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INTRODUCTION

Even if all the particles in a suspension are spheres of the same size and
density, they will not all fall at the same velocity. The hydrodynamic
interactions depend on the relative location of neighboring particles.
Thus in a random suspension, particles in different configurations will fall
at different velocities. These differing velocities will in turn change the
configurations, so the velocity of each particle will also vary in time. This
random motion of the particles can at longer times be characterized by a
self-induced hydrodynamic diffusivity. This dispersion phenomenon is
important for understanding mixing processes that reduce separation
(Davis, 1996).

The origin, significance, and interpretation of the convergence diffi-
culties in calculating the sedimentation velocity in a random mono-
disperse dilute suspension are now well understood after Batchelor
(1972). However, a dramatic illustration of the convergence problem in
such suspensions is given by the divergence of the variance of the sedi-
mentation velocity, hU02i, the simplest measure of the particle velocity
fluctuations. This paradoxical situation was first noticed by Caflisch and
Luke (1985), who showed that Batchelor’s renormalization does not re-
solve the divergence associated with calculating the variance of the
sedimentation velocity. Indeed, they found that the variance of the par-
ticle velocity in a monodisperse suspension of spheres whose the positions
were randomly distributed with uniform probability would increase with
the linear dimension ‘ of the container, i.e., the variance would be
OðU 2

s f‘=aÞ, where Us ¼ 2Dra2g=9m is the Stokes velocity for an isolated
particle, a is the particle radius, Dr denotes the difference between the
density of the solid particles and the fluid, m is the fluid viscosity, g is the
acceleration due to gravity, and f is the volume fraction of the dispersed
phase. A scaling argument based on buoyancy-driven convection was
proposed by Hinch (1988): volume elements of the suspension with lower
density rising relative to volume elements with higher density (Cunha,
1997). The scalings confirmed the result of Caflisch and Luke (1985).
Koch (1992) has adapted Hinch’s scalings to gas-solid suspensions (i.e.,
dusty gas) and studied the behavior of fluctuations in a range of moderate
Stokes number, 1� St� f�3=4. His theory suggests that the velocity
disturbance caused by neighboring particles is screened on a length scale
w¼O(aSt7 2=3f7 1), giving a finite variance of the particle velocity
U02� �

¼ OðU2St�2=3Þ. In addition, Koch (1993) has also investigated a
dilute liquid-solid, slightly polydisperse suspension of spheres with Oð1Þ
Reynolds number in which Oseen’s equation was applicable. Here he
predicted that although the resulting lift velocity is small compared to
both the terminal velocity and the fluid velocity disturbance, it changes
the structure of the suspension in a way to yield a screening length
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Oðaf�1p�1Þ and a finite velocity variance OðU2
sf lnð1=pfÞÞ, where p is a

parameter much larger than one for a slightly polydisperse suspension.
Examining the convergence properties of the velocity variance in a

sedimenting suspension with no inertia in the particles and fluid, Koch
and Shaqfeh (1991) showed that the variance is independent of the size of
the settling container if and only if the pair probability satisfies the cri-
terion

R
½Pðxj0Þ � n�dx ¼ �1, i.e., a test particle produces a net deficit of

one particle in its neighborhood so that the combined unit of the test
particle and its neighboring suspension is neutrally buoyant. This theory
found a variance of the sedimentation velocity U02� �

¼ 4:7U2
s and

a dispersion coefficient parallel to gravity Dk ¼ 0:52aUsf
�1ð¼ 10:4aUs

at f ¼ 5%Þ. Dynamical simulations of sedimenting particles with full
hydrodynamic interaction in a periodic cubic system by Ladd (1993) and
large-scale lattice-Boltzmann numerical simulations also by Ladd (1997)
have shown, however, that the deficit is small and localized to the
immediate vicinity of the spheres, and that at larger separations there is a
net excess of neighbors.

Experiments have also been carried out to investigate fluctuations
and dispersion during sedimentation. Davis and Hassen (1988) examined
the spreading of the interface at the top of a sedimenting, slightly
polydisperse suspension of non-Brownian particles. An investigation of
the simultaneous effects of self-sharpening and velocity fluctuations in a
sedimenting suspension of noncolloidal particles has been made by Lee et
al. (1992). Ham and Homsy (1988) carried out experiments to investigate
the nature of the motion of a test particle sedimenting in the midst of a
suspension of like particles. Their experiments found that fluctuations in
the sedimentation velocity over relatively short settling distances are
large (ranging from 25% to 46% of the mean) with dimensionless self-
dispersion coefficients parallel to gravity increasing from approximately
2aUs at f¼ 25% to 6aUs at f¼ 5%, which is about a factor of five
smaller than the gradient diffusivity reported by Lee et al. (1992). Using
a multiple light scattering technique, Xue et al. (1992) measured the ef-
fects of hydrodynamic interactions on the average sedimentation velo-
city, its variance, and the short-time self-diffusion coefficient in a
concentrated hard-sphere colloidal suspension. The most recent experi-
ments in sedimentation were carried out by Nicoali et al. (1995), who
have also investigated velocity fluctuations and self-induced hydro-
dynamic dispersion in a monodisperse sedimenting suspension of non-
Brownian spheres under conditions of low Reynolds number for dilute
and higher particle concentration, 5%�f� 40%. These experiments
estimated velocity fluctuations between 75% and 170% of the mean,
larger than those of Ham and Homsy (1988), smaller, however, than the
theoretical prediction

ffiffiffiffiffiffiffiffiffiffiffi
U02h i

p
¼ 2:2Us of Koch and Shaqfeh (1991). In

addition, they observed a strong anisotropy in the velocity fluctuations
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and self-diffusivities, Dk=D? � 5 at 5%, although substantially smaller
than that found by the theory of Koch (1994) and numerical simulations
of Ladd (1993, 1997). At moderate concentration, Nicolai and Guazzelli
(1995) found in contrast to the theories and computations, that particle
velocity fluctuations and hydrodynamic self-dispersion coefficients did
not depend on the container dimension, as the inner width of the vessel
varied by a factor of four, and varied little with concentration in com-
parison to Uh i. At very low concentrations in a thin box, Ségre et al.
(1997) found a f1=3 dependence, and an independence of the wider of
the horizontal dimensions if it exceeded a certain correlation length
‘c ¼ 10af�1=3. Curiously, this observed correlation length in the velocity
fluctuations is somewhat greater than the narrower of the horizontal
dimensions.

The experiments of Nicolai and Guazzelli (1995) unfortunately dis-
agree with the theoretical predictions of Caflisch and Luke (1985) and
Hinch (1988), which suggested a dependence of the velocity fluctuations
on the system size. This contrary result may be an indication that a ‘‘well-
stirred’’ particle distribution cannot, in principle, remained unchanged
during sedimentation, and that information about the evolution of the
microstructure in time is required to understand the behavior of the
velocity fluctuations. Finally, we should mention the related phenomenon
of shear-induced hydrodynamic diffusion for which diffusivities in
sheared monodisperse suspensions of spheres have been determined ex-
perimentally (Leighton and Acrivos, 1987) and theoretically (Cunha and
Hinch, 1996).

The aim of this article is to investigate by computer simulation the
time dependence of the velocity fluctuations and dispersion as particles
sediment. The important issue is to observe whether the suspension mi-
crostructure remains random and with uniform probability. To this end,
we shall see how the positions of the spheres evolve in a finite container
with impenetrable bottom and top and periodic sides.

ANALYSIS

Scaling Argument

One can begin to understand the scaling of the velocity fluctuations by
considering a box of size ‘ containing N particles distributed uniformly,
with the number of particles related to the size of the box and the
volume fraction f by N¼ ‘3f=4/3pa3. If the box is divided into two
equal parts by a vertical plane (see Figure 1), due to statistical fluc-
tuations one half of the box will typically contain N

2 þ
ffiffiffiffi
N

p
particles,

whereas the other half will contain N
2 �

ffiffiffiffi
N

p
. This imbalance drives

convection currents during the sedimentation process. The extra weight
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on the heavy side is mg
ffiffiffiffi
N

p
, with m ¼ 4

3 pa
3Dr. Balancing this fluc-

tuation in weight with a Stokes drag 6pmU 0
‘‘ on the velocity fluctuation,

and using Us ¼ 2Dra2g=9m, we find the fluctuation in the velocities

U02
‘ � U2

sf
‘

a
ð1Þ

With this velocity fluctuation we can estimate the hydrodynamic self-
diffusivity as D‘ � U 0

‘‘, corresponding to the particle velocity remaining
correlated for a time tc ¼ Oð‘=U 0

‘Þ. Thus,

D‘ � aUsf
1=2 ‘

a

� �3=2

ð2Þ

This scaling argument helps to explain how velocity fluctuations and
hydrodynamic self-diffusivity in a random dilute monodisperse sedi-
menting suspension depend on the size of the system.

In the simulations we monitored the horizontal variation of density,
which is responsible for the convection currents in sedimentation.
This is the important origin of the large velocity fluctuations which has
not been made clear by previous works (Ladd, 1993, 1997; Koch,
1994) who have worried about Koch and Shaqfeh’s mass deficit theory
(1991).

Figure 1. Sketch of the fluctuations in sedimentation.
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Statement of the Problem

For rigid spherical particles sedimenting in a incompressible Newtonian
fluid of dynamic shear viscosity m and density r, with sedimentation
velocities sufficiently small to neglect inertial effects, the appropriate equa-
tions governing the fluid motion are the pseudo-steady Stokes equations

0 ¼ �HPþ mH2u ð3Þ

H � u ¼ 0 ð4Þ

where u and P ¼ p� rg � x are the velocity and the modified pressure
fields. Equations (3) and (4), valid within the fluid, are supplemented by a
nonslip boundary condition on the surface of each particle u�Ua þ Oa�
ðx� xaÞ on x� xaj j ¼ a for a = 1,2, . . . , N. Here Ua and Oa are,
respectively, the velocity and the angular velocity of the sphere a with
radius a and center xa(t). It should be noted that in a dilute suspension of
sedimenting particles the condition for the Stokes equation to be valid is
Re � a=‘�, where ‘* is the characteristic length scale of the interactions,
i.e., the mean interparticle distance. With ‘� � af�1=3, the particle
Reynolds number must satisfy

Re ¼ raUs
m

� f
1
3

In addition, we consider the limit case where the Péclet number is high,
which corresponds to a suspension of non-Brownian particles,

Pe ¼ aUs
D

¼ 6pma2Us
kT

� 1

where D is the particle diffusivity first derived by Einstein (1956). When
the above condition holds, the hydrodynamic forces dominate Brownian
motion in determining the suspension microstructure.

Owing to the long range of the velocity disturbance in a dilute
sedimenting suspension, we will be interested in particle interactions at
separation that are large compared with particle radius. Therefore, with
an error O(f) in the sedimentation velocity of the particles, the simplest
level of point-force approximation may be used to describe the hydro-
dynamics (Saffman, 1973) with the fluid velocity governed by

0 ¼ �HPþ mH2uþ
X
a

f adðx� xaÞ ð5Þ

Here dðx� xaÞ denotes the Dirac delta function and f a is the hydro-
dynamic force exerted on the fluid by particle a. In the absence of particle

1110 F. R. CUNHA ET AL.



inertia, f a ¼ 4
3 pa

3
aðra � rfÞg, which is just the net weight with the buoy-

ancy removed.
We consider sedimentation in a closed container with an impenetrable

bottom and vertical walls, for which there is no mean flow at each point
of the suspension, i.e., hui ¼ 0. Taking an average of Equation (5), we
find an expression for the mean pressure gradient,

hHPi ¼
X
a

fadðx� xaÞ
* +

¼ nhfi ð6Þ

or hPi ¼ nhfi � x, which is the global balance for the average pressure
gradient, with hfi ¼ ð1=NÞ

P
a f

a the average particle force exerted on the
fluid. In particular, Equation (6) suggests that in the point-particle
approximation the pressure P in Equation (5) may be adjusted to reflect
the macroscopic increase in the density of the fluid fDr ¼ njfj=g. The
pressure is decomposed into a periodic part p 0ðxÞ and a linear part hPi,
with gradient given by Equation (6), i.e., PðxÞ ¼ hPi þ p0ðxÞ. Substituting
the value of the reduced pressure PðxÞ into Equation (5), one obtains

0 ¼ �Hpþ mH2uþ
X
a

fadðx� xaÞ � nhfi ð7Þ

with the following boundary conditions imposed:

uðxÞ; vðxÞ;wðxÞ periodic in x and y directions with period ‘
uðxÞ; vðxÞ periodic in z with period h
wðxÞ ¼ 0 on z ¼ 0 and z ¼ h

8<
: ð8Þ

where u; v, and w are the velocity components of the fluid motion in
directions x; y; and z, respectively.

Flow Solutionwith Impenetrable Boundary

The method of images that plays so important a part in the mathematical
theory of elasticity, fluid mechanics, and heat transfer is peculiarly
adapted to the solution of the problem of the sedimentation of many
interacting particles. The image system used in this work consist of sto-
keslets equal in magnitude but opposite in sign to the initial stokeslets
(Blake, 1971). We construct the appropriate Green’s functions for the
velocity and pressure field associated with a stokeslet actuating in the
gravity direction and satisfying the boundary conditions in Equation (8).
Here all components of the velocity field (u; v;w) are periodic in x and y
with period ‘, the horizontal components u and v periodic in z with period
h, but with the vertical component w satisfying an impenetrable bottom
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and top condition of vanishing vertical velocity. We will show that
numerical simulations of point particles sedimenting in a periodic box
suggest that an impenetrable lower boundary is important in reducing the
vertical-horizontal anisotropy to realistic proportions.

The procedure for obtaining the flow solution within an impenetrable
box is essentially to consider a linear combination uðxÞ ¼ uðx;xsaÞ�
uðx; xiaÞ that satisfies the governing Equation (7) and the boundary
conditions in Equation (8). The first term can be thought as the solution
for the periodic flow resulting from an initial stokeslet located at
xsa ¼ ðxo; yo; zoÞ within a rectangular box of dimensions ‘� ‘� 2h with
uðxÞ; vðxÞ, and wðxÞ periodic in x and y with period ‘ and u, v, and w
periodic in z with period 2h (Hasimoto, 1959). The second term corre-
sponds to the fictitious stokeslet of equal magnitude but opposite sign at
the image point xia ¼ ðxo; yo;�zoÞ. Using such an image system with
Ewald’s summation technique in the version of Nijboer and De Wette
(Ewald, 1921; Nijboer and De Wette, 1957; Beenakker, 1986; Sangani
and Acrivos, 1982), we arrive at the fundamental solution for the Stokes
flow induced by a lattice of stokeslets with side periodicity and im-
penetrable top and bottom. The final result is given by

ujðxÞ ¼
X
g

G
ps
jmðx� rsa; x� riaÞfm þ 1

V

X
b

0JrsjmðkbÞYfm ð9Þ

which has been made dimensionless using a;Us and 6pmaUs for the
reference scales of length, velocity, and force, respectively.

The kernel tensors G
ps
jm and Jrsjm and the function Y are defined as

follows:

G
ps
jm ¼ J

ps
jmðx� rsaÞ � J

ps
jmðx� riaÞ ð10Þ

Y ¼ cos 2pkb � ðx� xsaÞ � cos 2pkb � ðx� xiaÞ ð11Þ

where Jps and Jrs are dimensionless Green’s functions in the physical ( ps)
and reciprocal (rs) spaces, respectively, which conform with the peri-
odicity of the flow (Cunha, 1995)

JpsðrÞ ¼ 3

4
l�

1
2G�1

2

pr2

l

� �
Iþ 3

2
pl�

3
2G1

2

pr2

l

� �
rr ð12Þ

JrsðkÞ ¼ 3

2
½lGoðpk2lÞI� pl2G1ðpk2lÞkk� ð13Þ

Here I ¼ dijeiej denotes the unit second-rank tensor, and V is the volume
of the periodic box V ¼ ‘2 � 2h: The wave number vector k is defined as
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k ¼ ðb1‘ ;
b2
‘ ;

b3
2hÞ, where b1; b2; b3 are positive or negative integers

ð0;�1;�2; . . .Þ. The sums in Equation (9) are performed over a three-
dimensional periodic lattice in which each (cell numbered by the index g)
may contain N particles (numbered by the index a). The lattice points are
given by the vector xg ¼ ðg1‘; g2‘; g32hÞ with g1; g2; g3 ¼ 0;�1;�2 . . ., and
a particle has position vector ra ¼ xa þ xg. xa is the position vector of the
particle with respect to the origin of its cell. The prime on the reciprocal
sum indicates a summation over all reciprocal lattice vectors k, except
where jkj ¼ 0. The exclusion of this term is a direct result of the average
pressure balancing the average force the particles exert on the fluid.

The solution for uðxÞ given in terms of the sums in Equation (9)
converge exponentially fast, with the convergence rate controlled by the
arbitrary geometrical parameter l > 0. For optimal convergence, l
should be chosen neither too small nor too large. Beenakker (1986)
recommends l ¼ p1=2V�1=3 for simple cubic lattice ði:e:; h=‘ ¼ 1Þ, giving
the equal rates of convergences for the two sums, whereas Cunha (1995)
suggests optimum values of the same parameter for anisotropic lattice
ði:e:; h=‘ ¼ 2; 3; 4; 5Þ.

Particle Motion

Now the problem of N spherical particles free of inertia settling within the
impenetrable box with periodic sides of dimensions ‘� ‘� h is con-
sidered. Let xa denote the position of the particle a. Suppose an external
force f a is exerted on particle a, and let Ua be its translation velocity.
Then Equation (9) can be rewritten in an appropriate formulation of
hydrodynamic interaction that relates the velocity Ua and the forces f as
follows:

Ua
i ¼ 1þ

X0

g

XN
m¼1
G
ps
ij ðra � rmÞ � fmj þ 1

V

X0

b

XN
m¼1
Jrsij ðkbÞYðxa � xmÞ � fmj ð14Þ

with particle trajectories being obtained by integration of the kinematics
equation

dxai
dt

¼ Ua
i ; xai ð0Þ ¼ xao ð15Þ

Here f m ¼ � 2
9ma

2 Dr
Us
g ¼ ð0; 0; 1Þ. The prime on the first sum means that

the term a ¼ m in cell g ¼ 1 has been excluded.
Equations (14) and (15) will be applied to examine the dynamics of

N point particles sedimenting and interacting hydrodynamically within a
container of impenetrable boundaries. This type of formulation represents
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a mobility problem with hydrodynamic interactions OðN2Þ, calculated by
using pairwise additivity (i.e., superposition of velocity) in the mobility
matrix. We emphasize that our purpose here is not to perform detailed
calculations of particle interactions. Rather, we aim to explore the phy-
sical processes giving rise to velocity fluctuations and their consequence
when particles sediment. It will be shown next that point particle inter-
actions suffice for the production of random particle migration needed to
reproduce the phenomenon of hydrodynamic dispersion.

COMPUTERSIMULATIONS

A numerical routine was constructed to compute the horizontal number
density fluctuations and velocity fluctuations and to examine the long
time of the fluctuating particle motion in the suspension. To meet these
ends, the numerical studies of the suspension were carried out in two
stages. First, macroscopic properties of the particles’ motion were eval-
uated over a 100 different initial configurations of the particles within the
container (i.e., at time ¼ 0). The main goal was to verify the scaling
arguments presented at the beginning of this article, which predict
variance of the sedimentation velocity increasing with the linear size of
the box.

The time evolution of the system was analyzed over 10 realizations.
The main problem that we examined was to see how the initial config-
urations of the particles evolve in time. The velocity autocorrelation
functions, the hydrodynamic self-diffusivities, and the correlation times
in the direction parallel and perpendicular to gravity were determined.
More importantly, the ratios hU02

k i=hU02
?i;Dk=D? and tk=t?, as a function

of the box parameter f‘=a, for indicating the amount of anisotropy of the
dispersion process were calculated. Here the indices k and ? denote,
respectively, quantities parallel and perpendicular to gravity with the
dimensionless variances of the sedimentation velocity and the hydro-
dynamic self-diffusivities expressed in tensorial forms as follows:

hU0U0i ¼ hU02
k iezez þ ðI� ezezÞhU02

?i

and

D ¼ ezezDk þ ðI� ezezÞD?

In order to accelerate the calculations of Ewald summations and
thereby obtain considerable savings in computer time, the incomplete
gamma functions were then tabulated for the values of n ¼ ð�1=2;
0; 1=2; 1Þ, and the calculation required for each particle pair interaction
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was determined by simple linear interpolation from these tables. An
important step of the preliminary tests was investigating the link-
parameter l between the physical and reciprocal spaces. Since we have
performed simulations with different aspect ratios h=‘ð¼ 2; 3; 4; 5Þ, it
was desirable to investigate the optimum values of l that correspond to
the maximum value of the solution when using a relatively small
number of boxes. The integration of Equation (15) via a fourth-order
Runge-Kutta scheme provided the instantaneous position of the parti-
cle’s motion, with Ui being evaluated at each time step by means of
Equation (14). The magnitude of the time step Dt in the Runge-Kutta
procedure was set up as Dt � a=Us (that is, the time taken for a single
particle to fall across its own radius; the Stokes time). The horizontal
components of the particle velocity were seen to be null (i.e., no fluc-
tuations in the particle’s trajectory since there are no neighboring
particles), and the vertical component persisted constant until the par-
ticle got in the region of influence of the image system (the finite effect
of the box). At the bottom the particle completely stopped its settling
motion. This information was essential to define a bulk region of the
suspension in which the statistical data analysis should produce
meaningful statistics. Thus we hold that during the calculation of the
transport properties of the suspension the statistical data analysis is
evaluated in a region of the box where the variations in the individual
velocity of a reference particle are due only to its interaction with
neighboring particles.

Some information was needed to start the computation of particles’
trajectory in the simulation. Here the simulations all started at t ¼ 0,
with the particles located randomly and independently within the im-
penetrable container. This kind of configuration was generated by the
hypothetical process of choosing the positions of the particle’s centers
one by one at random in W ¼ ‘2h, obeying the rule, however, that the
center of one sphere cannot be located within an excluded volume shell
a < r < 2a of any other sphere. This process is equivalent to excluding
the configurations for which overlapping of spheres occurs, with all
allowed configurations having equal probability. The statistics routine
in our computer simulation program included calculations of the hor-
izontal density fluctuation, sedimentation velocity and its variances
parallel and perpendicular to the gravity direction, the velocity auto-
correlation functions, the hydrodynamic self-diffusivities, and correla-
tion times.

Statistical Analysis of the Simulations

The horizontal fluctuations in the density of the suspension are the origin
of the large convection currents during sedimentation. We investigate the
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magnitude of these fluctuations by constructing the Fourier amplitude
for the lowest mode in the x-direction of the number density

hn2?i ¼
X
j;k

e2piðxj�xkÞ=‘ ð16Þ

summing over the differences in the x-coordinates of the positions of the
particles.

The instantaneous mean of the velocities of the sedimenting parti-
cles is

UðtÞ ¼ 1

N

XN
i¼1

UiðtÞ ð17Þ

We measure the fluctuations in the velocities with the instantaneous
variance

hU 02ðtÞi ¼ 1

N� 1

XN
i¼1

UiðtÞ �UðtÞ
� �

ð18Þ

constructed for the vertical and two horizontal components of velocity,
the variances of the horizontal components then being averaged to give
hU 02

k i and hU 02
? i.

The persistence in time of the velocity fluctuations is investigated
using the autocorrelation function, which correlates the velocity at time t
with itself at the initial instant,

hU 0ðtÞU 0ð0Þi ¼ 1

N� 1

XN
i¼1

UiðtÞ �UðtÞ
� �

Uið0Þ �Uð0Þ
� �

ð19Þ

This again is constructed for the vertical and two horizontal components,
with the horizontal components afterwards averaged together. We shall
report these autocorrelation functions normalized by the variances, i.e.,

CkðtÞ ¼
hU 0ðtÞU 0ð0Þi
hU 0ð0ÞU 0ð0Þi ð20Þ

and similarly for C?ðtÞ.
The random motion of the sedimenting particles can be characterized

by a diffusion process with diffusivity calculated as the integral over time
of the velocity autocorrelation function

D ¼
Z 1

0

hU 0ðtÞU 0ð0Þidt ð21Þ
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again constructed for the vertical Dk and averaged over the two hor-
izontal directions for D?. An important question is whether this integral
converges at long times: if it does not, the diffusion process is anomalous.
The ratio of the diffusivities to the velocity variance gives the integral
time-correlation T c ¼ D=hU02i.

Here the angle brackets denote a sum over all particles, and an
average over all configurations or realizations (i.e., an average over time
in dynamic simulation).

RESULTS

Initial Configurations

Several cases were studied. The particle concentration was varied through
the range 0 < f < 3%. Three different box sizes were studied, with a=‘
¼ 0.05, 0.06, and 0.07. The aspect ratio of the box was kept constant at
h=‘ ¼ 3. For each case, 100 different initial configurations were gen-
erated by positioning the particles randomly and independently except
for not overlapping. The initial velocities were then calculated for each
configuration.

First we examined the mean velocity. The mean horizontal velocity
hU?i was found to be zero, a check on our coding. The mean vertical
velocity hUki was found to be in agreement with Us (1� 5:5f), the pre-
diction of Batchelor (1972) for point particles (see Figure 2). The small
degree of scatter suggests that some of the initial random configurations
accessible through our simulations were not perfectly statistically
homogeneous (i.e., configurations with uniform probability), as assumed
by Batchelor’s analysis. This hindering of the settling is due to a back
flow outside the particle, which occurs since we imposed the condition of
no mean flow, hui ¼ 0.

Figure 3 illustrates how the simulations were analyzed for the case
f ¼ 2% and a=‘ ¼ 0:05, in which we used N ¼ 114 particles. For each of
the 100 realizations, we computed the initial value of the horizontal
density fluctuation hn2?i and the initial value of the fluctuations in the
vertical and horizontal velocities hU 0

k
2i and hU 0

?
2i. The horizontal lines in

Figure 3 denote the averages across the 100 realizations.
The horizontal density fluctuation divided byN has a value in Figure 3

close to the theoretical value of unity, indicating that the numerical
process of positioning the particles has produced a well-stirred suspen-
sion with the standard �

ffiffiffiffi
N

p
statistical fluctuations.

The fluctuations in Figure 3 of the vertical velocity are large, just
smaller than the mean sedimentation velocity. This is in good general
agreement with the experiments (Ham and Homsy, 1988) where the
fluctuations ranged between 25% and 46% of the mean in the dilute
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suspensions. Our results are also in good general agreement with the
experiments of Nicolai et al. (1995), who found a relative fluctuation of
77% at f ¼ 5%. The theoretical value of Koch and Shaqfeh (1991) gives
a slightly higher value of

ffiffiffiffiffiffiffiffiffiffiffi
hU02

k i
q

¼ 2:2Us.
The ratio in Figure 3 of the vertical to horizontal velocity fluctua-

tions was found to be 2.5, indicating a strong anisotropy. This is close to
the experiment value of 2 found by Nicolai et al. (1995), and close to the
ratio of 3 found by theory and numerical simulations (Ladd, 1993; Koch,
1994).

The results in Figure 3 are for a single case of f ¼ 2% and
a=‘ ¼ 0:05. We now consider results for different particle concentrations
and box sizes. The origin of the large scale velocity fluctuations is the
convection caused by the horizontal density fluctuation hn2?i. We collect
together in Figure 4 its average over the 100 realizations in each of the 18
different cases studied. Although the results are plotted as a function
of the number of particles used in the different cases, we see that the

Figure 2. Dimensionless mean settling velocities of the particles calculated over 100 random

and independent configurations as a function of the particle concentration. The points with

error bars on the graphics correspond to three different aspect ratios a=L used in the com-

puter simulations, and the solid curve is the theoretical result of Batchelor (1972) (17 5.5f),
for a dilute homogeneous suspension of point particles.
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horizontal density fluctuations are essentially constant, equal to the
standard �

ffiffiffiffi
N

p
statistical fluctuation.

Finally, in Figures 5 and 6 we examine the variation of the fluctua-
tions in the vertical and horizontal velocities. The results for the cases
with different particle concentrations f and box sizes a=‘ are plotted
against the expected scaling parameter f‘=a. We see that both
variances increase linearly with the size of the box, with linear fits
hU 0

?
2i ¼ 0:029U2

sf‘=a and hU 0
k
2i ¼ 0:178U2

sf‘=a. Thus, in agreement
with Caflisch and Luke (1985) and Hinch (1988), we conclude that when
the particles are positioned randomly, initially there are velocity fluc-
tuations proportional to the size of the box.

T|me Evolution

A typical evolution of the suspension as it sediments is given in Figure 7.
This figure is for one realization of the case of a particle concentration

Figure 3. Results of the numerical simulations at time¼ 0 with statistics over 100 random
and independent distribution of particles in the impenetrable box. The aspect ratios

h=‘ ¼ 3, a=‘ ¼ 0:05, and the number of sedimenting particles was equal to 114, correspond-

ing to a volume concentration of 2%. k and ? denotes the directions parallel and perpen-

dicular to gravity, respectively. (a) horizontal density number fluctuation; (b) vertical

relative velocity fluctuation; (c) ratio between the vertical and horizontal fluctuations.
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f ¼ 5%, a box size of a=‘ ¼ 0:05, and an aspect ratio of the box h=‘ ¼ 3,
a simulation requiring N ¼ 286 particles. We show at six different times
the positions of the particles projected onto the vertical xz-plane. The
first time is the initial configuration with the particles distributed ran-
domly inside the box. As time progresses, a sediment accumulates on the
lower impenetrable boundary. Note that the impenetrable boundary is
slippery and not a no-slip rigid boundary, so that particles can be seen
moving along it. The descending upper interface between the suspension
and clear fluid above is diffuse and spreads slowly, so that the nearby
concentration of particles decreases in time.

For each case studied, dynamic simulations were made for 10 reali-
zations with different initial configurations. Below we give only averages
over the 10 realizations. Moreover, in calculating the averages, we select
the middle part of the suspension, away from the sediment and the diffuse
upper front.

Figure 8 shows the time evolution of the horizontal density fluc-
tuations for five different combinations of particle concentrations and
box size. In each of the five different cases studied, the horizontal
density fluctuations are seen to remain essentially constant up to
t¼ 20a=Us, approximately the time to fall through the width of the box

Figure 4. Dimensionless horizontal density fluctuation obtained over 100 random and inde-

pendent configurations as a function of the number of particles.
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‘ or one-third the time to fall the height of the box h. We had expected
that during such a time the density fluctuations would drive a convec-
tion that would turn the horizontal variations in density into vertical
variations, and so the large velocity fluctuations would decay. Our
dynamic simulations show, however, that the convection does not lead
to a systematic decrease in the horizontal density fluctuations. Further
simulations (Cunha, 1995) with a taller box, h=‘ ¼ 4, found the same
behavior.

Corresponding to the lack of evolution of the density fluctuations
in Figure 8, Figure 9 shows that the horizontal and vertical velocity
fluctuations also remain constant in time. They therefore remain pro-
portional to the size of the box, as in the parameter f‘=a, and do not
evolve to some value that is independent of the size of the box. The
computer simulations therefore remain at variance with experimental
observations of fluctuations independent of the size of the box.

Figure 5. Dimensionless variance of the mean settling velocity of the particles, perpendicu-

lar to the gravity, as a function of the system parameter f‘=a. The dotted line is the linear fit
hU 02

? i=U2
s ¼ 0:029 fð‘=aÞ:
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The velocities of the particles fluctuate randomly in time, apparently
with a magnitude that does not evolve during the sedimentation. We
study the random variation by examining the autocorrelation function of
the velocity, in which the velocity is correlated with itself at various
time delays. Figure 10 gives the autocorrelation function, nondimen-
sionalized by the variance (correlation with zero time delay), for the
horizontal and vertical velocity, both for our computer simulations in the
case f ¼ 3%, a=‘ ¼ 0:05, and h=‘ ¼ 3 and for the experiments of Nicolai
et al. (1995) in the case f ¼ 5%, a=‘ ¼ 0:01, h=‘ ¼ 10, and w=‘ ¼ 2:5.
There is good general agreement in which the velocities lose correlation
over a time of O(10a=Us) and the vertical velocity decorrelates slightly
faster.

The integral over time of the velocity autocorrelation function gives
the self-diffusivities of the random walk of the particles as they sediment.
Figure 11 shows the time integral increasing to its asymptotic value on

Figure 6. Dimensionless variances of the mean settling velocity of the particles, parallel to

the gravity, as a function of the system parameter f‘=a. The dotted line is the linear fit
hU 02

k i=U2
s ¼ 0:178 fð‘=aÞ.
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the correlation time of O(10a=Us). For the case f ¼ 3%, a=‘ ¼ 0:05, and
h=‘ ¼ 3 we find a diffusivity in the direction of gravity Dk ¼ 2aUs. This
value should be compared with the experimental values of Ham and
Homsy (1988) increasing from 2aUs at f ¼ 2:5% to 6aUs at f ¼ 6%,
and the experimental value of Nicolai et al. (1995) around 5aUs. Hy-
drodynamic screening theory gives Dk ¼ 0:52aUs=f, i.e., the larger value
17aUs at f ¼ 3% (Koch and Shaqfeh, 1991).

Figure 12 shows our results for the self-diffusivity parallel to gravity
as a function of the scaling parameter f1=2ð‘=aÞ3=2. The results for var-
ious particle concentrations f and box sizes a=‘ can be approximated by
the linear fit Dk ¼ 0:19aUsf

1=2ð‘=aÞ3=2. While the values of the diffusivity
are comparable with those in laboratory experiments, a direct compar-
ison is not possible because our simulations depend on the size of the box
and the laboratory experiments do not.

The random fluctuations during sedimentation exhibit considerable
anisotropy. In Figure 12 we give the ratio of the vertical to horizontal rms
velocity fluctuations as a function of the scaling parameter f‘=a. We find
the ratio is essentially constant at

ffiffiffiffiffiffiffiffiffiffiffiffi
hU 0

k2i
q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hU 0

?
2i

p
� 2:5. This value is

similar to that found in experiments by Nicolai et al. (1995) and in nu-
merical simulations (Leighton and Acrivos, 1987; Koch, 1994). We also
present in Figure 13 our results for the ratio of the vertical to horizontal

Figure 7. A typical picture of the dynamical simulations of the sedimenting suspension stu-

died for a=‘ ¼ 0:05, h=‘ ¼ 3, N ¼ 286) f ¼ 5%.
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self-diffusivities. We find that Dk=D? � 10 in all our simulations. This
should be compared with a value around 5 in the experiments of Nicolai
et al. (1995), and a value O(100) in the simulations by Ladd (1993) and
Koch (1994). Koch found that he could reduce this figure to around 25 by
increasing the aspect ratio of his box from h=‘ ¼ 1 to h=‘ ¼ 3. We
speculate that this still high value results from the use of a full periodic
boundary condition in the vertical rather than our impenetrable
boundary condition.

Since completing the work reported here (Cunha, 1995), the lattice-
Boltzmann simulations of Ladd (1997) have come to our attention. Ladd
reported numerical results of fluctuations and hydrodynamic dispersion
in sedimentation for a large homogeneous suspension using 32768 par-
ticles ðf ¼ 10%Þ at finite Reynolds number (ReW¼ 0.45), based on width
of the periodic cell. His results show an anisotropy in velocity fluctuations
about 2.7 and an anisotropy in correlation time equal to 2.5 that agree
well with our numerical results and experiments. However, the ratio of
diffusivities equal to 23 for h=l ¼ 4 are larger than the result here and
about five times the experimental measurements. Our results suggest that

Figure 8. Results of the computer simulations for the time development of the dimensionless

horizontal density number fluctuation at different conditions of the simulated system with

the aspect ratio h=‘ ¼ 3.
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simulations for a finite height of suspension approaching a no-flux
boundary with periodic boundary conditions in the horizontal direction
permit better capturing of the anisotropic nature of the particle interac-
tions. Surprisingly, these large system simulations for finite Reynolds
numbers closely follow our results, showing the same system size de-
pendence in velocity fluctuations, Oðð‘=aÞ1=2Þ and hydrodynamic diffu-
sivities Oðð‘=aÞ3=2Þ, which do not agree with the experimental results of

Figure 9. Results of the computer simulations for the time development of the dimensionless

variances, both perpendicular to gravity (a) and parallel to gravity (b) for different condi-

tions of the simulated system with the aspect ratio h=‘ ¼ 3.
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Nicolai and Guazzelli (1995). Ladd also leaves open the question about
the existence of a hydrodynamic screening for a random dilute mono-
disperse suspension in the way of the mass deficit predicted by Koch and
Shaqfeh’s theory (1991).

Figure 10. Normalized velocity fluctuation autocorrelation functions parallel and

perpendicular to the gravity direction. Computer simulations for h=‘ ¼ 3, a=‘ ¼ 0:05,

N ¼ 172) f ¼ 3%. The error bars represent experimental data (Nicolai et al. 1995) with

f ¼ 5%, h=‘ ¼ 4, h=w ¼ 10, and w=a � 100. The dashed lines indicate the uncertain range

of the present computer simulations.

Figure 11. Dimensionless hydrodynamic self-diffusivities for h=‘ ¼ 3, a=‘ ¼ 0:05, and

f ¼ 3%. The dashed lines are the error bars.
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Figure 12. Vertical dimensionless hydrodynamic self-diffusivity as a function of the scaling

f1=2ð‘=aÞ3=2. The dotted line is the linear fit Dk ¼ 0:19 aUsf1=2ð‘=aÞ3=2.

Figure 13. Ratio of anisotrophy calculated during all the computer simulations. (a) degree

of anisotropy in velocity fluctuations, (b) in self-diffusivities.
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CONCLUSIONS

Direct numerical simulations of a monodisperse dilute suspension of
point particles with excluded volume sedimenting at low Reynolds
number in a rectangular box with periodic sides and impenetrable bottom
and top have been used to describe the microstructure, velocity fluctua-
tions, and dispersion of such suspension. The numerical results reveal
fluctuations in the velocity of individual particles as being due to varying
configuration of neighboring particles and resulting hydrodynamic in-
teractions between the suspended particles. The evolution of the positions
of the particles was investigated in a finite container. In particular, the
large fluctuations that occur in sedimentation when inertia is very small
do not decay in time when the initial particle configurations are random
with no overlappings. Our numerical computations have found velocity
fluctuations and hydrodynamic self-diffusivity increasing in a predictable
way with the system size that agrees with scaling arguments, with theory,
and with recent large-scale lattice-Boltzmann simulations, but experi-
ments find differently. We may conclude that the dispersion process in
these simulations was controlled by convective motions that scaled with
the size of the simulation cell.

The simulations showed degree of anisotropy in velocity fluctuations,
correlation times, and hydrodynamic self-diffusivities independent of the
system size, and in close agreement with experimental measurements. The
normalized autocorrelation functions in both parallel and perpendicular
directions to gravity also agreed well with those predicted experimentally
for dilute suspension.

While the average velocity in sedimentation can be successfully
predicted theoretically, we are still unable to predict and to renormalize
the rms fluctuations. Since experimental systems are never perfectly sta-
tistically homogeneous and the actual particle distribution is unknown,
more work should be done investigating the difference between placing
the particles at random and independently in the computer simulations
and the procedure of stirring the suspension in the laboratory. Certainly,
the development of new numerical simulations including the effects of
the container walls, the full multiparticle hydrodynamic interactions,
and polydispersity would be important and challenging to explain the
experimental results.
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