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We evaluate theoretically and confirm experimentally the shape of the fluid envelope
resulting from the input of relatively heavy fluid at a constant rate from a point source
at the base of a homogeneous porous medium. We determine that in three dimensions an
initially expanding hemisphere transitions into a gravity current flowing over the assumed
rigid, horizontal, impermeable bottom of the porous medium. We show that a range of
increasing transition times occur if defined by extrapolation of the relationships in the
two extreme regimes (hemispherical shape and by gravity current) so that they intersect
for: the ratio of buoyancy to fluid resistance; the horizontal extent of the fluid; the ratio
of height at the centre to the radius; and just the height at the centre. The study is also
taken over to two-dimensional geometries. Experiments in a Hele Shaw cell agree well
with the theoretical predictions. The results are extrapolated to consider flow in a two-
layer system - in order to begin to understand effects due to a vertically heterogeneous
pore structure. We sketch, and verify by experiment, that an expanding hemisphere in a
lower layer can reach a much more permeable upper layer and flow as a gravity current
- thereby uniting the two regimes.

1. Introduction

In many natural and industrial situations, relatively heavy fluid is continuously intro-
duced at the base of a porous medium. The importance of this situation has lead to a
whole series of laboratory experiments being undertaken to simulate such occurrences.
Recently there has been an additional series of papers and laboratory experiments by
authors from different groups motivated by the societally important problem of carbon
sequestration, the final part of carbon capture and storage (CCS). To mitigate the effects
of global warming, attributed to the current anthropogenic annual worldwide emission of
37 billion tonnes of carbon dioxide (CO2), numerous groups around the world are eval-
uating how to store super-critical, liquid-like, CO2 at depths in excess of 800m (roughly
the depth associated with the pressure and temperature needed to compress CO2 to the
super-critical state). The CO2 is relatively less dense than the surrounding, interstitial
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brine and so it rises like a buoyant plume until it encounters a relatively impermeable
cap rock and spreads beneath it as a gravity current in a porous medium (see Huppert
& Woods 1995, Bickle 2009 and Huppert & Neufeld 2014 and references therein for fur-
ther information). Almost all the confirmatory laboratory experiments have employed
the inverted situation of relatively heavy, salty water intruding into a porous medium
with pure interstitial water to simulate the resulting flow.

There are situations in the Earth where dense fluids discharge into regions containing
lower density interstitial fluids in permeable geological media. An important example
occurs during discharges of high temperature fluids from magma chambers. These flows
can cause discharges of gases at volcanoes and are associated with formation of metallif-
erous ore deposits. While the overall density of the fluids is less dense than surrounding
ground waters they characteristically exsolve dense brines, which can separate and then
displace surrounding fresh water in permeable crust.

One of our conclusions is that because the parameter values describing typical labora-
tory situations are very different from those describing realistic geological situations, the
form of flow can be somewhat different. We demonstrate, both theoretically and experi-
mentally, that the flow, assumed to issue from a point source at the base of a semi-infinite
porous medium of constant permeability at constant rate Q, first spreads in the form of
a hemisphere of steadily increasing radius [the radius a(t) ∝ t1/3 where t is time] with
gravity, and hence the density difference between intruding and interstitial fluid, irrele-
vant, as is the viscosity of the fluids and permeability (rather than porosity) of the porous
medium. A sketch of this and the subsequent flow make up figure 1. An ever increasing
parameter we call the Alison number, A(t), which reflects the importance of gravity and
is a function of time, initially increases as A(t) ∝ t2/3, becoming comparable to unity at
around t/T = (18πφ3)−1/2, where T is the intrinsic time scale given by T = (Q′/β3)1/2

with Q′ = Q/φ, the buoyancy speed β = ∆ρgk/(φµ), where ∆ρ is the density difference
between intruding and interstitial fluid, g the acceleration due to gravity, k the perme-
ability, φ the porosity and µ the dynamic viscosity. Roughly around this time the flow
transitions to a basal-hugging axisymmetric gravity current with radius rN (t) ∝ t1/2, and
height of the form h(r, t) ∝ f [r/rN (t)] for some function f(x) ≈ (1−x), as has been well
documented previously (Lyle et al. 2006). Thereafter A(t) steadily continues to increase,
but like t1/2. Another important parameter is the mean slope of the intrusion, denoted
by γ(t), and defined by the ratio of the effective height over the input point h(0, t) to the
radius a(t) [= h(0, t) initially and rN (t) finally]. Until the flow transitions to a gravity
current γ(t) = 1, thereafter it approaches γ = 0.58(t/T )−1/2.

Interestingly, using typical values for the laboratory T ≈ 1 sec, far too short for the first
regime to be easily seen. However, for some illustrative geological values of the parameters
(∆ρ/ρ ∼ 0.1, ν ∼ 10−6m2s−1, φ ∼ 0.05, k ∼ 10−15m2, Q ∼ 10−5m3s−1) ta ∼ 103 yr, a
rather different result. (More detailed figures are given in table 1).

We start in the next section by considering, in axisymmetric geometry, the initial
response of an expanding hemisphere. We then recall the previously obtained solutions
relevant to a gravity current obtained by Lyle et al. (2006) using D’Arcy’s flow law (Bear
1972, Phillips 1991)

∇p = µu/k − ρg, (1.1)

where p is pressure and g the (vectorial) acceleration due to gravity. We show that
the second term on the right-hand side of (1.1) is initially negligible and using just
conservation of volume, we present the form of motion in the resultant hemisphere.

We define A(t) to be the ratio of µ/k to ρg and evaluate its dependence on a suitably
non-dimensional time for the two regimes. We determine where they intersect, denoted by
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Figure 1. The typical responses to an input flux Q of heavy viscous fluid into a porous medium
above an impermeable horizontal boundary. Initially the flow is in the form of a hemisphere
(semi-circle for a two-dimensional situation) of radius a(t) which transforms into a gravity
current of horizontal extent rN (t) and height above the input of h(0, t), where t is the time since
initiation of the flow.

tA. As far as this ratio is concerned, the flow is dominantly hemispherical for t� tA and
dominantly a long, thin gravity current for t� tA. We repeat this process to determine: ta
(based on the radius of the resulting flows; tR (based on the height at centre) and tγ (based
on the ratio of height at the centre to radius - a proxy for the slope). We find that there
is a wide disparity between these time scales. For the axisymmetric situation, in terms
of a suitable timescale T, tA/T = 0.0081 < ta/T = 0.094 < tγ/T = 0.34 < th/T = 0.63.
For the two-dimensional case, in terms of a slightly differently defined timescale T2, we
find that tA/T2 = 0.0043 < ta/T2 = 0.025 < tγ/T2 = 1.03 < th/T2 = 38.

We present numerical values of tA, ta, Tγ and th for typical parameters relevant to
the laboratory, for which T is approximately 20s, and the field, for which T can be
as large as 8500 years. We discuss, briefly, how to extend our results to flows in some
vertically heterogeneous porous media, and present a somewhat dramatic experimental
photo of how a relatively permeable upper layer can be a quite different flow regime from
a relatively less permeable lower layer. We end the paper with a brief summary.

2. Hemispherical growth, A(t)� 1

Initially, as we have already stated and will demonstrate below, gravity is negligible.
In a porous medium momentum effects are also negligible and there can be no difference
between flow resistance in any direction. This is in complete contrast to the motion of
high Reynolds number turbulent plumes (Morton, Taylor & Turner 1956), where a flux
of relatively heavy fluid rises as a mainly vertically oriented, slowly expanding plume, to

a height of 1.85M
3/4
0 F

1/2
0 , where M0 is the momentum flux and F0 the buoyancy flux at

source, before falling back to the base to spread as a high Reynolds number, axisymmetric
gravity current (Turner 1973, 1986, Simpson 1987, Ungarish 2009).

In the current case, conservation of volume dictates that

2

3
πφa3 = Qt (2.1)

or

a(t) =

(
3Q′

2π

)1/3

t1/3, (2.2)
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where Q′ = Q/φ, from which it follows that

ȧ = (Q′/18π)1/3t−2/3 (2.3)

and thus, by continuity,

u(r, t) = ȧa2r̂/r2 = Q′r̂/(2πr2), (2.4a, b)

where r is a radial co-ordinate and r̂ the unit vector in the radial direction. Hence, by
integration of (1.1)

p = µa2ȧ/(kr) + p0 (2.5a)

=
1

2π
µQ′/(kr) + p0, (2.5b)

independent of time, where p0 is a constant reference pressure.
In the gravity current regime, the following relationships have been determined (Lyle

et al. 2006).

rN (t) = 1.16(βQ′)1/4t1/2 (2.6)

h(r, t) = (Q′/β)1/2Φ[r/rN (t)] (2.7a)

≈ 0.67(Q′/β)1/2(1− r/rN ), (2.7b)

for some function Φ(y), which does not have a closed form, analytical solution and β =
∆ρgk/(φµ).

Actually, h(r, t), as determined by similarity theory, has a logarithmic singularity at
r = 0 and so h(0, t) is infinite (for the similarity solution). However, away from r = 0
the shape is so well represented by the linear representation of (2.7b) that we write

h(0, t) = 0.67(Q′/β)1/2. (2.8)

The accuracy of this expression can be seen from the fact that

1

3
πr2Nh(0, t) = 0.94Q′t (2.9)

rather than the correct value of Q′t. Thus using (2.6), we can write

γ(t) = 0.58(Q′/β3)1/4t−1/2. (2.10)

In terms of the time and length scales

T = (Q′/β3)1/2 and L = (Q′/β)1/2, (2.11a, b)

both of which are increasing functions of each of the flux rate and dynamic viscosity, and
decreasing functions of each of the permeability and density difference between intruding
and intruded fluid, these become

a/L = (3/2π)1/3(t/T )1/3 (2.12)

rN/L = 1.16(t/T )1/2 (2.13)

h(0, t)/L = 0.67 (2.14)

and

γ = 0.58(t/T )−1/2. (2.15)

We define A(t) as the ratio of the effects of gravity, ∆ρg, to the effects of flow, µu/k,
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where u is a suitable velocity, and therefore

A(t) = k∆ρg/(µu). (2.16)

Substituting u(a, t) from (2.4), we determine the value of the Alison number for the first
period of the flow, A1(t), as

A1(t) = 2π(βφ/φ′)a2 (2.17a)

= (18π)1/3βφQ′−1/3t2/3 (2.17b)

= 18π1/3φ(t/T )2/3. (2.17c)

For the second period, the effective u is given, in order of magnitude, from (2.6) by

u = 0.58(βQ′)1/4t−1/2 (2.18a)

= 0.58LT−1(t/T )1/2 (2.18b)

and so

A2(t) = 1.72(β3/a′)1/4t1/2 (2.19a)

= 1.72φ(t/T )1/2, (2.19b)

suggesting that the time of transition, tA, between the first and second period, as far as
the Alison number is concerned, is given by (A1 = A2)

tA/T = 0.0081 (2.20)

at which time

a/L = h/L = 0.157 (2.21)

and therefore gravity begins to become important at less than one hundredth of the
timescale T with a transition that occurs well before A2 = 1.

Alternatively, a different time for transition, ta, may be defined by a = rN which is
given by

ta/T = 0.0936, (2.22)

with

a/L = h/L = 0.355, (2.23)

indicating the flow begins to look like a gravity current after less than one tenth of T .
Additionally, we could consider the transition time, tγ defined by γ(tγ) = 1, where γ is

given by the expression valid in the second gravity current regime (2.6) and (2.8), which
leads to

tγ/T = 0.336, (2.24)

at which time

a/L = R/L = 0.543. (2.25)

Graphs of A(t)/φ, h/LrN/L and γ are presented in figure 2, wherein somewhat sur-
prisingly, tγ < th. Finally, we can evaluate the time th at which the height over the input
takes the same value in the relationships for the two different phases as

th/T = 0.629, (2.26)

at which time

rN/L = 0.92 and h/L = 0.67. (2.27a, b)
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Figure 2. A/φ, rN (t), h(0, t) and γ(t) = h(0, t)/rN for the initial and final responses in an
axisymmetric situation. The points where the curves meet are depicted.

3. A Hele-Shaw cell

The consideration of a thin Hele-Shaw cell (Batchelor 2000, Huppert 1986 and Huppert
& Wooods 1995) leads to a very similar exposition, though quantitatively different from
the axisymmtric situation. The description will hence be brief.

In the initial stages, when gravitational effects are irrelevant, conservation of volume
dicates

1

2
πa2 = F ′t, (3.1)

where F is the constant two-dimensional input rate and F ′ = F/φ. With length and time
scales of

L2 = F ′/β and T2 = F′/β2 (3.2a, b)

(3.1) becomes

a(t)/L2 = (2/π)1/2(t/T2)1/2. (3.3)

Using (4.14), (4.15) and (4.17) of Huppert (1986) and (3.13) of Huppert & Woods (1995),
we can write for the second period, when gravity dominates,

xN (t)/L2 = 1.48(t/T2)2/3 and (3.4a)

h(0, t)/L2 = 1.46(t/T2)1/3 so that (3.4b)

γ = 1.01(t/T )1/3. (3.4c)

Thus

A1(t) = (2π)1/2φ(t/T2)1/2 and (3.5a)

A2(t) = 1.01φ(t/T2)1/3. (3.5b)

Proceeding as before, we determine that

tA/T2 = 0.00428, ta/T2 = 0.0246, tγ/T2 = 1.03, th/T2 = 37.5. (3.6a, b)

We note the considerably wider range of these changes over time in comparison to
their axisymmetric counterparts.

Figure 3 presents the curves outlined in (3.3)-(3.5). We see that qualitatively the results
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Figure 3. The two-dimensional experimental data compared with the two asymptotic curves
for a) A/φ, b)rN and c) h and d, γ.

for the axisymmetric and two-dimensional geometries are similar, though quantitatively
they are quite different.

4. Numerical values

To get a feel for the various time scales, we present numerical values in tables 1 and
2 using typical laboratory and geological values. The time scales in the laboratory are,
unsurprisingly, much less than those in the Earth. However, those for the laboratory
are so short that the first regime would typically be a very small, initial part of any
experiment, partially influenced by details of the input conditions, such as the radius of
the input conduit [HEH include a, h @ various t/T?] However, those in the Earth, for
realistic values, vary considerably, over many orders of magnitude. For the larger ones,
other processes can occur such as chemical reactions with the surrounding rocks that
can either increase or decrease permeability, as well as crystallization of the magma or
even complete solidification. Extensions to our first-step model would then be needed;
and will be preserved in the future elsewhere.

5. Experimental analysis

We conducted a series of laboratory experiments in an effectively two-dimensional
acrylic tank of length 200 cm, height 25 cm and width 1 cm, as illustrated in figure 4.



8 H.E. Huppert, R.S.J. Sparks, S.S. Pegler and A. Rust

T(s) T (yr) tA ta tr th

5.00e+10 1580 12.8 148 532 996
1.58e+11 5010 40.6 469 1680 3150
2.74e+12 86780 703 8120 29200 54600
7.91e+06 0.25 0.00203 0.023 0.084 0.158
2.50e+07 0.79 0.00642 0.074 0.266 0.498
4.33e+08 13.7 0.111 1.280 4.610 8.631

1.00 1.00 0.00810 0.094 0.336 0.629

Table 1. The various time scales for axisymmetric flows, in years, except for the last two
lines, 3a,b, which is in seconds, for the following cases with ∆ρ/ρ = 0.01, g = 10m1s−2

and ν = 10−6m3s−1. 1 φ = 0.05, k = 10−15m2, for which β = 2 × 10−9ms−1.
2 φ = 0.25, k = 10−12m2, for which β = 4 × 10−7ms−1. A : Q = 10−6m3s−1.
B : Q = 10−5m3s−1. C : Q = 3 × 10−3m3s−1. 3. φ = 0.4, k = 2 × 10−3cm2 for which
β = 5cms−1Q = 50cm3s−1

.

Surface of saturating freshwater

Saline water

q

200

25

Control

Release

reservoir

Scales

Porous bead pack

valve

valve

Figure 4. Schematic of our experimental apparatus.

The tank was filled with glass beads of diameter 2 mm, creating a porous medium of
porosity φ ≈ 0.39 and permeability k ≈ 3.1 × 10−5 cm−2. The medium was saturated
with freshwater of density 0.999 g cm−3. Solutions of dyed and slightly salty water of
densities varying from 1.011 to 1.035 g cm−3 between experiments, and kinematic vis-
cosity ν ≈ 0.010 cm2 s−1, measured using an oscillating U-tube density meter and a
U-tube viscometer respectively, were introduced into the medium through an inlet lo-
cated at the bottom left-hand corner of the cell. The inlet was connected by a syphon of
rubber tubing to a raised reservoir of salty water; the release of fluid was initiated using
an intermediary ball valve. The evolution of the flow was recorded using a digital SLR
camera, which took photographs once every second. The rate of input was determined
by measuring the weight of the reservoir over the course of each experiment.

The parameter values used for five well-constrained experiments are shown in table 2.
The main parameter varied was the volumetric rate of input per unit width Q, which
spanned an order of magnitude from 0.2 to 2 cm2 s−1. The evolutions of the scaled frontal
position and ratio of the height of the current to its length, as measured digitally from
the photographs, are shown in figure 5a,b. Figure 5c plots γ, the ratio of the height of
the current above the source to its horizontal extent. Overlaid are the early- and late-
time predictions of (3.3) and (3.4). The data indicates that each experiment undergoes
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Figure 5. Experimental data showing (a) the horizontal length of the current scaled by the
length scale L defined by (2.11b), (b) the height above the input point scaled by L and (c) the
aspect ratio of the current γ (height over length) as functions of dimensionless time t/T , where
T is the time scale (2.11a); the symbols denoting each experiment are given in table 2. The
early-time predictions for xN/L and γ associated with the radial regime (3.3), and late-time
predictions associated with gravity-current regime (3.4) are shown as dashed lines.

Experiment Q (cm2 s−1) ∆ρ (g cm−3)

1 (×) 2.15 0.036
2 (#) 0.68 0.036
3 (2) 1.83 0.012
4 (♦) 0.90 0.012
5 (+) 0.21 0.012

Table 2. Parameter values used in the experiments.

a transition from a regime of radial flow to that of the gravity current, with the various
experiments spanning different intervals of the theoretical transition. Some early-time
scatter of the aspect ratio shown in figure 5b is likely caused by the sensitivity of the
early-time flow to some inhomogeneities in the permeability of the bead pack.

6. Vertically varying permeability and porosity

In the Earth there can be considerable variations in permeability and porosity in both
vertical and horizontal directions. Considering only vertical variations, we realise that it
may be possible for an expansion in the approximately hemispherical phase to intrude
into a region where the expansion can proceed more like a gravity current. A sketch of
this response in a two-layer system (with a much more permeable upper layer) makes up
figure 6.
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Figure 6. The typical response in a one-layer system shown in fig. 1 is compared with the
possible response in a two-layer system.

Figure 7. The result of an experiment in a porous layer through which the fluid penetrates the
air above and flows along the top of the layer as a gravity current. There is an online movie of
this whole experimental situation also.

To confirm this form of response in the laboratory, we carried out an experiment in the
extreme case of a porous layer topped by air in a Hele Shaw cell of width 10mm filled with
glass ballotini of diameter 2mm to a depth of 4cm. An input of blue-dyed glycerine of
viscosity 7.5cm2s−1 and density 1.26gm cm−3 was fed at a rate of 0.18cm2s−1 to the base
of the container and photos taken every 2s. A movie of the experiment makes up online
1. There was the roughly semi-circular spreading, as expected, until after approximately
100s the flow was effectively at the top of the layer, though there was some vertical uplift
of the beads as the flow approached the interface. By 140s there was a clearly evident
horizontal flow along the interface with lengthens with time. Parts of the heavy fluid
sunk back into the porous layer in the form of broad fingers, replicating the motions first
seen by Acton, Huppert & Worster (2001).

7. Summary

We have evaluated, theoretically and experimentally, the response to the constant
injection at a point source of a viscous fluid relatively more dense than the interstitial
fluid of the surrounding porous medium. The porous medium lies above a rigid horizontal
boundary and the source point is at that boundary. The analysis was presented both for
an axisymmetric, radial expansion and for the two-dimensional situation. We show that
the fluid expands first hemisperically (in a semi-disc in the two-dimensional situation),
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where gravitational effects are negligible, and then transitions to a small slope gravity
current.

We evaluate the only time scale, T say, in the problem and show that there is a wide
range of different transition times, dependent on which of a series of different quantities
are used to define the transition time as given by the equality of the quantities evaluated
in the two different extreme regimes.

Considering the ratio between viscous and gravitational forces, which we call the Alison
number [(A(t), where t is time], we find, for the fully three-dimensional, axisymmetric
case, that the transition time tA/T = 0.0081 (0.00428 for the two-dimensional situation).

Considering the horizontal radius of the resulting flow, we evaluated the transition time
tr = 0.0936 for axisymmetric situations (and 0.0246 for the two-dimensional situation).
Considering the height of the flow above the source point, we find that th/T = 0.629 (37.5
for two-dimensional situations); while considering a slope, defined by the ratio of height
above the input to the horizontal radius at the boundary, the ratio of the two previous
criteria, tγ/T = 0.336 (1.03 for two-dimensional situations). This large difference between
the various time scales – almost 80 in the axisymmetric situation (approximately 8760 for
the two-dimensional situation) – is somewhat surprising. It shows that different aspects
of the flow become important at different times.

Because the overall timescale T is quite strongly dependent on the permeability –
to the minus three halves in the axisymmetric situation (and inversely proportional in
the two-dimensional situation) – it suggests that a lower, relatively impermeable, layer
may display a roughly hemispherical (disc like in two-dimensions) shape while at the
same time an upper much more permeable layer, at which fluid arrived later, could
already be well into the gravity current regime. Such a situation makes up figures 6 and
7 (and has already been demonstrated by experiment in numerous places around the
world during seminars by one of us - HEH). There are similarities to the configuration
analysed theoretically and experimentally by Huppert et al. (2013) who determined what
conditions an input of relatively heavy fluid into the base of a two-layered porous medium
flows into the upper layer because of its greater permeability.

In the current situation, because the timescale depends on parameters whose value is
very different in illustrative laboratory settings and in the Earth, the relatively rapid
transition to a gravity current – taking seconds at most in the laboratory, can take
thousands of years in the Earth.

There are also similarities with the study of Pegler et al. (2013) who model the move-
ment of ice across land into water, departing from the solid ground at the grounding line,
by introducing a viscous gravity current at the surface of a relatively more dense and
much less viscous fluid layer of finite depth. The flow undergoes a transition from a radial
flow driven predominantly by the pressure gradient towards a buoyancy-driven regime
of predominantly horizontal flow. They evaluate the transition radius, which they call <
and present a graph (figure 6) of the experimental data compared with the theoretical
result, with reasonable agreement, for the time T at which the transition occurs.

We thank Mark Hallworth who helped with the experiment described in §6. HEH is
grateful for support in the form of a Leverhulme Emeritus Fellowship. The research of
RSJS is partially supported by the European Research Council in the VOLDIES project.
Any other acknowledgements needed?

REFERENCES



12 H.E. Huppert, R.S.J. Sparks, S.S. Pegler and A. Rust

Acton, J.M., Huppert, H.E. & Worster, M.G. 2001 Two-dimensional viscous gravity cur-
rents flowing over a deep porous medium. J. Fluid Mech. 440, 359-380.

Batchelor, G.K. 2000 An Introduction to Fluid Dynamics Cambridge University Press.
Bear, J. 1972 Dynamics of Fluids in Porous Media New York. Dover.
Bickle, M.J. 2009 Carbon storage. Nat. Geosci. 2, 815-818.
Huppert, H.E. 1986 The intrusion of fluid mechanics into geology. J. Fluid Mech. 173, 557-594.
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration.

Annu. Rev. Fluid Mech. 46, 255-272.
Huppert, H.E., Neufeld, J.A. & Strandkvist, C. 2013 The competition between gravity

and flow focusing in two-layered porous media. J. Fluid Mech. 720, 5-14.
Huppert, H.E. & Woods, A.W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech.

292, 55-69.
Morton, B.R., Taylor, G.I. & Turner, S. 1956 Turbulent gravitational convection from

maintained and instantaneous sources. Proc. Roy. Soc. 234A, 1-23.
Pegler, S.S., Kowal, K.N., Hasenclever, L.Q. & Worster, M.G. 2013 Lateral controls

on grounding-line dynamics. J. Fluid Mech. 722.
Phillips, O.M. 1991 Geological Fluid Mechanics: Sub-surface Flow and Reactions. Cambridge

University Press.
Simpson, J.E. 1987 Gravity currents in the Environment and the Laboratory. Cambridge Uni-

versity Press.
Turner, J.S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Turner, J.S. 1986 Turbulent entrainment: the development of the entrainment assumption,

and its application to geophysical flows. J. Fluid Mech. 173, 431-471.
Ungarish, M. 2009 An Introduction to Gravity Currents and Intrusions. CRC Press.


