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A blob of viscous Newtonian fluid is surrounded by inviscid fluid and sandwiched in the

narrow gap between two plane parallel surfaces, so that initially its plan view occupies a simply

connected domain. Recently Entov, Etingoff & Kleinbock (1993) produced some steady-state

solutions for the blob placed in a quadrupole driven flow, and including the effects of surface

tension. Here a numerical solution of the time-dependent problem using a Boundary Integral

algorithm finds that for low values of the flow rate there exist two solutions. We find that

one, which is close in shape to a circle, is stable, while the other, more deformed equilibrium,

is unstable. The analysis also reveals that for certain flow strengths stable non-convex shapes

also exist. If the flow strength is too large no stable equilibrium is possible.

1 Introduction

First considered by Hele-Shaw (1898) in his investigation of the transition to turbulence in

a pipe, a Hele-Shaw cell is two plane parallel surfaces with a thin layer of fluid sandwiched

in the narrow gap between them, such that h/r � 1, where r is the radial dimension of the

cell, and h the gap width. Hele-Shaw cells provide us with an easily accessible model of

such physical phenomena as two-dimensional porous media flow, and the manufacturing

process of injection moulding. In the former case, by the use of sinks and sources, we may

model the behaviour of flows in porous media in and around oil wells. The governing

equations are directly analogous to the Darcy model (Darcy, 1856) which has been widely

used in soil mechanics for many varieties of porous media. Recent interest in this analogy

may be dated to Polubarinova-Kochina (1945). The initial motivation for this research

stems from problems encountered with a particular technique of secondary oil recovery.

This method involves the pumping of water through the porous rock in an oilfield, with the

aim of driving out residual oil left after initial extraction techniques have been exhausted.

Unfortunately, it is observed that a considerable amount of oil is left in the ground when

water appears at the producing wells. This result is believed to be in part due to a fingering

instability of the oil-water interface analogous to the Saffman–Taylor (1958) instability. In

the case of injection moulding we may be studying the forcing of molten polymer into a

mould of a certain shape which is then let solidify. The Hele-Shaw model would be useful

when considering the production of plane lamina. Here a source term would model the

effect of injecting the molten plastic at a point in one of the faces, a technique frequently

used to help reduce the high pressures needed in the forcing as much as possible. To fill

the mould completely, all the initial air must be allowed to escape, which must be done
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through air vents in regions which are the last to be filled. The Hele-Shaw model may

be used to predict the location of such regions, although in the initial analysis certain

assumptions and simplifications would have to be made, such as ignoring the fact that

the high viscosity of the melt will give rise to significant heat generation, ignoring the

associated thermal effects, and ignoring the non-Newtonian nature of the melt itself.

As mentioned above, another reason for study of this geometry is the fact that if any

fluid mechanics problem is likely to be accessible to theory and to direct comparison

of theory, simulation and experiment it should be this one. The flow is almost two-

dimensional potential flow and the basic partial differential equation is Laplace’s equation.

Despite this apparent simplicity, the problem has not been fully elucidated to this day, the

nonlinearity of the free-surface being the basic difficulty in the prediction of the motion

of the interface between the viscous fluid and the air.

Despite the assumptions necessary for the study of molten plastics mentioned above,

and the fact that in actual oil reservoir conditions flow is three dimensional and may be

subject to ‘dispersion’ of the interface, which we ignore, our motivation for studying this

problem is the belief that an investigation of fluid flow in a Hele-Shaw cell will be helpful

to the understanding of these problems.

One additional motivation for studying this problem is the long list of other apparently

similar problems, such as directional solidification, dendritic formulation (Langer, 1980),

electrodeposition, the deformation of ionospheric plasma clouds (Overman et al., 1983)

and dielectric breakdown. The Hele-Shaw fingering mechanism is also thought to be

relevant by analogy to the form and growth of fingered sheet intrusions in geological

formations (Pollard et al., 1975). Ideas that are applicable to Hele-Shaw cells are very likely

also to increase our understanding of the mathematics and physics of these other problems.

Recently non-trivial exact solutions to the Saffman–Taylor problem with surface tension

were found by Kadanoff (1990) and Vasconcelos and Kadanoff (1991). Later Entov et al.

(1993) produced analytic solutions for the steady shape of the interface in the presence of

surface tension under the action of a multipole at the origin or infinity. The solutions of

Entov et al. are time-independent, giving the steady solution for each particular geometry.

Here we seek to develop a numerical, time-dependent solution for the evolution of the

viscous-inviscid interface in their problem, matching the analytic steady solutions to the

long-time results produced by the numerics. Previously vortex sheet methods employing

the Birkhoff–Rott integral have been used in the analysis of similar problems. Tryggvason

& Aref (1983), DeGregoria & Schwartz (1986) and Meiburg & Homsy (1988) looked at

the Saffman–Taylor fingering instability employing these methods. Dai & Shelley (1993)

also used them to investigate the effect of an expanding bubble of inviscid fluid for both

the zero and small surface tension cases, an approach similar to that used in the study

of vortex sheets in two-dimensional Euler flows. Here we choose to apply the similar

boundary integral method in which the interface is represented by boundary elements (see

Pozrikidis, 1992).

2 Formulation

Consider the slow motion of an incompressible Newtonian fluid in the narrow gap. Away

from the multipole and the free boundary we can use the standard theory of the Hele-
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Shaw cell, as detailed in Lamb (1932). For a sufficiently small gap compared with the

radial dimensions, the slow flow equations may be averaged across it to give the fluid

velocity in terms of the pressure by

u = − h2

12µ
∇p, (2.1)

where u is the velocity of the fluid in the x, y-plane, p is the pressure and µ is the viscosity.

As the fluid is incompressible, we also have

∇2p = 0 + forcing, (2.2)

where the forcing term is that due to the action of the multipole. Applying Green’s second

identity, and letting the point of observation x go to the boundary, we obtain

1
2
p(x) = forcing +

∮ (
p(x′)

∂G(x, x′)

∂n′
− G(x, x′)

∂p(x′)

∂n′

)
dl′, (2.3)

where G(x, x′) = 1/2π ln |x− x′|.
The boundary of the fluid domain moves with velocity

u(x) = − h2

12µ

∂p(x)

∂n
n. (2.4)

At the interface we have a pressure jump due to surface tension, such that

p(x) = γ κ(x), (2.5)

where γ is the surface tension coefficient (assumed constant), and κ(x) is the local curvature.

Note that equation (2.5) assumes that the problem is truly a 2D problem. In three

dimensions the curvature in the direction perpendicular to the cell must be considered.

For a perfectly wetting fluid, this produces a factor of π/4 (known as the Park and Homsy

factor) multiplying the local curvature. This is beyond the scope of this paper, but details

may be found in Park & Homsy (1984).

The timescale of the problem may be derived from equation (2.1). If we consider a blob

of lengthscale D in the x, y-plane, equation (2.5) gives us that p ∼ γ/D, and thus we have

u ∼ h2

µ

1

D

γ

D
. (2.6)

If we define our timescale T by T ∼ D/|u|, then we have

T ∼ D3

h2

µ

γ
. (2.7)

3 Multipoles

Analytic steady solutions with surface tension have been found by Entov et al. where the

forcing term of equation (2.3) is a multipole (i.e. dipole, quadrupole, etc.) which produces

no net volume change in the fluid.

If we consider the x, y-plane as the complex plane, the vector x being represented by

the complex number z = x + iy, then the ‘forcing’ term of equation (2.3) is given by a
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Figure 1. Flow generated by a quadrupole at the origin.

multipole of the form

<
(
Q

2π
zn
)
, (3.1)

where Q is the multipole strength, n ∈ Z\{0} the order of the multipole and < denotes

the real part of the expression. For n > 0 the geometry under consideration is that of

a bubble of air surrounded by an infinite expanse of viscous fluid with the multipole at

infinity. For n < 0, the multipole is situated at the origin, within the finite expanse of the

viscous fluid, which is itself surrounded by air.

The particular case of a blob of viscous fluid centred on a quadrupole (n = −2) at the

origin was chosen for analysis. The flow field, as depicted in Fig. 1, has no net volume

change. Thus, incorporating the forcing term as given by equation (3.1), equation (2.3)

becomes

1
2
p(x) =

Q

2π

(x2 − y2)

(x2 − y2)2 + 4x2y2
+

∮ (
p(x′)

∂G(x, x′)

∂n′
− G(x, x′)

∂p(x′)

∂n′

)
dl′, (3.2)

where x = (x, y).

This gives us an inhomogeneous Fredholm equation of the first kind to be solved at

each timestep. The details of the numerical techniques involved are discussed later.

4 The deformation ratio and curve

It will be shown here by dimensional analysis that the steady shape of the blob of fluid

is determined solely by the ratio between the strength of the quadrupole, the magnitude

of the surface tension, and the size of the blob. Within the viscous fluid there are two
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Figure 2. Deformation curve. L and d as depicted in Fig. 1.

competing effects. Consider a circular blob of radius D. We have from equation (3.2),

p = O

(
Q

D2

)
+ O

( γ
D

)
. (4.1)

Applying Darcy’s law, equation (2.4), to the first term on the right-hand side gives us

uflow = − h2

12µ

Q

D3
, (4.2)

the velocity due to the action of the multipole, and similarly, the second term on the

right-hand side produces

uST = − h2

12µ

γ

D2
, (4.3)

the velocity due to surface tension.

When the blob is in its steady shape, these two must be in equilibrium, the natural

tendency of the surface tension forces being to minimise the perimeter of the blob, whereas

the action of the quadrupole tends to elongate it. Balancing these two flows gives

uflow

uST
=

Q

Dγ
. (4.4)

To be more precise, we now define the lengthscale of the blob D to be such that the area

of the blob, which is constant in time, to be πD2.
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Figure 3. Typical steady shapes. Q/γD = 1.8. (a) L− d/L+ d = 0.209. (b) L− d/L+ d = 0.743.

Therefore the steady shape is determined solely by the ratio Q/γD, the relative flow

strength. Plotting the deformation ratio of the steady shapes, (L−d)/(L+d), as predicted

by Entov et al., against the flow strength results in a deformation curve, as depicted in

Fig. 2. Here (±L, 0) are the points where the interface cuts the x-axis, and (0,±d) are the

points where the interface cuts the y-axis (see Fig. 1). This relationship between the flow

strength and the deformation ratio as graphed in Fig. 2, however, is not obvious from

the mapping of Entov et al.. Much analysis and manipulation of their expressions was

required to produce the final deformation curve.

Entov et al. (1993) noted that two deformation ratios, and consequently two steady

solutions, are predicted for a range of flow strengths, and no solutions are given for

values above a certain critical ratio (Q/γDcrit. ≈ 2.742). It will be shown later that, as
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Figure 4. Typical interface section with nodes and panels illustrated.

might be expected, for values above this critical ratio, the surface tension forces are

insufficient to balance out the quadrupole forcing, the blob continues to deform, never

reaching equilibrium, and eventually splits by pinching off along the y-axis. At this stage

the numerical code breaks down also. In fact no continuation is possible, as the interface

has reached the origin, the point of action of the quadrupole. For values of Q/γD lying

between zero and the critical value we have two solutions, with typical steady shapes

being displayed in Fig. 3 for a set flow strength.

As is illustrated in Fig. 3, both convex and non-convex, or ‘dogbone’ as we choose also

to refer to them, steady shapes exist. All shapes with deformation ratios lying on the

upper branch are non-convex, and similar in shape to Fig. 3(b), with the two halves being

closer and closer to pinching off along the y-axis as the flow strength is lowered. On the

lower branch, shapes with flow strengths & 1.933 are also non-convex, becoming convex

below this value. It will be shown later that those shapes with deformation ratios lying

on the lower branch are stable, whereas those on the upper branch are unstable to small

perturbations.

5 Numerical method

The numerical method uses N points xi = (xi, yi), i = 1, . . . , N, initially evenly spaced, on

the viscous-inviscid interface. To calculate the tangential and also normal direction to the

curve, a quartic spline in an arc-length-like parameter is fitted through these points. A

quartic spline was chosen as a cubic proved of insufficient accuracy for the calculation of

the curvature. To avoid a coordinate disaster, the x and y coordinates were interpolated

independently, in each case the spline parameter τ having unit range between neighbouring

points, e.g. x1 ≡ x(τ = 1), x2 ≡ x(τ = 2), etc.

The curvature κ at a point x is then given by

κ =
xτyττ − yτxττ[
x2
τ + y2

τ

]3/2 , (5.1)

and the outward normal n as

n =
(yτ,−xτ)√
(x2
τ + y2

τ )
. (5.2)

Testing on a 2:1 ellipse, the RMS error of the curvature at the nodes decreased like

N−4 over the range of interest. The RMS error in the normal vector at the nodes was

O(10−14) over the range of interest, 40 6 N 6 80.
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In order to facilitate the discretisation of the system, it is assumed that ∂p/∂n is constant

at its nodal value ∂p(xj)/∂n in an interval or panel stretching between the mid-points

of the spline connecting neighbouring nodes. This converts equation (3.2) into a linear

system of simultaneous equations for the nodal values.

Eij
∂p(xj)

∂n
= Pi i, j = 1 . . . N, (5.3)

where

Eij = −
∫
jth panel

G(xi, x
′)dl′, (5.4)

and

Pi = 1
2
p(xi)−

Q

2π

(xi
2 − yi2)

(xi2 − yi2)2 + 4xi2yi2
−
∮ (

p(x′)
∂G(xi, x

′)

∂n′

)
dl′. (5.5)

Solution of these equations gives us the unknowns ∂p(xj)/∂n.

Calculation of the terms Eii and Pi presented difficulties due the presence of the

singularity at the centre of the ith panel. This was overcome by splitting the panel

containing the pole (or self-panel) in two at the pole, and performing open Romberg

integration over the two halves with a tolerance of 10−5. Six-point Gaussian quadrature

was used for all other Eij terms, i� j. Extended trapezoidal integration was used for

panels other than the self-panel in the calculation of Pi, with a tolerance of 10−5.

The matrix E is, however, singular. We know theoretically that if the pressure is

constant on the boundary, and the action of the quadrupole switched off, we should have

no flow, i.e. ∂p(xj)/∂n = 0 ∀ j. To purge the singular E of its zero eigensolution, we

augment E to give E ′:

E ′ = E + α e e†, (5.6)

where e is the singular eigenvector and e† its adjoint, and where α is a convenient non-zero

number. For this geometry, e is simply the vector of panel elements, i.e.

eT = (δl1, δl2, . . . , δlN), (5.7)

where

δli =

∫ xi+1/2

xi−1/2

dl, (5.8)

and xi±1/2 denotes the point half-way between xi and xi±1 respectively. The adjoint e†, in

this case, is the constant vector (1, 1, . . . , 1).

Therefore, substituting E ′ for E in equation (5.6) then gives us

E ′ij
∂p(xj)

∂n
= Pi i, j = 1 . . . N. (5.9)

The matrix E ′ is not singular, and therefore can be safely inverted. LU decomposition

was used, and no use was made of an iterative method which could take advantage of

the known approximate solution from the previous timestep. To ensure that volume was

conserved, the solution of equation (5.9) was also purged via

∂p

∂n
→ ∂p

∂n
− ∂p

∂n
, (5.10)
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Table 1. Results showing convergence to the solution of Entov et al. for Q/γD = 1.667.

N RMS error

40 4.50× 10−5

60 1.88× 10−5

80 1.39× 10−5

i.e.

∂p(xi)

∂n
→ ∂p(xi)

∂n
−
∮
∂p(x)

∂n
dl

/∮
dl i = 1 . . . N. (5.11)

The blob area was not renormalised at any stage due to the negligible area loss observed

at equilibrium.

Testing of the Laplace solver was done as follows. The forcing was turned off and the

pressure set equal to the harmonic function r2 cos 2θ on the boundary of a 2:1 ellipse.

The computed values for ∂p/∂n were within 1% of the known theoretical values using

40 points, and the error decreased like N−2.

Timestepping was performed with an explicit mid-point rule. Testing of this method

found the error to decrease as δt2.

So far, motion of the boundary nodes is governed solely by equation (2.4), i.e. all motion

is normal to the interface. However, it is useful to introduce a tangential motion also, to

avoid depopulation/overcrowding of sections of the interface due to the normal motion of

the nodes, which could lead to a loss of accuracy/numerical instabilities, or to concentrate

nodes in areas of particular interest. Here we attempt to keep the nodes equally spaced

on the interface by attaching each in turn to its two neighbours with pseudo-springs of

equal strength, which at each timestep nudge the set of nodes by a small amount towards

an equally-spaced equilibrium. This tangential motion is achieved via:

x→ x+ β f(x) t (5.12)

where t is along the spline, β a small positive number and

f(xi) = {|xi+1 − xi| − |xi−1 − xi|} i = 1, . . . , N (5.13)

where xN+1 ≡ x1 and x0 ≡ xN . All tangential redistribution is done simultaneously, and

it is only afterwards that the velocities for the new node positions are calculated.

6 Results

The convergence of the time-dependent numerical solution to the analytic solution of

Entov et al. was tested. Initially 40 boundary points were evenly distributed in a circle

about the origin of unit radius. The flow was switched on, without ramping, with

Q/γD = 1.667, δt = 5× 10−2, and β = 1.25× 10−3, as an initial test case. By t = 22.5, the

velocities of the points on the y-axis had dropped to less than 1/2000th of their initial

velocities, and equilibrium was assumed to have been attained. At this point the RMS
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Figure 5. Evolution of blob to steady shape for Q/γD = 1.667. The continuous curve
is the steady solution.
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Figure 6. Drop off in log of speed of point at top of blob. Q/γD = 1.667. Slope of graph ≈ −0.4.

error of the numerical to the theoretical solution was found to be 4.50 × 10−5. The test

was repeated, for N = 60 and N = 80. The results are displayed in Table 1.

As a consequence of these results, convergence of the numerical solution to the analytic

was assumed. The approach of the the shape to equilibrium for the N = 60 case is

illustrated in Figs. 5 and 6. Figure 5 displays the progress of the blob from an initial circle

to its stable state. The analytic solution is shown also for comparison. Note that irregular

timesteps are chosen, as most of the deformation takes place soon after switching on the

flow. Figure 6 is a plot of ln ḋ(t) against time, where, as mentioned in § 4, (0, d(t)) is the

point where the interface cuts the positive y-axis. Note the exponential dependence of the

velocity on time. The slope of the graph gives the exponent as ≈ −0.4.

The test was repeated for various values of Q/γD. For subcritical values, Q/γD < 2.742,

the numerical solution converged similarly to the Q/γD = 1.667 case above to those

steady shapes as given by the lower branch in Fig. 2. For 1.933 . Q/γD < 2.742, the

steady solutions were dogbone in shape, being more deformed for larger values of the

flow strength. On taking a supercritical value of Q/γD, > 2.742, in this case Q/γD = 3.0,

the blob was found not to converge to a steady shape, but to continue to deform, and

eventually break by pinching off as the nodes lying on the y-axis met. Figure 7 displays

the deformation of the blob for Q/γD = 3.0 as breakup approaches. Plots of the height,

d(t), and speed, ḋ(t), of the point on the positive y-axis are given in Fig. 8. Note in Fig. 8

how d(t) initially drops rapidly, then levels out somewhat, before dropping once again

as the blob deforms towards breakup. This can also be seen from Fig. 7, as the shape

remains roughly the same for t = 3 to t = 12.

As illustrated by the deformation curve, the theory of Entov et al. (1993) predicts either

two or zero steady shapes for every value of Q/γD (ignoring the critical value). Shapes

lying on the lower branch have been shown to be stable. Starting with a unit circle the
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Figure 7. Time development of the blob for Q/γD = 3.0. Final picture is
just before breakup occurs.
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Figure 8. Behaviour of point on positive y-axis for blob breakup. Q/γD = 3.0.
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Figure 9. Behaviour of point on positive y-axis for α = 0.5, 0.75 and 1.1, and also initially circular
state. Q/γD = 2.5.
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drop deforms to the steady shape, and remains there. However, we wish also to investigate

the stability of those shapes lying on the upper branch. As these are unreachable from

a circular initial configuration due to the stability of the lower branch, we chose to start

with some shape in their neighbourhood as the initial configuration, a shape intermediate

between those lying on the deformation curve for some suitable value of Q/γD, and then

see how this shape deforms to its final state once the flow is turned on. This is done via a

linear superposition of the two known steady states for the particular Q/γD constructed

as follows.

We let θ be the polar angle, and r1(θ) be a mapping from the unit circle to the steady

shape lying on the lower branch of the curve. Similarly, r2(θ) is a mapping from the unit

circle to the steady shape lying on the upper branch. The intermediate shape is then given

by:

rα(θ) = (1− α) r1(θ) + α r2(θ), (6.1)

where α a positive real number and rα(θ) the resulting intermediate shape. Area, in

general, is not conserved under this superposition. Therefore it is necessary to rescale

rα(θ) to area = π after construction.

For the purpose of this test Q/γD was taken to be 2.5. As can be ascertained from

inspection of the deformation curve, both the shape from the lower branch and the upper

are non-convex. For various trial values of α, the intermediate shape, rα(θ) was calculated,

given as the initial configuration and the flow then switched on. For α = 0.5 and 0.75 the

blob eventually relaxed to the steady shape lying on the lower branch, r1(θ). For α = 1.1

the blob broke as before. Fig. 9 displays the height, d(t), and speed, ḋ(t), of the point

on the positive y-axis against time for each initial configuration. The results for starting

from a circle initially are also displayed for comparison purposes. The plots for α = 1.1

are only continued out to t = 3.0 as the blob breaks soon after the flow is switched on.

7 Conclusions

From the order of the error involved in predicting the steady shapes of Entov et al.

(1993), and from the convergence of the solution with increasing number of nodes, we are

confident that a code has been developed which accurately predicts the time-dependent

solution for quadrupole driven flow in a Hele-Shaw cell with surface tension. During

the course of this code development, the deformation curve of Figure 2 which predicts

the steady shapes, if any, for a given value of Q/γD was produced. This deformation

curve was derived from the mapping functions for the steady shapes found in Entov et

al., but is not mentioned itself in that paper. The stability of these shapes has also been

investigated, and it has been shown that shapes on the lower branch of the curve are

stable, whereas those lying on the upper branch are unstable. There also exist values of

Q/γD (& 2.742) for which the strength of the quadrupole is too strong for surface tension

forces to balance and no steady state exists. In this flow régime an initially circular blob

of fluid will deform without reaching equilibrium, eventually breaking by pinching off

along the y-axis.
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