ Syug , dr+— Sgdr  (5.3.3)
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53 Model builders often investigate the
consequences of adding another pair
of quarks to the Standard Model. So
far, while this addition can sometimes
explain some things, specific models
have so far run into conflict with
experimental data. Nevertheless,
both theorists and experimentalists
actively keep in mind the possibility
of a “fourth generation” of quarks and
leptons. (The number of quark and
lepton doublets should be equal in
order to be free of a gauge anomaly.)

5+ The representations of SU(2) are
pseudoreal. “Pseudoreal” means 3V
such that —(T%)* = V~IT?V; in fact
VB = (ig?)* = e*f does the job for
the 7.
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and the Dirac adjoint fields with the corresponding Hermitian
adjoint matrices. Then we have, for example, recalling that ¢ =
\% (0,0 + h(x))T in unitary gauge,

A Qrpdy — QLPKIKiA4SiSadr = QrpAgdr -

The terms in Lgyark ¢ are diagonal in quark generation. Setting the
Higgs field to its VEV ¢y = % (0,9)T we obtain mass terms for the
quarks>>

P=py = —vAZ{d_ialéQ — vAZ‘ﬁiu]I'{ + h.c.

=) (mfid_i oA mb il + h.c.) :
i

Equark,(p
(5:3-4)

In this basis the mass and Higgs coupling terms in the Standard
Model are C, P, and T invariant.

The transformation (5.3.3) has not left the rest of the Lagrangian
(5.3.1) alone. The latter 2 terms @igilDug and dgilDdg are invariant,
but QrilPQy is not. Specifically the interaction terms involving
quarks coupling to W+, the charged currents J* which appear in
the Lagrangian as — z%ﬂ‘iWﬁE are transformed

YR = gty e oy (KK )

Writing the Lagrangian in terms of fields which have diagonal
mass terms exposes inter-generational couplings between weak
doublets. Thinking in terms of corresponding terms in the quantum
mechanical Hamiltonian, we say the weak eigenstates are linear
combinations of the mass eigenstates.

The mixing matrix is called the Cabibbo-Kobyashi-Maskawa
matrix5® Conventionally it is written

Vud Vus Vuh
KKy = Vexm = [V Vs Vi (5-3-5)
Via Vis Vi

The matrix is not determined by the Standard Model. Its matrix
elements must be determined experimentally.

Not EvERY CKM MATRIX ELEMENT is independent. Vg is uni-
tary, which imposes relations between matrix elements. Further-
more, we can use global phase-invariance of the quark fields to
eliminate seemingly free parameters. We examine two cases here,
those for 2 and 3 generations of quarks.

In the 2 generation case, unitarity alone implies V has 4 free
parameters which can be express as an angle and 3 phases

vV — cos B, e sin 6, ¢'P
— \ —sin6. @7 cos@,eiBtT) | -
Terms in the Lagrangian are invariant under global U(1) transfor-
mations of any quark field, say q; where q' € {u,d,s,c}:

qr ei"‘iqiL (no sum on 7). (5.3.6)

55 Note the quark masses, or equiva-
lently the Yukawa couplings, are not
determined by the Standard Model;
they are free parameters which must
be inferred empirically. The disparate
range of quark masses is something
of a mystery: the up, down, strange,
charm, bottom, and top quark masses
are respectively approximately 0.002,
0.005, 0.1, 1, 4, 170 GeV (precise values
first require specifying a regularization
scheme and renormalization scale).

5¢ Cabibbo first described this mixing
for 2 generations. Kobyashi and
Maskawa generalized to 3 generations
before either the b or t quark were
discovered.
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By transforming one field relative to the others we can eliminate a
phase in V. Since we have 4 fields, we can perform 3 such transfor-
mations to eliminate «, 3, and *.

cos sin 6
V = ( ‘ C) (53.7)

—sinf. cos6;

where we call 6, the Cabibbo angle.>” The charged weak current is 57 From experiment we infer that
then sin 6, ~ 0.22.

%]V'J“ = cos O.iipyHdy, + sin 0 i1 y#sp — sinO.cpy'dy + cos 0.c1v st .

The same arguments apply in the 3-generation case we see in
Nature, with one important difference. A 3 x 3 unitary matrix has
9 independent parameters; these can be written as 3 angles and 6
phases. However, we only have 6 quark fields which we can trans-
form as in (5.3.6), only 5 phases can be eliminated (corresponding
to the 5 phase differences). Therefore, the CKM matrix in the Stan-
dard Model has 4 free parameters, which can be written as 3 angles
and 1 phase.

It is usual to follow Wolfenstein and make the following parametriza-
tion instead of using angles. Making the empirical observation that

A=V, ~sinb, =~ 0.22 < 1 one can expand Experimental (and theoretical) preci-
sion is good enough that in practice

1— )\72 A AN3 ( o— i’7) the next order ter{ns are_includeq and

new parameters, g and 7, are defined

Vekm = —A 1— A2 AA? + ... (538) which include some of these. Present
AN3 1—p—in) —A 22 1 values for the 4 free parameters are

A = 0.22506(50), A = 0.811(26),

Although not exact, this parametrization exposes the interesting p = 01247515, and ) = 0.356(11).
hierarchy observed for the mixing of mass and weak eigenstates.
The fact that Vg has a phase means that the Yukawa matri-
ces A cannot be real. Therefore the Standard Model Lagrangian

violates CP.

5.4 Neutrino oscillations and mass

The flavour mixing described above for quarks is actually also
relevant for the lepton sector because neutrino oscillations were dis-
covered at the start of the millennium. Solar neutrino experiments
observed fewer-than-expected electron neutrinos emitted from the
sun. Experiments detecting muon neutrinos produced in collisions
of cosmic rays in the Earth’s atmosphere measured a deficit of neu-
trinos coming through the Earth upward vs. coming downward
from the sky; even accounting for interactions with matter it was
shown that muon neutrinos were oscillating to another flavour. Fur-
ther evidence has been provided by detectors observing a deficit
of electron anti-neutrinos from nuclear reactors and accelerator ex-
periments seeing evidence for muon neutrino disappearance and
electron and tau neutrino appearance due to oscillations.

Neutrino oscillations imply that the mass eigenstates and weak
eigenstates are not equivalent for neutrinos. The mixing matrix is
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attributed to Pontecorvo, Maki, Nakagawa and Sakata. Defining it
as the transformation matrix acting on mass eigenstates vy, 12,13
to give the flavour eigenstates v,, v}, vz, U can be parametrized in
terms of 3 angles and up to 3 phases.

—is
C12€13 512€13 size”"
_ s i6
U = | —s12023 — €12523513€"°  C12C23 — S12823513¢€" $23€13
s i
$12823 — €12€23813€"°  —C12523 — $12€23513€"°  €23C13
x diag (1, evn/2, e""31/2) (5.4.1)

where c¢;; = cos6;; and s;; = sin6;;, for the 3 angles 615, 623, and 6y3.
If the phase associated with ¢ is complex, then there is CP violation
in the neutrino sector, as in the quark sector. The phases due to ay;
and a3 arise only in the case that neutrinos are Majorana fermions
(see below), because in this case we cannot perform as many of the
phase transformations (5.3.6) as we did for quarks (which are Dirac
fermions). The 3 angles have been measured to be approximately
012 = 33° (solar neutrinos), 63 ~ 45° (atmospheric neutrinos) and
013 ~ 8° (reactor neutrinos), and the phase is 6/7 ~ 1.4 (= 0.8 to
2.0 at 20). Experiment therefore disfavours CP conservation in the
lepton sector at around the 20 level — one current goal is to increase
the significance of this result and better constrain the CP violating
phase. Searches are also underway for lepton flavour violating
decays at the LHC.

As alluded to above, there is more than one way to introduce
neutrino mass into the Standard Model. The first possibility is that
neutrinos are Dirac fermions like the charged leptons and quarks.
In this case there must be a right-handed SU(2), singlet for each
lepton generation

N' = vk = (Ver, Vur, V1R) -

and the lepton-Higgs terms in the Standard Model Lagrangian
(5.2.8) gets modified to become

Liepy = —V2 (Affif¢Rf + AULgENT + h.c.) . (5.4.2)

where (¢°)* = e*f¢tP. Then we proceed by diagonalizing these
terms to obtain the mass eigenstates, yielding a mixing matrix with
3 angles and 1 phase - the 6;; and ¢ in (5.4.1). The neutrinos get
mass terms
Ly, p = =) m, (Vv + 7 VR) (5.4.3)
1
just like the charged leptons and quarks.

Since the neutrinos are electrically neutral particles, another
possibility exists: they could be Majorana fermions. These are spin
% fields which are their own antiparticle. The operator annihilating
an antiparticle is identically equal to the operator annihilating a
particle d°(p) = b°(p), so the quantum field is written

V) = X [P (e P et e (et Gaa)
p,s



(compare to (3.2.8)). We can show that in this case

vé(x) = Cr' (x) = C(CMv(x)) = v(x) (5.4.5)

using (3.3.10) and (5.4.4) and letting the intrinsic C-parity be 1.
Then the right-handed neutrino field vg(x) = Prv(x) is not an
independent field; it is the charge-conjugate of the left-handed field

v (x) = v (x) = Co] (). (5.46)

Therefore Majorana mass terms look like
1 S
Loy = =53 m (v + v, (5.4.7)
i

The factor of 1 is introduced implicitly to avoid double-counting
since v;, and v} are not independent.

Just like the analogous charged lepton mass term, (5.4.7) explic-
itly breaks SU(2);. We must find SU(2); x U(1)y invariant terms
which will generate (5.4.7) when the Higgs field ¢ acquires a non-
trivial VEV. It turns out that the simplest term (the term with lowest
mass-dimension) is

ijo o
Lopm = — 32 (LTHC@ L) +he (5.4.8)

where ¢* = e*P¢P transforms in the antifundamental representation
of SU(2) and has hypercharge Y = 1/2. This dimension-5 operator
is nonrenormalizable. However, as we will discuss in § 8.1 this is
fine as long as we think of the Standard Model as an effective field
theory describing physics at scales well below the scale of some
“new physics.”

5.5 Summary of electroweak theory

To summarize our discussion of electroweak theory, we recap the
various pieces of L:

* Lgauge,p — masses for the W, Z and Higgs boson via the Higgs
mechanism along with W, Z-Higgs and Higgs-Higgs interac-
tions.

® Liepty — lepton masses and lepton-Higgs interactions.
° EEW

lept
The PMNS matrix gives neutrino mixing and CP-violation

— lepton interactions with the EW gauge bosons (W¥, Z, 7).

(though the CP violating phase is currently not well determined
by experiment).

* Lguark,y — quark masses and quark-Higgs interactions.

° EEW

quark
The CKM matrix gives quark flavour mixing and CP-violation.

— quark interactions with the EW gauge bosons (W™, Z, ).
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6 Weak decays

In this chapter we investigate several processes which occur due

to the weak interactions. Since the energies and momenta involved
here are much smaller in magnitude than the masses of the Z and
W bosons,58 we do not need to use the full electroweak theory. To a
high level of precision we can use the Fermi weak Lagrangian. This
is the first time we will see the utility of effective field theory, which
we will address more systematically later in the course.

6.1 Effective Lagrangian

Recall the weak part of the Lagrangian (5.2.6) is

—_ & (W) - & m
Lw 22 (I W +1] WV) ZCOSGW]"ZV'

The interaction Hamiltonian H;(t) or V(t) is equal to — [d®xLyy.
Thus the S-matrix describing scattering of in-states |i) to out-states
|f) is given by the time-ordered exponential

S="Texp [i/d4x Ew(x)] .

For small g we can expand the exponential in a Taylor series. As-
suming we do not have a W or Z in either the initial or final state
then we find

2
sl = (IT{1 = [ataate| 1 @Dl (x - 2)7()

1 ¢ INTV (o] .
cos? Oy y(x)DﬁV(x —x) [ (x )} + 0(84)} i) (6.1.1)

having used Wick’s theorem and the following contractions to give
the W and Z propagators (Feynman propagators), Dm(x —x') =
(TW, (x)W,f (x')) and Df, (x — ') = (T Zu(x) Zu (x')).

Let us derive an expression for the Z propagator. Focus on the
free part of the electroweak Lagrangian involving the Z boson

. 1
chee — 1 OuZ— 2,02 2 70) + Emézyzﬂ

The Euler-Lagrange equation

L L
v —_— —_— =
I (a(aozp)) aze = U

$my = 91.1876(21) GeV and my =
80.385(15) GeV. High precision studies
of weak decays typically involve
processes with energy scales of a few
GeV or lower.
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yields

97 (05 Zp — 0pZo) + m3Zy = 0

?Zp—0p0-Z+m3Zy = 0. (6.1.2)

Take the divergence of the above to find m%29-Z = 0,0rd-Z = 0
since m% # 0 after spontaneous symmetry breaking.5 Now (6.1.2)
reads

(?+m3)Z, = 0,

the Klein-Gordon equation.

To find the propagator, introduce an external current j# which
couples to Z,. The Lagrangian is appended by j#(x)Z,(x) and the
equations of motion (6.1.2) become

?Zpy —0p0-Z+m5Zy = —jp. (6.1.3)

As before, we can apply o° to the above implying m29-Z = —9 - j.
Substituting into (6.1.3) we find

d,0 .
(0> +m3)Zy = — <8w + :12V>JV
7

We can obtain the solution by the method of Green’s functions

Zu(x) = i [ dyDf(x—1) ')

where

d* ; -
4 _ _ P —ip-(x—y)Z :
Dy (x —y) /(2%)46 Dy, (p) with

~ i

_ PuPv
- Pz—m§+z’e< S m22>

The discussion above can be repeated for the quantum W, field:

(6.1.4)

the propagator is the same as (6.1.4) except my is replaced by myy.

At the low energies involved in weak decays of leptons and
quarks (except the top quark), the weak boson masses are much
larger than any combination of initial and final momentum compo-
nents. Therefore the propagators can be approximated

i i

pW ~ —— (= -
;w(P) m%\,( Suv) m%\lguv
i
Din(x—y) = — gud®(x—y) (6.1.5)

w

and similarly for the Z propagator. We see that the propagator re-
duces to a J-function in spacetime; the weak decays can essentially
be described by a 4-fermion interaction. In this limit, we cease de-
scribing the weak interactions as mediated by a gauge boson, but
instead via a 4-fermion (or a “Fermi”) coupling:

2
= JH ()] () gud (x — &) .
W

2 .
S @D (x =)' () = 5

5 Here we see that my # 0 implies

d - Z = 0 in any gauge. This is not so for
massless gauge boson fields A, (like
the photon), in which case imposing
d- A = 0 is a gauge-fixing condition
(Lorentz gauge).

For reference: The quantum Z field is

Zu(x) =% [a2(p, My (p, Ve
Pr

+al(p, A)ey(p,A)e |

with the operators satisfying
laz(p,A),al(p',A')] = 6,8,y and
A € {-1,0,1}. The quantum W field

Wa(x) =1 [aw (P, Ve (p, A)e
Pr

+cly(p, A)ep(p, A ]

where al,; creates a W* and cf,

creates a W~. The polarization

vectors satisfy p - e(p,A) = 0 and
e*(p,A) -e(p,A') = =6, (orthonormal
by convention). Another identity is
obtained by contracting both sides
with the linearly independent set

{p.e(p, M)},
Pubv

LeulpNes(pA) = —gw + = 5=
A Z
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Carrying out the x’-integration in (6.1.1) we can define an effective
weak Lagrangian

_Gr
V2

where we define the conventional Fermi coupling Gr and p-parameter

£58(x) = ==L [ () Ju(x) + I () ()] (6.1.6)

Gr_ & My
V2 8md,’ m?% cos? fyy
In the Standard Model, p = 1 + Ap, with the universal part of
Ap ~ 0.008 due to quantum loops (there are also process-dependent

(6.1.7)

contributions to Ap), but of course we must keep an eye out for
experimental hints of physics beyond the Standard Model which
might cause p to deviate from its Standard Model value.

We can re-exponentiate the expression for the S matrix element
to see that (6.1.6) can really be interpreted as an interaction La-
grangian

S~ T [1+i / d4x£§,ff(x)} ~ Texp <z’ / d4xc<;vff(x)> .

We make the following observation here, leaving the conse-
quences to be investigated in the EFT Chapter. Note that the Fermi
coupling Gr has dimensions of inverse mass squared to compen-
sate for the 2 extra mass dimensions of the dimension-6 operator

J#1],.5° This implies that the effective weak theory is nonrenormal- % The fermion fields in the bilinear J
are dimension %, and f d*x L must be

izable. We will see later that this is not an impediment to accurate ; A
dimensionless.

calculations at scales well-below myy. The appearance of myy in the
denominator of G indicates that the theory breaks down when en-
ergies reach that scale. Of course we know that we need to use the
full electroweak theory with its propagating W and Z bosons for
physics at the electroweak scale and above.

6.2 Decay rates, cross sections

In the next few sections we will show how to calculate a few quan-
tities which experimentalists can measure. Particle physics exper-
iments are some of the most ambitious and technically complex
activities we undertake. Yet the questions we ask them must be ulti-
mately be formulated as a counting question: e.g. “How frequently
does X decay to products « 4+ B + ¢?” and “Given N collisions be-
tween beams of A and B particles, how many times do we produce
particle X?” From these results, we have to precisely determine the
free parameters of the Standard Model and/or observe something
unexpected.

Let us first consider the former type of question. The X particle’s
decay rate I'x is simply a measurement of the number of X decays
per unit time, divided by the number of X particles present. By
convention we quote the result in the rest frame of the X particle,
as the result will change, due to time dilation, in moving reference
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frames. Typically X will decay in a variety of ways; it is simplest
to consider partial decay rates I'y_, ¢ to specific final states, labelled
by f say, and sum them up to get the total decay rate at the end. A
particle’s lifetime, is the reciprocal T = 1/T.

The relevant quantity is the S matrix for scattering between an
initial state i and final state f. In the case of decays just described,

= X and we are interested in inelastic scattering, where f has
different particle content than i. In general, the S matrix elements
are given by Dyson’s formula

{flsliy =, tim (fIU(te,t-)[0) (6.2.1)

with
U(ty,t—) = Texp <—z/ dt' Hy(t )) .

The S matrix can be separated into a boring part (where nothing
happens) and an interesting part (the T-matrix): S = 1+ iT. Em-
ploying the principle that momentum is conserved, we factor out
an explicit momentum-conserving Dirac é-function and define the
invariant amplitude M through

(FIS—1li) = (m)*W(ps— pi)iMy;. (6.2.2)

The probability that we measure i — f is given by the relevant
S matrix element squared over the norm-squared for the initial and
final states

where
(iliy = (2m)*2p263)(0) = 2p)V
(1) = [1@°v)

and we have resorted to working in finite spatial volume V to avoid
dealing with subtleties regarding with non-normalizable states.®*
The probability the decay will occur is

IM il 1
P(i—f) = f (27)4 6 (Pi _ ;p,) VT HW (6.2.4)

where the factor VT in the numerator comes from one factor of the
S-function squared in |(f|S[i)|?.

Experimentalists never measure final state momentum with
infinite precision; momentum is always integrated over some region
corresponding to the precision of the detector or over all possible
values. Therefore, we obtain the partial decay rate for i — f by
dividing the probability (6.2.4) by T and integrating over momenta.
Since the number of 1-particle states in the box with momentum in
a momentum-space volume d3p is Vd3p/(27)3, the partial decay

rate is
V Pp,

(271)3 '

(i > f) T/gz (6.2.5)

rEf

¢ Normally we have an inner product
between momentum elgenstates wh1ch
(271)32+/q0 P0G
finite volume, e.g. a cubic box V =13
with periodic boundary conditions, the
momenta are discretized: § = 27ii/L,
n € Z® and the é-function becomes

is (qp) =

(3)

q) =

3
271 /dxe

(27-()3 517‘7

(F=)-

.Ina
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The Lorentz-invariant integration measure for final state f is

d3pr
do; = (2m)* ( - gpr) r]} T (6.2.6)

The volume factors in numerator and denominator cancel to give us
the partial decay rate

. 1
M f) = 5o [ 1Mgldoy, (6.27)

and the total decay rate

| dpy . (6.2.8)
Figure 6.1: Two bunches of particles,
with densities pg, oy and lengths £,, ¢},
collide with cross-sectional area A.
Pa Pb
P |

THE COMPANION QUESTION to “How often does a particle decay?”
is “How often does a particle collide?” We quantify the answer

by defining the cross section. Imagine 2 bunches of particles (in
particle beams) colliding together (Fig. 6.1). We count the number
of scattering events and divide by the densities and lengths of the
bunches, as well as the cross-sectional area of the collision region.
The cross section is

# scattering events N

PalapplpA - FppV

where N is the number of scattering events per unit time, o,V is
the number of target particles in volume V = £, A, the incident flux
is F = |U; — Up|pa (the number of incoming particles per unit area
per unit time) and |7, — ¥p| is the relative velocity of the particles
in the 2 bunches. Recall that our normalisation is such that we have
one particle in volume V, i.e. p, = p, = 1/V,and so F = |7, —
Tp|/ V. The cross-section has dimensions of area and the traditional

unit is the barn. By definition 1 barn = 10~28m?.52 Usually we are %2 Despite not being able to fit much
farm equipment through a door in
. . . . . . such an area, nuclear physicists at
cross sections. Again we need the differential probability per unit Purdue University in Indiana must

time of an event or transition i — f, this time divided by the flux have been impressed by the size of the
uranium nucleus when they declared,
“Well golly, it’s as big as a barn!”

interested in more specific questions that require the differential

of particles through the interaction region. Since the particles are
moving in the lab frame, the prefactor 1/2m; in I' becomes 1/2E for
each bunch of particles. Generalising our derivation of (6.2.7),

N = EFEV EbV [Miil*dos
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Thus we find,

1 1 )
= —-——— . d
7 = Fag gy Mol der

_ 1 1
|77a - Z_;b| 4EaEb

If the discussion in this section seems less than rigorous, you can

| Myi|* dpy . (6.2.9)

take comfort in the fact that even Weinberg resorts to hand-wavery:

In what follows we will instead give a quick and easy derivation of

the main results, actually more of a mnemonic than a derivation,

with the excuse that (as far as I know) no interesting open problems

in physics hinge on getting the fine points right regarding these

matters.®3 S Weinberg. The Quantum Theory of

Fields, Volume I. Cambridge University
Press, 1995

6.3 u decay

As a first example let us consider the purely leptonic decay y —
evevy. This proceeds through the weak current derived in § 5.2

J* = 2y (1= 77)e + 77" (1= ") + 79" (1= 7°)7.
In fact this is the only decay channel for the muon. Since the

muon mass 1, = 105.6583745(24) MeV is much less than myy =
80.385(15) GeV, we may use the effective Lagrangian of § 6.1

S (Ph I )

Sandwiching this between the initial and final states of interest,

Eeff - _

assigning labels for the 4 particles’ momenta as indicated in Fig. 6.2,

we find for the invariant amplitude®+ A .
Figure 6.2: Momentum assignments

M = (e ()@ £SOl (p) for ™ = ¢~y

% To see why this can be written in

_ & —(1\5 50 (1 _ AP i _ b - terms of L£ff(0), recall the definition
= =5l Bm@ler (1= a7)rel0) i) Imera (= 3 mli (P e the dermvation

Gr in Section 3.2.1 of Prof. Tong’s Part III

= — \ﬁue(k)y"‘(l —9°)oy, (9)ty, (g )ya(1— 75)u,4(p) . (6.3.1) QFT notes.

In the interest of tidiness, the spin indices on the spinors have not
been written above; however, it may be instructive to include these
when writing down an expression for | M|2. For many observables,
we are not interested in specific spin states for any of the particles.
If we wish to measure the partial decay rate for this channel (in
this example, this is the total decay rate) we should sum over the
final state spins, since any combination will count as a decay in
this channel. We should also average over initial state spins; unmea-
sured, we will not know which spin state decayed.
Therefore, when we take the modulus-squared of the invariant
amplitude, and perform the spin sum/average, we find
1 2 _ 1y G [ (1 — o5 5y, ()P (1=
5 LIMP =2 ¥ 2 [ 07" (1= 1%)ou. ()90 ()7 (1 = 1 )ue(K)
spins spins
x i, (@) 70 (1= 1) (p) it (p) (1 = 7)1y, (0]
G

2
— TFS?QSZ,&,B (6.3.2)
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where® 6 Reminders: 1t = 90q#q0, 45t = 43,
{v°, 9"} =0,and @ = ut40.
SiP =T [+ me)r" (1= 2" P (1= 1)

Spap = Tr 171 = 7" (F+m)7p(1 =17 ] - (6:3:3)
having used the expressions (with m? = p?)
;“S(P)QS(P) = y+m and ;US(P)ﬁs(P) =yp-—m. (634)
The following useful trace formulae can be shown to be correct

Te(y*1 - -9#) = 0 for n odd
Tr(yy'yPy7) = 4(g"g"" — g"g" + gM7g™)
Tr(Y oy yPy7) = —4ieP” (6:3.5)

Therefore
Si‘ﬁ =8 (k"‘qﬁ + kPg* — k- qg*f — ie”‘ﬁgpkgqp)
Soap =8 (pzxq}; + P — P9 ap — ieamrq“PT) :

Contracting these together we find®® % Note e¥%Pe, g\, = —2(555%F — 596%)
since e*f7P = €npop/ g Where g =

1 2 > , det(guy) = 1/ det(g") and g = —1
2 Z |M| = 64G (P q ) (k q ) : (6.3.6) in Minkowski spacetime. Generalizing
spins to curved spacetimes, one can define
permutation tensors in as 7P =
We can check that this result is consistent with our physical eF0/ /=g and &uprp = €xpopy/—3-

intuition in the following limiting case. Consider the final state
where the electron and muon neutrino fly away in the z-direction,
and the electron antineutrino in the —z-direction. In this case

k-q = \Jm24+k2q, — kiq.

Notice that this dot product vanishes, and thus so does | M|?, in the
limit m, — 0. We can understand this from conservation of angular
momentum. In this scenario we have two massless, left-handed par-
ticles, each with helicity —4, moving in the +z-direction along with
one massless, right-handed antiparticle, with helicity +1, moving in
the —z-direction. The z-components of spin then sum to —3, which
is not equal in magnitude to the spin of the muon. Therefore, this
scenario is forbidden in the m, — 0 limit. For nonzero electron
mass, the left-handed and right-handed components of the electron
are coupled, and this scenario may occut, parametrized by m,.. We
say such scenarios are helicity suppressed.

Now to obtain the total decay rate we integrate over the final state momenta

_ 1 d’k d°q dq' 45(4) nl 2
r= ZmH/(27()32k0/(271)32170/(271)3211’0(2”) O p—k—a=q) 5 LIM|

spins

_ G} [ dkdPqdiq , ,
= 8om, W g0 ° (p—k—q—q)(p-q)k-q). (6.3.7)
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Let us introduce Q = p — k and consider the integrals

qu d3q/
(@ = [ H

dW(Q—-q-4") 9.1, (6.3.8)

Given that I;;; is symmetric under exchange of indices and carries
dimensions of momentum squared, it can have only 2 possible
terms

IVV(Q) = aQva + bg,‘uVQ2~

Contract both sides of the equation above with g and Q¥QV in
order to find a + 4b = % anda+b = é, where®7

_ [ Fad
7l 19|

sM(Q-q-1). (63.9)

Since I is Lorentz-invariant, we can choose the convenient centre-of-
mass frame Q = (¢, 0) in which to evaluate it:

d3q B © o
IZ/Wa(a—zm) = 4 | dlfle(c —2ffl) = 27

and thusa = % and b = %. Inserting these results into (6.3.7) we
find

2 3
P = s | @ By 0k 0=+ kb7
(6.3.10)

By convention, a particle’s decay rate is quoted in its rest frame.
Here p - k = my,E, using E = kY to represent the electron energy.
Since Z—; = 0.0048 < 1, it is sufficient for us to treat the electron in
its massless limit. Using |k| = E and the fact that the integrand is
independent of the direction of k, we can express (6.3.10) as

2G%m my /2 G%WS
r — F”/ AE E2(3m, — 4E) —= k| 6.3.
3273 Jo (3my —4E) = 15573 (63.11)

Note the electron energy must be in [0, "], the extremes of which
correspond to the the neutrinos recoiling back-to-back and the
electron at rest E = 0, and to the electron moving in the opposite
direction to both the neutrinos (momentum conservation implying
E="H).

This width T’ is actually the total width for the muon, since y —
evevy is the only decay channel. Given a measurement of the muon
lifetime T = 1/T = 2.1970 x 10~° seconds, one infers for the Fermi
coupling Gr = 1.164 x 10~° GeV?. One-loop corrections affect Gr
only at the per-million level. Experimentally one finds consistent
values for Gr inferred from the decays T — et vy and T — uv,vy, a
property frequently referred to as lepton universality.

6.4 7 decay

Next we consider a decay similar to the muon’s, the decay of the
7t~ meson to electron and antineutrino. This is similar in that it

67 Tricks used: ¢> = ¢’ = 0 for
the massless neutrinos; with the
J-function factor present, we can
replace (g +¢')*> = 29 -¢' by Q% in
the integrand without changing the
integral.



proceeds through the charged weak current, with a down quark

and an up antiquark annihilating to a W~ boson, which then

promptly decays into electron and antineutrino. The main dif-

ference, is that the d and # do not ever propagate freely; they are

strongly bound together as a hadronic state, the 7~ meson, or pion.
In addition to the leptonic weak current of the last section

> 5
Jiept = Zer*(1=77)e + ...
we need the hadronic weak current. We will see shortly that it is
convenient to separate the current into terms of definite parity

]ﬁad = Vl'lfad - A?\ad (641)

with the vector and axial-vector currents

Viaa = 87" (Vigd + Vuss + Vipb) + ...
Aﬁad = ﬁ’)’ar)’S(Vudd + Vuss + Viph) + ...
The ellipses represent the higher-generation terms which do not
play a role in 7t decay.
The invariant amplitude

M = (e (K)ae(q)|£5(0) 7 (p)
_ %(e(k)ﬂe(q)e’%(l — P )el0) (01T (p))

_ jgagucma — 1700, (7) (0] Aol e (p)) -

(6.4.2)
In the last step, we use the fact that the matrix element of V{I_ 4
between the QCD vacuum and the parity-odd pseudoscalar meson
vanishes, (0|V ,|7r) = 0 because QCD is a P-invariant theory.5®
Since QCD is strongly interacting — in fact free quarks are for-
bidden to be free by a mysterious mechanism called confinement
— we cannot perturbative approximate hadronic matrix elements.
Instead, we package our uncertainty into a single dimensionful
parameter called the pion decay constant Fy, so that®

<O’Vudﬂ7“75d‘ni(P)> = iVudﬁanlx' (6.4.3)

Pre-emptively using the fact that we know momentum will be
conserved, we write p = k + g, and then

(k)i = i.(k)m, and qv,,(q) = 0
(since the neutrino is massless), we have

M = iGpFamoV,qite (k) (1 = 7)oy, (q) - (6.4.4)

As in § 6.3 we see helicity suppression, this time in all decays since
we have just a 2-body final state, which in the pion rest frame con-
sists of the electron and antineutrino flying away back-to-back. The
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Figure 6.3: Weak decay of a pion to
electron and antineutrino.

Figure 6.4: Momentum assignments
for m — ev,.

% To elaborate, we take as an experi-
mental fact that the pion is a spin-o,
parity-odd state (a pseudoscalar me-
son), and of course the vacuum is
parity-even. We showed in § 3.2 how
vector and axial-vector currents trans-
form under P (3.2.7). Since the initial
state is parity-odd the matrix elements
(01 Weg 72(p)) and (0] A | (p) trans-
form respectively as an axial-vector
and a vector under P. The only phys-
ical variable carrying a Lorentz index
in the QCD part of the problem is

the momentum vector p, we cannot
construct an axial vector. Therefore the
vector current matrix element must
vanish.

% There is an equally prevalent con-
vention for the decay constant in the
literature: ff}“ = \/2F,.
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decay is suppressed as m, — 0 since the final state with net spin-
component equal to 1 in the direction of flight is inconsistent with
the spinless initial state.

The decay rate is an integral over the invariant amplitude squared,
with a sum over the electron and neutrino spins, so we need

YIMP = 2/GeFame Vi Tr [+ me) 1 =17)q|  (645)
spins
having used (1 — 7°)7*(1+9°) = 2(1 — 9°)9#. We use the follow-
ing trace identities
Teigy =4k-q
Try° kg =0
Try# =Tryky° = 0

to write
Y IMP? = 8|GrFrmeVial?k-q. (6.4.6)

spins

Therefore the decay rate in the 7t rest frame is

Torvey = — / et @2m)* oW (p—k—q) Y IMP?
ey 2my (27‘[)321(0 (27'[)32170 spins
a3k

= S(my — E— |K|)(E + |K])[K|.
EF) (my |k|)(E + |k|)]k|

= |GrEame Vg ? ﬁ /
We used the fact we are working in the 77 rest frame. Performing
the integration over 7 yields g = (|k|, —k) so that k - g = E|k| + |k|2
(E = k9). Next we use the composition rule for the §-function:
S(f(k)) = ¥;6(k —kb)/|f'(ki))|, where ki are the roots of f(k) = 0.
In this case

2 2
_m5 —m? , B ko
ko—izmn and ‘f(ko)‘—l—l-E
SO
1 dn|kdk] 21\ S(IK| — ko)
_ 2
Trser = |GrFameVyl 47t2m7f/o E (E+ W)W
GRlExVual? m’
A similar calculation for 7 — uv, yields
2
GRIFxVual it
| M T”mﬂmn 1-— el (6.4.8)

One can take the ratio where the least well-known quantities cancel

2
T(r—er) _ m; (’M) = 128 x 1074, (6.4.9)

T(rw — pvy) — md \ m% —m?

I3

Experimentally, the ratio is measured to be 1.230(4) x 107%, ex-
posing quantum effects arising from loop diagrams. In this case
virtual photon effects need to be included in order to agree with
experiment.



6.5 K°— RO mixing

Kaons are pseudoscalar mesons containing either a strange quark
or a strange antiquark. The neutral kaons K° and K° (“flavour
eigenstates”) denote mesons with valence quark content 54 and
ds, respectively. (In addition to the valence quarks familiar from
simple quark models, there are quark-antiquark pairs popping in
and out of existence in the sea of hadrons. More about this when we
discuss QCD.) There are also charged kaons K and K~ with an up
quark in place of the neutral kaons” down quarks.

We knew when we constructed the electroweak Lagrangian
that the W should only couple to left-handed particles and right-
handed antiparticles. Thus, the weak interactions violate P and
C maximally. However, while CP violation is a possibility in a 3-
flavour theory, as we saw when we introduced the CKM matrix, it
is not necessary that Nature oblige. In fact, it does turn out to be an
empirical fact, evident in the behaviour of neutral kaons, that CP is
violated.

K? and K° are C conjugates of each other. Here we are more
interest in the combined transformation CP. Under CP we can take
the phases so that, for kaons at rest

CP|K% = —|K%, CPIK®) = —|K?). (6.5.1)
Construct CP eigenstates
1 - 1 -
0y — L (1g0y _ RO 0y L (g0 0
K = 5 (IK) = 1K), IK2) = = (IK) +[K%) . (652

With these labels, Kg is CP-even and KV is CP-odd.

Now let us consider decays of neutral kaons to 2 pions, either
ntn~ or i1 (Fig. 6.5).7° Recall the pions are pseudoscalar
mesons just like the kaons (pseudo = parity-odd, scalar = spin-
zero, i.e. J* = 07). In the centre-of-mass frame, after the decay the
pions fly away back-to-back. The action of parity is the swap the
particles’ positions and momenta (¥ — —X, § — —p), but the action
of charge conjugation is to swap the particle charges. Thus, if that
was the whole story, we would already see that the combined trans-
formation CP leaves the 2-pion system invariant. However, we still
have to consider whether the 2-pion wavefunction has orbital an-
gular momentum /. In general it could (e.g. as in the strong decay
of the vector meson pO — 77 717). However, since the kaon at rest
had no angular momentum (orbital or spin) the pions must be in an
£ = 0 state. Thus

CO|\mtn™) =|ntn), CPn’n®) = (=1)"|x°=°) (6.5.3)
with ¢ = 0 tells us the final state of K — 77t is CP-even. If CP

is respected by the weak interactions, then there should be one
neutral kaon, the K, which can decay into 2 pions (and thus is

short-lived due to the large available phase space) and another
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7° Note this must proceed by the weak
interactions, the only mechanism for
changing quark flavour, strangeness in
this case.

Figure 6.5: Decay of K° to 7w+ 7t~ (top)
and to %70 (bottom).
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neutral kaon, the K, which cannot decay into 2 pions, but may
decay into 3 pions or other final states (and thus is longer-lived).
Experimentally, it is true that there are 2 neutral kaons, K2

and K? which respectively have short (~ 9.0 x 10~ s) and long

~ 5.1 x 1078 s) lifetimes. However, occasionally one sees K} —
rtrt. Quantifying the relative likelihoods of the relevant decays,
define the ratios

7t~ | Hyy | K9 070 | Hyy | K9
M- = §n+7r||HW|K§; ;Moo = zﬂoﬂotHw:Kéi : (6.5.4)

Experimentally it is found that 74— = 1790 ~ 2.2 x 1073 # 0.
We can conclude the weak interactions violate CP. However, there
are 2 possible ways: direct CP violation of the underlying s — u
transition (due to a complex phase in the CKM matrix), or indi-
rect CP violation due to a K turning into a K° before decaying (or R0
vice versa). It is the latter effect which turns out to be responsible

here. This oscillation between the 2 weak eigenstates is due to loop
effects, the dominant ones given by the so-called box-diagrams
shown in Figure 6.6.

Given this apparent violation of CP, we must assume the states 7
which propagate (the mass eigenstates) are combinations of the CP ©
eigenstates:

K = (1K) +elk))

V1tef? Figure 6.6: K® — K? mixing in the

|KO> _ 1 (|KO > te |K0 >) 65.5) SFan;l\ard ll]\]/)[od,(,eldo.ccurs at loop level,
L 7\/@ — 2K . 5.5 via these “box” diagrams.
with the e, complex in general.
Under the mild assumptions: (1) that K and K} are linear com-
binations of K? and K° alone and not additional, excited states; (2)
that we can ignore details of the strong interactions in considering
the mixing; then the Wigner-Weisskopf approximation is that as
they propagate, the Kg and K|, states will be an oscillating mixture
of weak eigenstates:

[Ks(1)) = as(t)|K”) + bs(t)|K)
KL () = ar()IK®) + b (1)IK°). (6.5.6)
Using Heisenberg’s prescription for time-evolution: [(t)) =

exp(—iHt)|(0)) so that i(d/dt)|p(t)) = H|y(t)), the time-
dependent coefficients in (6.5.6) obey

d (a\ _ ((KOH'IK®) (K°|H'|K%)\ (a
Yar\v) T ROEIKOY (ROIHYIRYY ) \ b

Ri1 Rz [a
= . 6.5.
(RZ] Rzz) (b> 65

The Hamiltonian H’ is the weak Hamiltonian at next-to-leading
order in perturbation theory:

Hy [n) (n|Hw
H =Hy -y MW 5.
W ZEn—mo—ie (6.5.8)

n



with mg being the unperturbed mass of the neutral kaons (any
splitting due to this mixing at next-to-leading order). Writing H’
this way essentially represents the processes depicted in the box
diagrams (Fig. 6.6) as a local A(strangeness) = 2 interaction.”*

Since kaons do not oscillate indefinitely, but decay in finite time,
the matrix R in (6.5.7) is not Hermitian. We can write it as the com-
bination of Hermitian and anti-Hermitian matrices, R = M — %F,
where M is referred to as the mass matrix and I as the decay ma-
trix, and both M and I' are Hermitian. Commonly one refers the the
dispersive and absorptive parts of the matrix R, given respectively
by
1
2

Under CPT, OH’©~! = H’!. For kaons at rest we can take
TIK%) = |K%) and T|K?) = |KY), i.e. time reversal does nothing
to a free particle in its rest frame. So under CPT ®|K°) = —|K%) and
O|K%) = —|K%). This means that the diagonal matrix elements of R
must be equal:

My = =(R;p+Rj;) and T3 = i(Ryp — RY,).

where the complex conjugation appeared because © is anti-unitary
and we have used the notation introduced in § 3.4.

CPT-invariance leaves R1» and Ry unconstrained. If T-invariance
were respected (which, by the CPT theorem, implies CP would be
conserved) then TH'T~1 = H'* and

Rip = (KO|(T7'T); H'(T~'T)|K?)
= (KO/H"|K®)* = (R°|H'|K”) = Ry .

We will see next that R, # Rp1 and thus CP must be violated.

By design (from (6.5.2) and (6.5.5)) the (unnormalized) eigen-
vectors of R corresponding to |Ks) and |Ky) are respectively (1 +
€1,—1+e€1)T and (1+e€3,1— )T in the |[K?), |KY) basis, with cor-
responding eigenvalues denoted Mg — él"s and M} — %FL.72 Know-
ing these are the eigenvectors (be definition of the short and long
states) allows us to determine €1 and €; in terms of the matrix ele-
ments of R. To save some work, let us assume €; = €, = € (which
turns out to be correct) and abbreviate 1 +€ = pand 1 —¢€ = 4.
Then by construction the following similarity transformation diago-

1 (a =p\(Ru R\ (p p
2pg\q p ) \Ra Ru)\—-q ¢q

Requiring this to be equal to diag(Ms — sT's, M; — 5T') implies
that Rlzqz = Ry pZ or

nalizes R

_ VR —VRy

= —— 6.5.
€= VRat vRa (659)
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7t As before, the large mass of the

W means that low energy processes
appear to be governed by local inter-
actions. It also can be shown that the
dominant contribution comes from the
top quark in the loop, and m; ~ 173
GeV.

72 The states evolve in time (in the rest
frame) as |Ksr(t)) = exp(—i(Ms1 —
5T5.))|Ks,.(0))
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Thus we see that if CP were a good symmetry, and consequently
Ri» = Ryj, then € would vanish and the CP eigenstates K and K_
would not mix.

It can be shown?3 that 77— = € + €’ and 77990 = € — 2¢’ where €’ is
a measure of direct CP violation. Experimentally,

/

le] =2.228(11) x 1073, =1.66(23) x 1073,

and so, although indirect CP violation dominates here, experiments
are able to determine the small contribution from direct CP viola-
tion.

KY and K? can also be probed using semileptonic decays. Con-

sidering the possible diagrams one finds that,
KO = ety R® - ety
K = nte v, RO = nte 7,
Therefore, if CP was conserved,
I(K}s—metv)=T(K) g = nle 7).

Defining,

AL T(K) g = metv) —T(K) g = mhe ;)
’ F(K%/S — tetv,) —i—I’(K%/S — tev,)’

experimentally, A; = 3.32(6) x 1073 # 0, demonstrating again that
CP is not conserved.

73] F Donoghue, E Golowich, and B R
Holstein. Dynamics of the Standard
Model. Cambridge University Press,
1992. Also 2nd edn. 2014



7 QCD

Finally we come to the strong interaction. The existence of quarks
as constituents of protons, neutrons and other subatomic parti-
cles grew out of idea that the particles could be grouped together
based on observed similarities. By analogy with SU(2) spin dou-
blets representing the two spin components of nonrelativistic spin—%
fermions, the proton and neutron were supposed to be the compo-
nents of an isospin doublet (I = % with Iép) = —i—% and 13(") = —%
respectively) of an isospin symmetry group SU(2);. The fact that
the proton and neutron have slightly different masses (differing by
about 1 MeV) suggests that isospin is slightly broken. Interactions
between protons and neutrons (and each other) could be described
by exchange of pions. The three pions, 7+, %, 7=, transform as an
SU(2); triplet (I = 1 with I3 = 41,0, —1).

The discovery of “strange” particles necessitated extending the
isospin group to “flavour” SU(3)r. This symmetry is not as good
a symmetry — the mass-splittings between strange and nonstrange
particles is usually of order a few hundred MeV. Nevertheless, the
observed particles fell into groups which could be understood as
multiplets of SU(3)F, for example the octet of pseudoscalar mesons
(Fig. 7.1), the octet of spin-% baryons (Fig. 7.2), and the decuplet of
spin-% baryons (Fig. 7.3).

The success of SU(3)r led to the hypothesis that the many
hadrons were composites of three spin-% fundamental particles,
the up (1), down (d), and strange (s) quarks. The u and d quarks
were assigned I = } with I; = +J and —] respectively, with
no strangeness.”* The strange quark carried no isospin and has
strangeness —1, unfortunately, in order to coincide with the defini-
tion of strangeness earlier assigned to the hadrons.”> The multiplet
(u,d,s) transforms in the fundamental (triplet) representation of
SU(3)f. In this quark model, the baryons are bound states of 3
quarks, and the mesons bound states of a quark and an antiquark.
In order to give the hadrons their observed charges, the up quark

must have electric charge —l—% while the down and strange quarks
1

3.

The quark model as described has two obvious problems. The

have electric charge —

first is in describing the A™™ baryon. The charge implies it consists
of 3 up quarks. The fact that the spin of the A** is 3 implies the

3 quarks have their spins aligned. However if both the spin and
flavour degrees-of-freedom for the 3 quarks are identical, then

7\'+

K K°

Figure 7.1: Lightest meson octet. Par-
ticles on the same horizontal line have
the same strangeness; those with the
same charge along the diagonal; those
with the same isospin component I3
are aligned vertically.

- =0

*m

Figure 7.2: Lightest baryon octet, axes
as in Fig. 7.1.

7+ —d and i are also, respectively, the
I = +% and —% components of an
isospin doublet.

75 Thus Murray Gell-Mann and
Kazuhiko Nishijima join Benjamin
Franklin in the ranks of accidentally
saddling us with a minus sign associ-
ated with a charge carrier.
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its wavefunction appears totally symmetric in violation of Fermi
statistics. The solution of this problem is to suppose the existence of
another quantum number; in this case it was called colour. Then the
up quarks in the A™" could be in an antisymmetric combination of
red-green-blue. Following the colour analogy, antibaryons are said
to be a combination of cyan-magenta-yellow (anti-red-anti-green—
anti-blue). These principles led to the successful prediction of the
triply-strange ()~ baryon which was subsequently observed.

The second problem is that not all combinations of quarks are
seen in nature. For example, we do not see any experimental ev-
idence for free quarks or diquarks (g4). Quarks seem to exhibit a
phenomenon called confinement. That is only “colourless” states,
such as red+green+blue baryons or red+cyan mesons can exist as
observable initial or final states. The search for a precise explana-
tion for or understanding of confinement is ongoing.

7.1 QCD Lagrangian

The modern description of the strong interaction builds upon the
early quark model. As with the weak and electromagnetic forces,
the strong force between quarks is mediated by gauge bosons, the
gluons. The symmetry is exact (not broken) and the need for 3
colours implies the gauge group should be SU(3)¢ (the subscript
just distinguishes the gauge symmetry from the approximate global
symmetry SU(3)r). By analogy with quantum electrodynamics, the
theory of the strong interactions is called quantum chromodynam-
ics.

The QCD Lagrangian is packaged to look just like the QED La-
grangian

Loco = —%F”’WF{'W + ;ﬁf(iw —my)qy (7.1.1)
where D, = 9, +igAjT". The T" are the generators of SU(3) in
the fundamental representation, and satisfy [T, T| = i f*°T¢. They
are related to the Gell-Mann matrices: T% = JA%.7° The eight gauge
field A}, transform in the adjoint representation of SU(3) and have
field strength tensor

Fi, = 0,A) — 9,A% — gf*"" AL A

7.2 Renormalization

The idea of renormalization is presented more thoroughly in the
Advanced Quantum Field Theory course, and the renormaliza-
tion group is most clearly introduced in the context of statistical
field theory. Nevertheless, we give a very brief review here because
the behaviour of the strong coupling constant under renormaliza-
tion has a greater impact than for the couplings in the electroweak
theory. This is simply due to the fact that the strong coupling con-
stant is numerically much larger, and therefore its “running” under

0

Figure 7.3: Lightest baryon decuplet,
axes as in Fig. 7.1.

76 Here are the Gell-Mann matrices:

0 1
Al=11 o0
0 0
1 0
A= -1
0

A=
0
AT=10
0

o o

~ o
~ o0 oo o

0 0
0 A=
0 0

The completely anti-symmetric

structure constants are: f123 =1,
V3 (147 _ (165 _
==

FA58 = (678

oo |

_ oo O OO

O O =

f246 — f257 — f345 — f376 — % those
not related to these by permutation of

indices are zero.

(=3 )
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renormalization is more consequential. The discussion here follows

§9.2 of Georgi’s book.”” 77H Georgi. Weak interactions
and modern particle theory. Ben-

Say we have a Lagrangian which contains a set of coupling con- | i
jamin/Cummings, 1984

stants g;. For massless QCD we have only one coupling; each quark
mass introduced may be considered here as another coupling. For
each of these, we need a physical/observed/derived quantity g in
order to define the renormalized theory; for example the physical
observable could be a scattering amplitude, or it could be a derived
quantity like a bare coupling in a regularized Lagrangian. We then
need to calculate an expression for each of the ¢%. While it is possi-
ble to do this nonperturbatively and numerically using a spacetime
lattice regulator, here we consider performing a perturbative calcu-
lation. Thus we find a function GY(g(u), 1) for each g which is a

power series in renormalized couplings g(1) = {gj(4)}.7® Clearly 7 For brevity we use the subscriptless
g(p) to denote the set of running

this depends on the particular value of the renormalization point )
couplings.

u we choose. Our renormalization condition consists of demand-
ing for a given y that the set of g;(y) are such that our expression
G2(g(u), u) is equal to the observed (or deduced) quantities

§) = GMg(u),n). (7.2.1)

The renormalization group is concerned with how the renormal-
ized couplings {g;(#)} change as we vary the renormalization point
. It is common to talk about a B-function corresponding to each
coupling; the name just comes from the definition

Bi(s (), ) = y;;gj(m. (7.22)

Since physical quantities and bare parameters g? do not depend on In so-called mass-independent renor-
malization schemes, the B-function
does not depend explicitly on u:
» A ). st et
K du Gi (g(“l/l),}l) " ou + ﬁ] agj Gi (g(y),y) 0. (723) in problems involving several mass
scales, one is sometimes forced to

In the AQFT course you see that one can derive similar equations work in a mass-dependent scheme.

u, we find upon differentiating (7.2.1)

for renormalized Green’s functions, in which case one has to also
include effects due to the anomalous dimensions of the fields in
the theory. Equations of this type are called Callan-Symanzik equa-
tions.

In this Chapter on QCD, we are concerned with the running
of the QCD coupling g. Again in the AQFT course, you may in
the end repeat the calculation which earned Gross, Wilczek, and
Politzer the Nobel Prize: the one-loop determination of the QCD
B-function, giving (ignoring quark masses)

d
K8 = B(W) = bg® + 0(g”). (7.2.4)
It was remarkable at the time that the coefficient
1 2
= 1z (11— 3NF),
for QCD with Nr flavours of quarks, is negative.”9 In fact, the g- 7 Here is a minus sign we can be

grateful for!
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function for simple (single-coupling) nonabelian gauge groups
generically has a negative 1-loop contribution

3
Blg) = —Pogos + 0. (7:2:5)
Assuming the gauge field couples to the fermions ¢ fi (f for flavour)
through covariant derivatives Dy = (9, + igAflt'})l[)f, with
generators which satisfy [tj}, ti}] = if ”hct;, and that the coupling
treats left-handed and right-handed components equally, then the

coefficient is determined solely by group theory:
11 4
po=5C-3LT;
f
where C and Ty are determined from
faed fbed — Cb and Tr(t;’ftjb[) = Ty o

For SU(N), C = N. If the fermions transform in the fundamental
representation of the gauge group, as the quarks do in QCD, then
T = 3.

Although there are 6 quarks (as far as we know), the number
of active quarks depends on the energy scale at which we wish to
calculate. Since the top quark is so massive, it is not treated as an
active quark flavour for energies well below 173 GeV, so we would
use the Ny = 5 B-function. Similarly, if we were interested in the
physics of a few 100 MeV, we should use the Ny = 3 B-function.
Matching between QCD with different numbers of active quark
flavours is something which requires care when working at higher-
than-leading order.

In analogy with the fine structure constant of QED, it is conve-

nient to introduce

g2

E}

however in QCD we call this (as well as g) the strong coupling.

ng = (7.2.6)

Multiplying (7.2.5) by 2¢ and neglecting higher orders, we have

das  das ——@063.

y@ ~ dlogpu 27

This is easily integrated

065(]1) d(xs IBO V
— = —— [ dlo
/as@zo) oG 27 Juy OB
to give
2r 1
o = — . (7.2.7)
R ) Er A

Let us define an energy scale®® Aqcp by

27
lo — ——— — = logA
g Ho Bo s (o) & {\qcp

8 Not a cut-off!



Then Aqcp is the scale 4 = Aqcp at which a diverges:

_ 2
~ Bolog(p/Agep)

Note that as(p) decreases for increasing p. If we look at a process

ws(p) (7.2.8)

where p corresponds a physical energy, then we see that the QCD
coupling gets weaker as the energy gets higher. This phenomenon
is called asymptotic freedom and is just what was sought after to
describe high energy data at the time.

In the absence of quark masses, Lqcp is scale invariant; the cou-
pling ¢, and hence a5 are dimensionless. The fact that a charac-
teristic scale emerges from the quantized theory, Aqcp, is referred
to as dimensional transmutation. This characteristic scale gives a
good estimate for the border between perturbative and nonper-
turbative physics. Unfortunately the scale is regularization and
renormalization-scheme dependent. For QCD, one might estimate
Aqcp ~ 200 — 500 MeV.

7.3 ete” — hadrons

Since QCD is asymptotically free, we are able to treat the strong
coupling constant «; as small for high energy processes. Neverthe-
less the phenomenon of confinement complicates things: since free
quarks are never seen, we must always confront or circumvent the
nonperturbative dynamics of hadronization, the process by which
would-be free quarks create jets of quarks, anti-quarks, and gluons
in order to end up with colour-singlet final states.

Here we consider the annihilation of electron and positron to a
virtual photon which then decays to hadronic states. We are inter-
ested in the fully-inclusive cross section for e"e~ — hadrons; that is
we simply count up all events which result in hadronic final states.

At the level of the Standard Model fields, we know that the lead-
ing process is eTe” — y* — jq (Fig. 7.4). The invariant amplitude
for quarks with electric charge Qy is

_iv

M = (—ie)*Qy ity (k1) y"vq(k2) ;;ﬂ Be(p2)7 ve(p1) -

Neglecting quark and electron masses, summing over quark spins,
and averaging over e spins we obtain

1 2 (34sz; v
1 Z |M’ = 4q4 Tr (%'YHI{Z'Y ) Tr (Vl'ﬁtﬂf)/v)
spins
8e4Qj2f
= [p1-k1p2-ko + p2-kip1-ko]

= ¢*Q7(1+ cos?6).

In the last step we worked in the centre-of-momentum frame, writ-
ing p1 = (Pl P), p2 = (Ipl, =P), k1 = ([k[,k), k2 = ([k|, =k), then
using momentum conservation we have g = (2|7],0), |k| = |p|.
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Figure 7.4: Electron-positron annihila-
tion to quark-antiquark.
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Finally the angle 6 is defined so that py - k1 = py - kp = g(l —cos )
and py-ky = p1 - ko = '44—2(1 + cos ).
The differential cross section, from (6.2.9), is

1 1 d3kq a3k
|01 — 2| 4p9p9 (271)32KY (271)32K9

do = 2r)*6W (g —ky —

In the centre-of-momentum frame |7; — 7| = 2 and we may write

€4Q2
_ f 3 2 9L 2
do 2(271)2q4d kd(\/; 2|k[)(1 + cos“ ).
Finally we can integrate over the magnitude k| to get

22
do Qf
ORI (1+ cos®6)

where we have used the fine structure constant of QED, a = ¢2/47r.
Performing the angular integration we obtain

o 47ra?
0'(€+€ %qq) = ?qujzr (7-3-1)

Since experimental uncertainties cancel when ratios of cross sec-
tions are measured, we note that the calculation for the cross sec-
tion for eTe~ annihilation to muons proceeds just as above, except
that Q; = 1, with the result

olefe” »utu7) = (7.3.2)

3>
Now Back TO hadronic final states. Let X represent specific final
state content, whether there be 2 or more hadrons. Then the invari-
ant amplitude can be written

2
e
My = $<X|]£|0>56(P2)7y”6@1)

where the hadron current | ;‘ = L5 Qrisr"qy is sandwiched be-
tween X and the QCD vacuum. This matrix element cannot be
determined perturbatively. The inclusive cross section must now
include a sum over all possible final states X, including integrals
over the momenta and spins involved:

o(ee” — hadrons) = —— Z Y (2m) 4@ (g — px) | Mx 2.
8p1p spms,pX
Now we introduce a useful quantity, the hadronic spectral den-
sity
P (@) = (@7)° oW (g — px) U IXN(XITI0) . (733)
Xpx

At the end of this section, we will attempt to give some insight into
what this function represents. For the time being, we simply make

ZIMI2

splns
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use of its properties. Since pZV(qz) is symmetric under exchange of
indices y <+ v, it must be a linear function of g*” and g"4". Further-
more, the Ward identity which is a consequence of the conserved
current implies q,0"" = q,p"" = 0, fixing the coefficient between the
two terms. Finally, we note that since the states labelled by X have
positive energy, pZV(q) should vanish for g° < 0. Thus we have

pi (@) = (=8"q" + 4"7") ©(g")ou(q") - (7:34)
Using this in the expression for | Mx|?, we find
1 et

Y (2m)*W(q — px)| Mx[* =
X,spins

(P p1-p2+29-prg-p2) oule®) = 27eou(?).

Therefore
167302

- 2

o(e"e” — had) = on(g%). (7.3-5)
In general pj,(g?) is a complicated nonperturbative function. However for the cross section o(ete™ —

hadrons) we include every hadronic state in the final state. Since the only way to produce hadrons is

to produce quark-antiquark pairs, we make the assumption that a sum over all hadronic states can be

replaced by a sum over all possible states involving quarks, antiquarks, and gluons

Y XX = Y X)X

X€chadrons X€q,q,8 states

This assumption leaves out any details involving hadronization, and assumes the dynamics of the vir-
tual photon decay can be separated from the strong dynamics involved in hadronization. Having both
hadron and quark-level descriptions of the process is referred to as quark-hadron duality.

Making this assumption, the spectral density can be written

d®k d®k
Py (%) = NCZQf/ . 312k° 2n)322k° (27)%6™ (g — ky — k) Tr {(’11 +mg )y (ka —mf)’YV]

B=k3=nz
To solve the integral, we follow similar steps as those we took to evaluate (6.3.8), the difference being
that we presently keep k = k3 = m7 > 0. Writing the integral as I" = Ag"q" + Bg!", contract both sides
with ¢,y and g4y to obtain 2 equations which can be solved for A and B. Integrands are simplified by
making preemptive use of the J-function: e.g. > = (k1 + k)% = 2mJ2( + 2k - k. Ultimately one should
find

d®ky d®k
= 7k01 kT2 V(g —k—k)K = 10(q°)0(s —4m?)
1 ki =kg=m
qz 342 2 '

Inserting this into the expression for the spectral density function we find

2N 1 2 2
4mf Zyq —|—2mf.
7 7

N,
n(a®) = 53 ;Q} O(q* — 4m?) (1 -
In the limit of massless quarks this reduces to

2y _ Ne 2
on(q°) = W;Qf'
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Then we find the leading-order cross section is

L L 4ma? )
or0(ete” — hadrons) = N, ra ZQf (7.3.6)
f

as expected. Experimentally, it is useful to measure ratios of cross sections such as

o(ete” — hadrons)

K= e 5 un)

(7.3.7)

At leading order we find
%Nc uds light

Rio = NCZQJZ‘ = 19—0NC udsc light (7.3.8)
f 19—1NC udscb light

T T T T T Figure 7.5: Experimental data for

3 r i R =o(ete” — hadrons)/c(ete” —
10 T Z"‘ wru~) vs. /s = /g2 The green

dashed line is a naive quark model
prediction, which exhibits the same
plateau predicted by (7.3.8). The small
jumps as the charm and bottom quarks
become active, as well as the general
agreement for N. = 3 mark early
success for QCD. (Source: Particle
Data Group)

=y
R D
Lol mu{\/uum\ R A

P
s | | |
10 | I ' | I I I | I '
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Figure 7.5 (made by the Particle Data Group®') shows experi- 81 M. Tanabashi et al. Review of

Particle Physics. Phys. Rev., Dg8(3):

. . . . 030001, 2018. URL http://pdg.1lbl.
into account the strongly-interacting resonances which show up as gov/

peaks for /g2 = /s < 10 GeV, nor the Z peak at /s = mz = 92
GeV. Nevertheless one can see the green line, which only slightly

mental data for R. Naturally our simple calculation does not take

improves on our calculation, agrees well with the nonresonant
contributions to R: for N; = 3, the plateau described by (7.3.8) fol-
low the data. In particular, notice how the plateau to the left of the
charmonium resonances ]/ and 1(2S) corresponding to 3 active
flavours gives way to the 4-flavour plateau for /s > 4 GeV. The
jump is smaller as the b quark becomes active, but nevertheless
agrees with the data above the bottomonium (Y) threshold.

The solid red line in Fig. 7.5 is a 3-loop perturbative QCD predic-
tion. We can write the result as

- - ‘Z"z‘z lNC;Q}K(%,;ﬁ) + (;Qf)zL("‘s'f;)] 7:39)

where at the leading order we have K(0,4?/u?) = 1 and L(0,4?/u?) =
0. One-loop diagrams for ete™ — gq (Fig. 7.6) are ultraviolet-finite,
but diverge in the infrared, where the loop momentum becomes
vanishingly small. If one uses dimensional regularization in 4 + 2e


http://pdg.lbl.gov/
http://pdg.lbl.gov/

dimensions one finds
2
1-loop ﬁ o CF“S(V ) _g _§_
7 (ocs, ‘uz) = 5y | T2 = 8+ 0(e)| H(e) (7.3.10)

where Cp = § and H(e) = 1+ O(e).
The infrared divergence in (7.3.10) is cancelled by contributions
from tree-level diagrams for eTe™ — gqg (Fig. 7.7)

2 Cras(p®) [2 3 19
Klree (“s/ ZZ) _ =F S(.u ) |:

s = 2ttt O(e)} H(e). (7.3.11)
Adding (7.3.10) and (7.3.11) to the leading order piece, we find

K(a ) = 1+ 209,

(7.3.12)
At higher order

2 2(,,2 2
PP W 1 () BT N P _Boy, T
K(Ga) =1+ =2+ o 1990l — Plog 5

The function L(as,q%/u?) enters only at O(a2), beginning with
Feynman diagrams with 3 gluons in X.

[The remainder of this subsection on ete™ — hadrons is not being
lectured in 2019.]

LET Us CONCLUDE THIS section by revisiting the spectral density
function py, (%) (7.3.4) and understanding its analytic structure. We
first introduce the two-point function

I, (x,y) = 0| TJ"(x)]" (y)|0)

where T stands for time-ordering. We will soon use its Fourier

(7.3.13)

transform
() = [d(xr—y) e 1 ().

Using Lorentz invariance and the Ward identity that qHHZV =0=
nv
ql/H 7

(7.3.14)

() = (=8"q* +4"3")T(¢).- (7:3-15)
First let us look at the 1-loop vacuum polarization of the photon
in QED (Fig. 7.8) which is given in terms of a similar two-point
function. Here explicit calculation is possible and sheds some light
on the relation between nonanalyticities and physics. A standard
but lengthy calculation (e.g. see §7.5 of Peskin and Schroeder®?)
gives

0 mz
)~ 10) = =5 et =0 o (i )

Since x(1 — x) < 1, TI(?) has has a branch cut for real > > 4m2.
Physically, this branch cut corresponds to the creation of a real
electron-positron pair. We will see similar analytic structure in the
hadronic contribution IT;,(4?) to the vacuum polarization of the
photon (Fig. 7.9).
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Figure 7.6: One-loop contribution to
ete™ — gq.

e q
M
et q

Figure 7.7: Electron-positron annihila-
tion to quark-antiquark-gluon.

Figure 7.8: Vacuum polarization in
QED.

% M E Peskin and D V Schroeder. An
Introduction to Quantum Field Theory.
Addison Wesley, 1995

v X v
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Figure 7.9: Hadronic contribution to
photon vacuum polarization.
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How are the two-point function IT;,(4%) and spectral density p(g?) related? Through the Kallén-Lehmann
representation. Most textbook derivations are carried out in the context of scalar field theory, looking at
(0T ¢(x)¢(y)|0). We have to do a little extra work here for the vector current correlator. Considering the
term in I, 1/(x y) (7.3.13) where x° > 1%, we insert a complete set of momentum eigenstates which can

be created /annihilated by J;, and we use the momentum operator P as the generator of translations to
write Jj,(x) = e’P"Ih( )e ~iPx The result is

Zl 0lJj; ()| X) (X[J; ()10) =iZe*i”X'("*”<0|I£(0)\X><X|]Z(0)|0>

X,px X,px

e~ Py ol (p) (7.3.16)

using the spectral density function introduced early in this section, (7.3.3). We find a similar term for the
y? > 1% term in (7.3.13). Let us now set y = 0, without loss of generality. Using these expressions in
(7.3.14), multiplying both sides of (7.3.15) by —g"" + quzq and using (7.3.4), we find

) = [ 5
/ / dsé(s — /d4xe (x0)e=Px 4 @(—xo)ei”"‘} O(p°) pn(s) (7.3.17)

In the second step, we mtroduce the integration variable s along with appropriate -function in order to

£ / Ay el [@(xo)e*ip'x +®(—x°)ei”'x} O(p")on(p?)

utilize the Feynman propagator and then to carry out the x-integration.

Recall the Feynman propagator for a scalar with mass m is 83 % See, e.g. D. Tong’s QFT notes. We

implicitly define
inp(x;m?) = iD(x'm2)®( 0) + iD(—x;m?)@(—x%) ,
D(x —y;m?) = '/7(271)32]00 e ip-(x=y)

= (x0)e™P* 4 O(—x° eip'x}
/ 2m) 32;7 ) (=) pO=\/p?+m? with p° = \/FZ + mZ.

= l/(lZin};?’ O(p*)s(p? — m?) [@(xo)efip'x + @(—xo)ei”'x}

d4p e~ ipx
B /(271)4 m? — p? —ie (7.3.18)
with € > 0. Using this in (7.3.17) and carrying out the x integration,
2 ® Pn(s)
= [ ds———. 3.
) /0 ST e (7.3-19)
Just like we saw with the 1-loop QED vacuum polarization

I1(g?), 1, (%) has a branch cut on the positive part of the real
g%-axis, reaching the origin in the case of massless quarks. Else-

d3p

we find

where in the complex g2 plane, IT;,(4?) is analytic. One can make
use of this analyticity to carry out perturbative QCD calculations
with large space-like momenta, —g? > 1, in which case the running
coupling becomes small and the quarks and gluons are highly vir-
tual. Then one can analytically continue the result to large time-like
momenta for the eTe~ — hadrons predictions.

The final ingredient is to solve for pj, (%) in terms of the quantity \i
computed perturbatively. From (7.3.19) and the analyticity of pj(s) o
for large s, we can infer that the discontinuity in IT},(4%) across
the branch cut along the real g2 axis is as for the complex natural

c
logarithm, 27ti times the residue: :

M

o) = 5 [T +i6) ~ Ty (7 — i)

Figure 7.10: Analytic structure of
IT,(¢%) and contours of integration.
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with small § > 0. Taking the contour C; as shown in Figure 7.10, we
can use the fundamental theorem of calculus to write

a1 d
ouP) = g L deTIn(2).

27i

Defining D(—z) = —zL11,(2),

o) = 5 [ £D(=2)

z
1 T—0 .
= — 0 D(g%"
= [ D@ ")

having used Cauchy’s theorem for the integral over the closed
contour Cy + Cp. It is D(—¢?) which is calculated in the asymptotic
space-like limit —4% >> 1 and assumed is valid for all |§?| > 1 off of
the branch cut.

7.4 Deep inelastic scattering

Highly energetic scattering of electrons off hadronic targets, espe-
cially the proton, revealed that hadrons have structure; they are
composed of more fundamental particles. The data obtained in
early experiments exhibited scaling behaviour which hinted that at
high energies the hadronic constituents, at the time called partons,
were weakly interacting. As the previous sections described, the
asymptotic freedom of nonabelian gauge theories can explain this
behaviour. In fact, one of the successes of QCD has been to justify
the parton model and to reliably calculate corrections to it.

Let us consider an electron with 4-momentum p scattering off
of an initial state hadron H with 4-momentum P and mass M.
The electron scatters at an angle 6 relative to g and has final 4-
momentum p’. The hadron breaks up in to a final state X in which
we have no detailed interest. The scattering amplitude is given by

.M:<4&mwwm@fﬁﬂmmmmw (7.41)

The differential cross section can be found using (6.2.9). Working
in the hadron’s rest frame, the flux factor is |¥, — Oy|/V = 1/V and
we have

_ 1 dp’ 45(4) 1 2

We can separate the amplitude-squared into lepton and hadron
factors

1 4
2 LIME = S L HP) X)X H(P)
spins

where, treating the electron as massless,

Ly = Y a(p)yuu(pa(p)ru(p) = Te(yup )

spins

= 4(pupy + pupv — Sup-p') (7.4.2)
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Figure 7.11: Deep inelastic scattering of
an electron off of a hadron H.
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and

WE (0 P) = g 0w g+ P pr)HLIX) (X H(P).

(7-4-3)
If the hadron has spin, as it does in most such experiments, then
one should also include in (7.4.3) an average over initial state spins.
We now have the following expression for the differential cross

section ,
do 1 e
' = — LWy
d3p/ 8(27T)2EMq4 HVPTH

We can ascertain the Lorentz structure as in previous cases, using

Lorentz covariance, parity, and current conservation to write

gV p. p.

Wi (v, Q%) and W»(v, Q%) are Lorentz scalars and depend on Q? =
—q*> = 2p-p' = 2EE'(1 —cosf) > Oand v = P - g; in the rest
frame of H we have v = M(E — E'). If we treat the final state X as
an effective particle with 4-momentum Px = (/M% + P%, Px), then
Px = P+ g implies M% = (P +q)? and hence M% > M?. Therefore,
we see
0 < Q* <.
Use g#Lyy = q"Lyy = 0 in writing

LWy =8p-p'Wi +4(2p-Pp'-P — M?p-p" )W,
=4Q*W; + 2M?*(4EE' — Q*)W,.

Now let us focus on very high energies, taking Q?> — oo and v — oo,
introducing the following dimensionless variables which stay finite:

(7-4-4)

where x is known as the Bjorken-x and the final expression for y is
valid in the rest frame of H. Both x and y are bounded to be in the
interval [0,1]. Then

1—
LW ~ S8EM (xle + / uw2> ,

where we have neglected a subleading term 8EM (2xv/E) multiply-
ing W».
Performing the angular p’-integration

d*p’ — 2rnE”d(cos§)dE' = nmE'dQ*dy = 2mE'vdxdy

and the differential cross section can be written

do 4rra ) ) )
dxdy ~ OF 2ME [xy Fi(x,Q%) + (1-y)E(x,Q )} (7.4.5)
where F; (x, Q%) = Wi (v,Q?) and F(x, Q%) = vWa(v, Q%) are the
dimensionless structure functions for the hadron H.
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IT 1s USEFUL TO introduce light cone variables. For V and U arbi-
trary 4-vectors, we introduce components along the forward /backward
light-cone in the &;-direction

vE = V01 V3
along a 2-vector representing the transverse components
v, = (VL v?).
In terms of the light-cone variables the scalar product is
V-u = %(Wu— +Vvut)y-v, .U,

which implies the Minkowski metric tensor has components g =

-+ = %, S++ =8-— =0,and gij = —6jj fori,j = 1,2. A Lorentz
boost in the &;-direction transforms V* — e V+* and V| — V.
Let us choose a frame where P| = q, = 0.84 Then 8 Choose the rest frame of the hadron,
and rotate so that the photon is mov-
QZ — _ quq* ing in the &;-direction.

v = % (7P~ + g P).

Now we take the deep inelastic limit to be g~ — oo with g* =
O(PT), so that

q+ q—p+
X ~ ¥ and v ~ .
In this frame we have
_ P-g \?
Wi (q,P) = — Wy + (P—qﬂg) W,
2 v?
= -W; + <M +Q2> W
= Fi(x,Q%). (7.4.6)

In the deep inelastic limit

(@) ~ ~R(xQ) + 5 REQ).  G47)

The other longitudinal components of Wy are also related to the
longitudinal structure function

Wt (s P) = (q+)? F 2
H (q' ) - Q2 L(er )
(q)
Q2
This must be the case in order to satisfy current conservation (via
the Ward identities).

Wﬁ_(q/P) = FL(x/QZ)' e

LET USs USE ASSUME that the photon emitted by the electron inter- p O"; v
acts with a single constituent of the hadron, and that this electro- o /

magnetic interaction is unaffected by the strong interactions. This

approximation is called factorization, and the leading-order model Figure 7.12: Deep inelastic scattering

of an electron off of a parton inside
hadron H.
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we construct here is the parton model. Historically this model pre-
ceded the acceptance of QCD as the correct theory of the strong
interactions, but now we can associate the partons with quarks®5
and even use QCD to calculate higher-order corrections to the par-
ton model.

In the parton model, we assume that the virtual photon strikes a
single constituent, carrying momentum k before the interaction and
k 4 q after (Fig. 7.12). Now the sum over final states can be written
as the number of ways a parton could have been struck. Assuming
the partons (indexed by f) are massless, we have

FkOE)s(k*) Y.

qspins

Writing the electromagnetic current as J, ;l' =) % Q £ f'y” qf where Q f
is the charge of the parton, the hadronic contribution to the cross
section becomes

W™(q,P) = ; / KTe [WETy (P K) + Wi Ty ()] (7.48)

f ST f
with .
WE = Wi = Q3 W+ (K + %)
Lo r(Pk)g 25 (P —k — px) (H(P)|Gsa|X") (X' | 8| H(P))
T (P k)g 25 (P —k — px) (H(P)|g781X") (X G |[H(P))

with «, B spin indices.

,Yy,y/\,yv _ S;w)uc,YK + ie;w)uc,yK,)/S

with

S“LLV/\K VA Ax

= gMg™ + g™ — g
Also noting in the DIS limit ¥ 4 ¢ ~ %q")/+ then
Yty = (0 +iel'y).
Define functions for the integrals
> /d4k5 ( — x) ( Th,f(P, k)) = PPyg(x)
5 /d4k<$ < —x> Te (1T f(PK) = PHp(x).  (749)
Putting the pieces together3® we arrive at

Fi(x,Q%) ~ fZQf [qf + gr(x )} (7.4.10)

where g¢(x) and ¢ (x) are known as parton distribution functions
(PDFs).87 A similar calculation for F; (x, Q%) shows that it vanishes

% The gluons are electrically neutral, so
they do not interact directly with the
photon.

8 Prof. Osborn’s lecture notes
have some more details,
www.damtp.cam.ac.uk/user/ho/SM.ps

8 One way we can interpret x is to
work in a frame where the hadron’s
mass can be neglected. In this case,
from 0 = (k+¢)% = 2k - q + ¢°, we find
that x = k/P.
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in the deep inelastic limit, which implies that
Fy(x,Q%) ~ 2xF(x,Q%) (7.4.11)
2\A, 1\ 7-4-

a relation first derived by Callan and Gross.

We see in (7.4.10) and (7.4.11) that the parton model predicts
the structure functions F; and F, are independent of Q%: they do
not depend on the absolute centre-of-momentum energy of the
collision, but only on the ratio x = Q?/2P - q. This prediction is
referred to as Bjorken scaling, and x is often called the Bjorken-x.
Figure 7.13 shows a recent compilation of representative data for
the proton’s structure function F,(x, Q?).88 Indeed for a wide range
of x, the data are relatively independent of Q* over several orders
of magnitude.
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Figure 7.13: The proton structure
function F»(x, Q%) scaled by an x-
dependent factor 2/ (for the purposes
of plotting). For moderate values of
x, F, is nearly independent of Q2.
(Source: Particle Data Group)

8 M. Tanabashi et al. Review of
Particle Physics. Phys. Rev., Dg8(3):
030001, 2018. URL http://pdg.lbl.
gov/


http://pdg.lbl.gov/
http://pdg.lbl.gov/

78

THE PARTON MODEL IS justified within QCD by asymptotic free-
dom. The power of QCD comes in using the full theory to calculate
corrections to the leading order parton model description. We will
simply give a schematic outline of what happens in such calcula-
tions.

Consider a structure function F(x, Q?) (the story is the same for
each of them). At next-to-leading order in QCD, we must account
for the fact that the parton will have had an interaction proportional
to as before being struck by the photon. For example, it could have
radiated a gluon (Fig. 7.14) or it could have been a gluon which
pair-creates a quark-antiquark pair (Fig. 7.15).

1 d X 2

F(x,Q*) ~ Y / Y </Q2;‘XS> iy, ug) (7.4.12)
ictapapcy’> ¥ \Y HE

where fi(y, p?) is one of {q;(y, u%), (v, u?), G(y, u3)}.

F(x, Q%) must be independent of the unphysical factorization
scale yr. Thus, ur d%pl—" = 0 implies®

d Q? Ldy Q? (x )
—Ci|lx, =50 | = — / = Cily, e | P | -5
‘uFdIlF ( V% s) ; .y ] <]/ "M% s i y s

d
VF@ﬂ(yl ‘M%) .. (%, (Xs) f](zl ‘u}%) . (7413)

I
\... M
<
N |
Q’U

These equations are called the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP), or sometimes just Altarelli-Parisi, equations.

H

Figure 7.14: Deep inelastic scattering
of an electron off of a parton inside
hadron H.

Figure 7.15: Deep inelastic scattering
of an electron off of a parton inside
hadron H.

8 We used, for general A, B, the

fact that if Pld%Ai = —A;jP; and
y% (Al‘B,') = 0 then ‘u%B,‘ = PIJB/



8 Effective field theory

[This chapter is not being lectured in 2019.]

As we can infer from the preceding chapter, calculations in QCD
are difficult and contain subtleties, even in the perturbative limit.
Solving QCD in the nonperturbative regime is even more difficult.
While numerical methods using lattice field theory yield first prin-
ciples results in some cases, insight and accurate predictions can be
made using a framework called effective field theory.

Effective field theory exploits large separations in energy scales
in order to construct a simpler description of low energy physics.
We already saw a nice example in Fermi’s weak theory, an effective
description of the full electroweak theory, which exploits the large
mass of the W boson to describe weak decays at the scale of a few
GeV and below by local 4-fermion interactions. In that case it was
safe to expand the W propagator

1 1 z
S5 R 5 — PT + ...
pe — My
since the external momenta involved were small enough that the
nonanalytic structure of the W propagator played a negligible role.

Here we wish to build effective low-energy Lagrangians: a series
of local operators involving only light degrees-of-freedom. There
are several useful reviews of effective field theory (EFT) in the liter-
ature. The one by Georgi° explains the framework very well. The
next 2 sections follow lectures by Kaplan.9* Both of those works cite
other useful references.

8.1 Scaling dimensions of local operators

Since we accept that our effective field theory is valid only up to
some mass scale A we cannot use renormalizability as a constraint
to determine which operators can and cannot enter the Lagrangian.
In principle, there are an infinite number of terms which enter. Let
us write the Lagrangian, separating the kinetic energy terms from
the interactions

Lot = Liin + Y Lin -

Georgi refers to the last term as an infinite “tower of interactions.”
We will see that the infinite height of the tower does not trouble us
if we are simply interested in the view from finite heights.

9 H Georgi. Effective field theory. Ann.
Rev. Nucl. Part. Sci., 43:209-252, 1993
9D B Kaplan. Five lectures on effec-
tive field theory. 2005. arXiv:nucl-
th/0501023
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Recalling that observables may be computed using path inte-
grals, we can observe from the normalization factor (the partition
function of QFT)

7 = / D(fields) e’ J#x £

that the Lagrangian must have mass dimension 4 in order to can-

cel the dimensions of the integration measure.* Thus we write 9 The dimensional analysis throughout

£(n+4) this chapter relies on using 7 = ¢ = 1
int units. Minor changes are necessary

coefficients, with the dimensions made correct with factors of A for other systems of natural units

such as nonrelativisitic natural units

h=2m=1.

as a sum of dimension-n + 4 operators times dimensionless

(n)
(n+4) _ G (n+4)
ﬁir'ft - Zﬁoin :

We need to make a couple assumptions in order to proceed:
(n+4)

int
spondingly a finite number of independent operators.

1. There are a finite number of parameters for each £ , corre-

2. The coefficients of operators can be written as CX;) where the

¢ are dimensionless coefficients, at most of order 1, and A
represents some heavy mass scale which is independent of n.

If these assumptions are valid, then we can truncate the tower of
interactions depending on how far and accurately we want to see.
For a given dynamical energy E, contributions to observables from

(n+4)
L int
order ¢ then we must find the power 7, large enough so that

E\™
(E) =

N log(1/¢)
e ™ log(A/E) "

We see from this that we must increase . if we seek greater ac-

are corrections of order (E/A)". If we desire accuracy of

that is,

curacy (decreasing ¢) or if we wish to describe higher energy be-
haviour. We shall see later the important role symmetries play in
further constraining the types of operators which appear in L.

LET Us CONSIDER a real scalar field in 4 dimensions. Let us also
work in Euclidean spacetime where the path integral is well-
behaved. The effective Lagrangian which will describe physics up
to a cutoff scale A is generally represented by an infinite number of

terms which can be written93 93 We also assume the theory should be
invariant under ¢ — —¢.

_1 2, 1L 50 Ay
L_2(8<p) —|—2m¢ +4!¢>

o [ cn aton dn
+ Z:l AZn (P + A2n
n—=

(09)?p*" + ...| . (8.1.1)

Given that the mass dimension of £ is 4 and that of m and 9, is
1, the field must carry mass dimension 1. Therefore, as written



the couplings A, ¢, and d, are dimensionless. Let us assume here
that the theory is perturbative, so that all of these dimensionless
couplings are small.

Correlations functions in terms of path integrals are given by
expressions of the form

1
(1) = [Dogre-pue S

where S = [d*x L is the Euclidean action and Z = [D¢e~5. Be-

low we will give 2 arguments justifying an expansion which treats
lower dimension operators as the most important operators in the
effective field theory expansion, with higher dimension operators

representing small corrections.

Consider a specific field configuration ¢(x) which is localized in
a volume L* where L ~ 271/k, and k is a wavenumber (or momen-
tum). Take the amplitude of the wavelet to be ¢, and let us define
the dimensionless amplitude which is the ratio ¢, = ¢ /k. For fun,
an example wavelet is given in Figure 8.1.

For such wavelet field configurations we can crudely approxi-
mate the integrals of the terms in the Lagrangian (8.1.1) which sum
to give the Euclidean action. Since the wavelet only has support in a
volume L* = (271/k)* we can estimate

4. 270 422 2m\* 27,242
/dxm4> ~ L*m ¢y = + mk=¢y
[ (09)* ~ L4%gF = (271)*0F

2p+q—4 2p+q—4
([1\) . /d4x (0§)F ¢ ~ (2m)* (i) . gf),f+q. (8.1.2)

Then for this field configuration, the Euclidean action is given ap-
proximately by

22 242
N af P | M Ay
+ c () o+ d () P+ L.

For this field configuration, its contribution to path integrals be-

} . (8.1.3)

comes an ordinary integral over ¢. Due to the exponential factor
exp(—S), integrals will be dominated by values of ¢, which min-
imize S. In the perturbative regime, the quadratic terms in (8.1.3)
are the most important. In the relativistic theories which concern
us here, k > m and the kinetic energy term dominates. Thus S is
minimized for ¢, ~ 1/(271)? or smaller. Note that this condition is
independent of k.

As k is reduced, the terms in the square bracket of (8.1.3) are
reduced as (k/A)?", hence are called irrelevant, in the sense of the
renormalization group (which is the proper context in which to
view our arguments in this section). Of course some these terms are
likely not to be irrelevant for low energy physics, but we now see
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Figure 8.1: Radial part of the 4-d

wavelet

F(x) = pe(1 — 2% )e

_kZVZ
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how to rank them from least to most irrelevant. The mass term is

seen here to be relevant, since it becomes larger in the infrared. The

A¢* /4! term is termed marginal since at leading order we cannot tell

whether it is relevant or irrelevant; quantum loop corrections will

ultimately determine its behaviour.

A more general but less visual way to understand the relative importance of terms in the tower of inter-
actions is to consider scale transformations. Let ¢(x) now be an arbitrary field configuration, with action
S(¢(x);m?, A, cy,dy, . ..). Now consider the family of configurations related by a scale transformation
¢z(x) = ¢(&x). Defining x' = &x and ¢/ (x') = &~ 1¢(&x), we have the action for the scaled field as

S(9c(x)im A oy, ) =[x { (9(0)? + 3mP¢2(Ex) + (e
4-+2n (F
+ ;{cn‘l) AZ,(F ) 4
= [t ’{i(a%p( )
. Z{C UG e L C) UAC) S H 6.14)

(99(x))%9*"(6x)
e )

2 o (P + ()

2n A2n

Since x’ is just an integration variable, we can identify

S(p(Ex);m* A, cpydn,...) = S(E1P(x); E2m>, A, &y, Edy, ... (8.1.5)

Under scaling, we see how each term in L. behaves. As we take ¢ — 0 we expose the infrared “flow”
of the couplings in (8.1.1): ¢(x) = ¥ is mapped to ¢z(x) = et(eh)x,
We define the scaling dimension of fields and couplings by their
behaviour under scale transformations x +— x’ = ¢x. We use square
brackets as a symbol for scaling dimension, so if we say the scaling

dimension of some object y is equal to A, that implies:

yl =A = y—=E&ty. (8.1.6)
In the scalar field example we found [¢] = 1, [m?] = 2, [A] = 0,

Cn — | du
A2n| T | A2n
tion is that the scaling dimension is equivalent to the mass dimen-

= —2n. What we have seen from the above deriva-

sion. This is a consequence of using 1 = ¢ = 1. In nonrelativistic
units, the same ideas apply, but the details differ.

8.2 Rayleigh scattering

As a simple example with which we apply these ideas of effective
field theory, let us consider the low energy, elastic scattering of light
off of atoms or molecules. This Rayleigh scattering is usually treated
in classical electrodynamics texts. Here we show that we can get the
main result rather straightforwardly using EFT.

We assume, as is the case with sunlight scattering off of air
molecules in the Earth’s atmosphere, that the energy of the pho-
tons is much less than the smallest atomic or molecular excitation
energy AE:

E, < AE < 15! < Matom - (8.2.1)
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Here we also note that the energy scale needed to probe the size of

the atom94 is much higher than the excitation energy.9> The largest % ['m going to stop writing “or
scale in the problem is the atomic mass Matom, hence the atom is ;?F(l)"lec.ule.” o, )

Lo . R . ypically AE = O(a*m,) while
nonrelativistic. In fact we will treat the atom as static, i.e. its velocity 1/r = O(am,), where & = &2/47 is
is unchanged, to a very good approximation, by the scattering of the fine structure constant.
the photon.

In keeping with this, let ¢ be a field which creates an atom with
4-velocity v; in the atom’s rest frame v = (1,0,0,0). Since the atom
is neutral% ¢, does not couple to the photon field Ay directly, but % ¢y, transforms trivially under U(1)gy.

to the field strength tensor Fy,.

Now we are nearly ready to begin constructing the lower floors
of the tower of interactions. There are some simplifying factors
we should consider first, however. We know from the Maxwell
equation(s)-of-motion that 9, F#" = 0, so we need not include such
terms in our effective Lagrangian. Furthermore, if we insist the
atomic ground state have zero energy in the atom’s rest frame, then
there d;¢p, = 0 or v"dy, ¢, = 0. Similarly, using the nonrelativistic
kinetic energy operator, we can infer d;,0"¢, = 0.

The last ingredient we need are the scaling dimensions of our
building blocks. We still work in relativistic units, and in the static
limit the atomic mass does not enter anywhere, so the scaling di-
mension is again equal to the mass dimension. Thus [9,] = 1. From
the Maxwell Lagrangian £y = —1F, F* and [Lpy] = 4 we see
[Fuw] = 2. Finally [¢,] = 3 from considering the atomic wavefunc-
tion resulting from the creation operator ¢ (x)[0) = ¥ 4 (x)|A). Tak-
ing nonrelativistic normalization for the states, (0/0) = (A|A) =1
implies [d3x [¥4|? = 1, which confirms the dimensions work out as
claimed.

We now can write out the first few terms of the effective La-
grangian for Rayleigh scattering:

Lesi = Ly + g195¢0 FuwF" + g2 ¢F o 0" Fuyy vg PP
+ 83030 (00 Fu F* + ... (8.2.2)

Higher powers of v - d yield higher dimension operators, which are
more irrelevant.

Since [Leg] = 4, [§1] = [¢2] = —3 and [g3] = —4. Leading
order scattering is governed by the g1 and g, terms. We have mul-
tiple high energy scales (8.2.1) which we could associate with the
A of § 8.1. In the case of leading order scattering, we expect purely
classical scattering, and so the high energy scale making up the di-
mensions would more likely be the inverse atomic size 1/7 rather
than the excitation energy of the valence electron(s). Therefore we
assume g7 and g, are O(r3), hence we define dimensionless cou-
pling constants a; = g /73 and a, = g,/13, so that

Lo = Ly + ro(a1 phpo F ' + a2 iy 0 Fuy 0pFP!) . (8.2.3)

The cross section is proportional to the scattering amplitude
squared, i.e. proportional to |{7(k'), A| Lint|7(k), A)|?, s0 o = O(r§).
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Given that the cross section has dimensions of area, the mismatch
in dimensions must be made up by the only relevant dynamical
energy scale E,, so we deduce that

4.6
o x Eirg.

We see that blue light scatters more than red, and with a power law
that agrees with the full derivation in classical electrodynamics.

For higher energy photons, the leading order effective La-
grangian is not sufficient. Effects due to the excitation energies
of the air molecules start to become non-negligible for large enough

E,,
E4 6 1 O E"V
g 77"0 + E .

These arguments give a result which agrees with the full classical

calculation, up to constants of proportionality which need to be
determined by knowing the full theory (or perhaps by performing
experiments). In the case of Rayleigh scattering, the effective field
theory calculation has the virtue of being simpler. However, the
real power of EFT comes in being able to make progress when
calculations in the full theory are not possible.

8.3 Chiral Lagrangian

References for this section include 97 as well as the classic papers.9®

In QCD, it appears that SU(3)f is an approximate global sym-
metry which allows us to classify the light and strange hadrons.
The octet of pseudoscalar mesons have much smaller masses than
the rest of the hadrons. We can understand these particles to be the
Goldstone bosons which arise from the spontaneous breaking of a
larger, chiral symmetry SU(3); x SU(3)g.%°

Recalling the discussion of § 4.2, we can interpret the Goldstone
bosons as excitations of a specific vacuum configuration ¢y where
the field in a localized volume is transformed away from this vac-
uum to another. In the O(N) model with a spontaneously broken
vacuum ¢y = (0,0, ..., v)T, the excitations were those of the form

v+0(x)
We can think of the massless field 7;(x) as being localized trans-
formations away from the vacuum ¢y. Below we develop a more
general method for describing Goldstone excitations, using group

transformations § € G with § € H.
We proceed following the steps:

1. Goldstone fields should represent physical excitations — we want
them to create/annihilate asymptotic out/in states. Since the
Goldstone excitations correspond to local fluctuations from one

(8.2.4)

97 ] F Donoghue, E Golowich, and B R
Holstein. Dynamics of the Standard
Model. Cambridge University Press,
1992. Also 2nd edn. 2014; H Georgi.
Weak interactions and modern particle
theory. Benjamin/Cummings, 1984;
and S Weinberg. The Quantum Theory of
Fields, Volume II. Cambridge University
Press, 1996

%3S R Coleman, ] Wess, and B Zumino.
Structure of phenomenological La-
grangians. 1. Phys. Rev., 177:2239-2247,
1969; and C G Callan, S R Coleman,

] Wess, and B Zumino. Structure of
phenomenological Lagrangians. 2.
Phys. Rev., 177:2247-2250, 1969. DOI:
10.1103/PhysRev.177.2247

9 The fact that these mesons have
small rather than zero mass arises
from the small masses of the u, d,

and s quarks, and can be treated as a
perturbation.



vacuum to a different vacuum, the fields should correspond to
coordinates in the coset space G/ H.

2. The remaining symmetry corresponding to H should be mani-
fest.

3. The effective Lagrangian should be invariant under G.

Our notation below foreshadows what happens in QCD, which

has Lagrangian with chiral symmetry — under separate left- and
right-handed transformations — but has axial-vector combina-
tions broken by a nonzero expectation value for the chiral con-
densate (0/7g|0), leaving a remnant symmetry under vector-like
transformations. (This will be discussed more precisely later.)
Let us denote the generators of the unbroken subgroup H as V*
and the remaining generators of G as A’ (@ = 1,...,dim G and
b=1,...,dim G — dim H).

Let us write an element of G, g € G as '°

g = v APV (8.3.1)

Since the Goldstone excitations are local misalignments in group
space (away from the coset eH, where e is the identity of G), they
can be represented by coordinates ¢(x) on the coset space G/H. At
each point we can imagine the excitation as a group transformation
on the vacuum of

elt)A (8.3.2)

The ¢(x) fields will be related (up to a dimensional factor) to the
fields that create/annihilate Goldstone bosons. However it is easier
to make the symmetry properties manifest working with elements
of the group G than of its corresponding algebra.

If we perform a general group transformation gg € G on our
field

goeigz‘l — eigl-Aeiul<V (833)

the result being a field with elements in both G/H and H (&' (x)
and u’ depend on &(x) and go). Let us check the behaviour under
group multiplication. If we similarly write

g1l A — il Agu"-V (8.3.4)
then
2180 PlEA eié”'Aeiu/”-V (8.3.5)
where eV = ¢it"Vei''V e see that choosing to write group

elements as products of elements of G/H and H (8.3.1) allows us to
factorize transformations.

As usual, we assume we are working with orthogonal generators
so that Trt?t” o« §%°. Then the commutator [V?, A/] is in the span of
the generators A/:

[V, Al] € span(A). (8.3.6)
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** Note that this is equivalent to
exp(iy-A+1i6-V), where ¢y # a and
0 # B because the generators generally
do not commute. Nevertheless we
know there do exist 7y and ¢ so that
(8.3.1) holds due to closure of the Lie
algebra of G. In other words, both

(a, B) and (v, 6) are valid choices for
coordinates on the group manifold.
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This can be checked by showing Tr([V?, A’|V") = 0 using the
closure of the subalgebra [Vi, Vi'] = ifi'" "  Therefore for h =
eiu~V €H,

hel6()A = o' ()-Ap, 8.3.7)

(*)A with an element h of the invariant

In words, commuting e®
subgroup only alters the transformation in the coset space, not on
the subgroup manifold due to (8.3.6). Right-multiplying (8.3.7) by

h~1 we get

ol6 () A _ i (x)-Ap =1 _ piuV pig(x)-Ap—inV (8.3.8)

Now we need to bring in a further symmetry property of QCD.
Here G = SU(3); x SU(3)gr and H = SU(3)r. Sometimes this
is also written H = SU(3)y because the vector symmetries are
preserved while the axial-vector symmetries are broken. Writing the
generators of SU(3); x SU(3)g as L* and R?, then the generators
of Hare V* = }(L% + R“) with the generators A = 1(L* — R")
broken.™*

Consider an automorphism g — R(g) which takes L* — R* and
R* +— L% and hence V* — V% and A® — —A®. This is a simple
relabelling of left and right, which should leave the QCD physics
invariant. We will make use of this below.

Let us return to the result of left- multiplying by ¢ € G. From

(8.3.1)
gef (A APV it (x)A
o8 () A iV (83.9)

where in this instance we write exp(i¢’(x) - A) as the product of
exp(ia - A) and the result of applying (8.3.8). Applying the auto-
morphism (flipping the sign of A but not V) and in the next line
inverting the result

Rigle 04 = o iEAdBY
AR = eIV i A (8.3.10)

using R~1(g) = R(g!). Multiplying the latter lines of (8.3.9) and
(8.3.10) we arrive at

gt AR(g™!) = 24 (8.3.11)

Finally, writing using ¢ = ¢/*“¢’f"V and R(g~!) = e FVel* 4 we
arrive at
Q28 (x)-A

eioc'AeilB'VeZié(x)~Ae—iﬂ~Veia'A ) (8.3.12)

This important results tells us how the field of coset elements trans-
forms under transformations ¢ € G. Note the important plus sign
in the last exponent. If it were a minus sign then we would have
shown exp(2i¢ - A) transformed linearly under G (we would have
had a similarity transformation k' = gkg*.) Of course we want to
describe a theory where this is not the case, so (8.3.12) is appropri-
ate.

ot We could use more explicit notation
to emphasize on which part of the
direct product group the generators
act: L = T"®1and R? = 1® T%,
where T" are generators of SU(3).
With this notation it is clear that

[La, Lb] — ifabCLC, [Ra, Rb] — ifabcRcl
[L%, RY] = 0.



It is conventional to work with dimensionful fields, so let us
introduce a constant F which carries mass dimension 1, so that

1 1
(x)-A=_"(x)A" = fH”(x)t” = fH(x). (8.3.13)
In the case of 3-flavour QCD,'* with quarks transforming in the
fundamental representation of SU(3), the IT field which can be

identified with the SU(3)r octet of pseudoscalar mesons (by suppo-

sition) as
o + +
wtE 7 K
_ 0
I1 = T —% + % K? (8.3.14)
K~ RO X
6 7

where we assumed the Gell-Mann basis for the generators, t* =
T% = A%/2 (see Note 76). From this, we can determine the coeffi-
cients IT%, for example IT' = 77+ + 77~ and I1? = i(nt — 717).

This IT field satisfies the requirement that it transform linearly
under SU(3). Setting « = 0 in (8.3.12)

. . ) © 1 . 271N\ " .
V 2ill/F,—igV _ v _iBv
elPV 2/ E p=if Vo n;() Eelﬁ (P) eiP
-y 1 (eiﬁ-VZineiﬁ-V)n
a= 1! F
Il /F (8.3.15)

where IT = ¢/#VI1e=#"V as required.
Let us write & = ¢Z1/F aswell as U; = e 4¢PV and Ug =

e AePV then (8.3.12) becomes

Y = U zuf. (8.3.16)

In the case thata = 0, Uy = Ur = Uy, and (8.3.16) is just a
similarity transformation leaving the vacuum invariant, reflecting
the unbroken symmetry of H, in this case SU(3)r. For a # 0, the
transformation takes us from one vacuum to another.

THE EFFECTIVE LAGRANGIAN still must be invariant under the full
symmetry group of the full Lagrangian, SU(3);, x SU(3)r in QCD.
Given (8.3.16), we can infer operators in the effective Lagrangian £,
must have ¥ and © appearing in pairs. Since the operators should
be scalars, terms should be traced over SU(3) indices.

The final observation we should make before writing down the
Lagrangian is that the scale at which chiral perturbation theory
breaks down, generically labelled A, is not known a priori. One
might use the experimental observation that the vector mesons,
e.g. the p meson, cannot be Goldstone bosons,’® to suggest A, ~
my = 770 MeV. Another argument might be that Ay ~ 47F. In fact
this is up for debate. One must examine the convergence of chiral
perturbation theory empirically.
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*2If one in interested in energies
where strange mesons play no role,
one might work only with 2-flavour
QCD and develop the chiral perturba-
tion theory of SU(2)-isospin. Mesons
with heavier quarks (e.g. c, b) are too
massive to be treated as approximate
Goldstone bosons.

103 Recall Goldstone bosons must have
spin o.
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Now we write down the leading order chiral Lagrangian. The
lowest dimension term we can consider is dimension o, but it is too
trivial: Tr='E = 3. The next highest is dimension 2

LO F? +
Ly = ZTr 9, Xol'L". (8.3.17)
The normalization here yields the canonical normalization for the
I kinetic energy term, i.e. 10,IT°9"T1%, when the X(x) field is
expanded about small IT%(x)/F. One can also examine the leading-

order strong interactions between Goldstone bosons after expand-
ing out X(x).

THE WHOLE POINT OF using the chiral Lagrangian, indeed of using
any effective Lagrangian, is to replace the more complicated full
Lagrangian with a tower of simpler operators. As long as we look
at low energy processes, the results of calculating Greens functions
should be nearly equal. A convenient method for carrying out this
matching between full and effective theories makes use of external
sources. Therefore, let us introduce the following external sources

lu(x) = ég(x) + Zﬁ(x)T“ , ru(x) = r%(x) + rZ(x)T” ,
s(x) = s%(x) +s"(0)T", p(x) = p°(x) +p"(N)T*,  (8.3.18)

corresponding to left-handed, right-handed, scalar, and pseu-
doscalar sources, with T* being generators of SU(3)r in the fun- ©4E.g. the Gell-Mann matrices A"

damental representation '*4. These enter the QCD Lagrangian as (Note 76).

1 _ . _ .
= g B E" 4 qy"(iDy = Lu)gr + Gry" (iD= 1u)qR

— qu(s+ip)qr — qr(s —ip)qL. (8.3.19)

src _
‘C QChD —

Take care to note the different spaces in which terms operate: e.g. in
the second term iD* has SU(3), indices but is diagonal in flavour
while ¢# is diagonal in colour but is generally nondiagonal in
flavour. These sources represent probes external to the QCD sec-
tor of the standard model. We will see shortly that the insertion of
a weak current or an electromagnetic current can be represented by
using ¢, or v, = {; + r,, respectively.

When we say we match the effective theory to the full theory, we
mean that we require the generating functionals of the two theories
to be equal (in the low energy limit, up to some finite precision).
Usually we work with the generating functional W(¢,, 7y, p,s)
which gives the connected Green’s functions and is related to the
generating functional for all Green’s functions via iW (£, 7y, p,s) =
log Z(£y, 1, p,s). In the full theory,

W (lurups) — / D D DAY o T* 8@ Awburirs) (8.3 20)
while in the effective theory

eMtururs) = [Dy oL E s (3321)
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The next step is to determine how to introduce the external
sources into the effective Lagrangian. We do this by observing that
the QCD Lagrangian with external sources (8.3.19) can be invariant
under local SU(3); x SU(3)g transformations

qu(x) = UL(x)qr(x), q(x) = q(x)U] (x)
gr(x) = UR(x)qr (%), Gr(x) = JR(X)UE (%) (8.3.22)
provided that the external fields transform according to
Cu(x) = UL(0)6 (UL (x) + (9, U (x)) UL (x)
ru(x) = Ur()r(x) U (x) +i(9,Ur (x)) U (x)
(s+ip)(x) = UL(x)(s+ip)(x)Uk(x). (8.3.23)
In particular, note that £, (x) and 7, (x) transform just as SU(3)r r
gauge fields and enter the covariant derivative accordingly.

The chiral Lagrangian can be expanded to include the external
sources, where under SU(3); x SU(3)r gauge transformations
(8.3.16) becomes

% (x) = UL(x)Z(x) Uk (x).
The external field transformations (8.3.23) restrict the terms which
can appear in the gauge invariant chiral Lagrangian to be

r? F?
£ye = L TD,x DrEY 4 ZTr(;@* +2xh (8.3.24)
where
X = 2By(s+ip)
for some constant By which has mass dimension 1, and
D' =9,=" + ir, =t — ix'e,. (8.3.25)
The covariant derivatives are constructed so that D, X transforms in

the same way as X.

This procedure of enforcing SU(3); x SU(3)r gauge invari- 5 H Leutwyler. On the foundations
of chiral perturbation theory. Annals

ance is equivalent (in the absence of anomalies) to satisfying Ward
Phys., 235:165-203, 1994

identities and can also be modified to deal with anomalous Ward

identities.’®>

Just to give an idea of what lies beyond leading order, here is the next-to-leading-order (NLO) term in
the chiral Lagrangian:

L9 = oy Tr(D,Z D'E")? + aTr(D,Z DX Tr(DFE DY) + a3Tr(D, % DFE'D, 2 D'E")

+ agTr(D,Z DFENTr (X2 + Zx") + asTr[D,Z DFEF (x=F + 2x 1))
2 2

+ a6 [Tr(E+ 52N + a7 [T E - 2| + aTr (1122 + (2107

+ iagTr(L,uyD'E DVEY + R,y DYE DVEY) + ayoTr(LyyZ RMEY) (8.3.26)

where L, and Ry, are the field strength tensors for the external left- and right-handed sources

Lyy = 9uly — duly +illy, by)]
Ryy = Oury — 0yry +i[ry,1y]. (8.3.27)

Determining these coefficients «; (traditionally denoted with ¢; or L;) is an area of active research, both
experimentally and using lattice QCD.
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8.4 A few uses of xPT

If we set £, = r, = p = 01in (8.3.19), then we have

1 )
Fu F*M + q(ilp —s)q. (8.4.1)

[se — =
QCD 4

This is equivalent to the Lagrangian for massive QCD (7.1.1) when
the scalar source s(x) is set equal to the mass matrix

my; O 0
M= 0 mg O
0 0 myg

Fixing s(x) in this way explicitly breaks SU(3); x SU(3)r down
to SU(3)r. We say this is a “soft” symmetry breaking, because
the quark masses are small compared to Ay. The effect of this is
to make the Nambu-Goldstone bosons become pseudo-Nambu-
Goldstone bosons with finite mass. The story of why the light
mesons are so light remains qualitatively true, with small correc-
tions due to the small quark masses.

The masses for the pseudo-Nambu-Goldstone bosons can be
read off from the s(x) = M term in (8.3.24):

2 2
%Tr(xz* +2x") = %Tr[M(Z +xh].

Expanding out ¥ = exp(2iI1/F) and focusing on the quadratic
terms yields

1 - 1 -
5 (- ma) Bo(|7rF 24707 ) + 5 (mu+m) Bo (K 2+ [K72) + ...

Thus, leading order chiral perturbation theory predicts the Nambu-

Goldstone boson masses depend on the quark masses as'® 196 These are known as the Gell-Mann-
Oakes—Renner relations.

B
m%y =m%. = Bo(my +myg), m% = ?O(mu—kmd—o—élms)
m%(i = Bo(my +ms), m%(O = Bo(mg +ms). (8.4.2)

Using experimental data for the meson masses, then gives a leading
order prediction for the ratios of quark masses. Since the “isospin”
splittings, i.e. those due to swapping up and down quarks, are
small compared to splittings due to swapping either up or down
with strange, we can make a decent approximation by assuming
m, = my. Writing the average up/down quark mass as 1, we
obtain

o omy 1

ms  2m% —m% 26’
Also in this approximation we can obtain the Gell-Mann—-Okubo

relation

1
my, = 5(4m%< —m2).



INn QCD, THE SCALAR quantity which gets a nonzero vacuum ex-
pectation value due to spontaneous symmetry breaking is the chiral
condensate, (0/Gq|0). Substituting u, d, or s, may lead to different
values for the corresponding condensates. Looking at (8.3.20) and
(8.4.1), we see that we can obtain the chiral condensates from differ-
entiating the generating functional

oW
5si]-(x) 5=0

= —(0]7:(x)q;(x)|0)

where i,j = 1,2,3 are flavour indices.’7 If we are interested in
studying the spontaneous symmetry breaking itself, we wish to
find the chiral condensate for s — 0. We may also be interested in
the physical case where we instead set s = M. Since we are able
to approximate (8.3.20) by (8.3.21), we find that at leading order,
expanding X(x) ~ 1+ ...,

(017;(x)q;(x)|0) = —F?Byd;. (8.4.3)
WE cAN Usk THE chiral Lagrangian (8.4.1) to determine the leading
order hadronic matrix element governing weak decays, e.g. ™ — e?,
as in § 6.4. Notice that we can obtain left-handed currents with any
flavour structure using

, Ldep _ ]

fulx) = - aza%?(x) = T = arz(1-9°)T"q.

(8-4.4)

For example the Standard Model weak current (6.4.1) 108 which is
indeed external to QCD,

Ju = avu(Vigd + Viss)
can be written
o = Vaaly + i) + Vas(ip + i73).

Now to derive the weak current within chiral perturbation the-
ory, we differentiate (8.3.24) with respect to the left-handed sources

a0
I aﬁ””(x)
iF?

= - 5 T(T'E 9,z
F
= _Ea;,n” + ..
having used 9, (ZX") = 0 to rearrange and combine terms, and
then, after expanding ¥ and keeping only the leading nontrivial

term, Tr(T°T?) =
current governing 7t~ leptonic decay is

%(5’”’. Finally we conclude the leading order

F . _
Ju = 7Vud§a]4(nl+ln2) - - udFa}ln ,

(8.4.5)

(8.4.6)
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97 Instead of differentiating with
respect to the matrix elements of

s = s¥ 4+ 5%T?, one could differentiate
with respect to the coefficients of each
term as appropriate. For example,
noting that we can use the Gell-Mann
matrices T? = A" /2 (Note 76) to write

1.0 0
0 0 0 :%<§1+A3+LA8>
0 0 0 V3

we find

Oau(I0) = - [3 sty

oW 1 5W}

653 (x) + V30s8(x) ]

18 Here we consider only the 3 quark
flavours relevant for chiral perturba-
tion theory.
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using (8.3.14). Acting with ], on a 71~ state with definite momen-
tum p yields the matrix element

<0|]y|7T7(P>> =—VwFpu. (8.4.7)

Thus we can identify, at leading order in the chiral expansion, the
F appearing in the chiral Lagrangian with the pion decay constant

introduced in (6.4.3).1%° 99 The final two subsections have not
been checked for consistency of factors
of v/2 and i etc. compared to the rest
of the notes.
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