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Abstract 

We report an experimental study of tracer dispersion in model rectangular fractures with 
rough or smooth walls and with different mean apertures. We use an echo dispersion technique 
in which tracer is first injected into the fracture and then pumped back through a detector. 

in a parallel flow regime, echo dispersion combines a geometrical mechanism due to the 
fracture roughness and a Taylor mechanism related to the parabolic velocity profile between 
walls. The latter effect is dominant at high velocities and the dispersivity variations with velocity 
allow one to determine the effective aperture of the fracture. The Iow-velociwy dispersivity I tmit 
that should be related to the geometrical characteristics of the roughness was found to be 
independent of the mean fracture thickness for the two models that were studied. 

We show experimentally and numerically that velocity variations in the direction perpendi- 
cular to the flow lines result in additional dispersion resulting from molecular diffusion of the 
tracer particles across the flow lines. 

I. Introduction 

!.!. Objectives of the study 

The study of fluid flow and mass transfer in fractured rocks and materials is a 
challenging fundamental problem because of the strong heterogeneities generally 
present in these media. Fractured structures display often a broad range of 
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characteristic length scales and their transport properties depend very much on the 
connectivity and the spatial distribution of the flow paths. Such heterogeneities 
strongly influence the velocity field and the transport properties. Heterogeneities 
may be present both at the scale of individual fractures (Silliman, 1989) and at the 
scale of the fracture network (Charlaix et al., 1987). in the latter case, the degree of 
connectivity often plays an important part and percolation-like effects (Charlaix 
et al., 1984) may be observed. In many cases fluid transport takes place through 
preferred paths, and channel flow models (Moreno et al., 1988) describe well 
transport mechanisms through a single fracture or a network of fractures. 

in the present study, we concentrate on the experimental characterization of local 
geometrical parameters of a single fracture such as its mean aperture and its rough- 
ness by using tracer dispersion. For that purpose, we have performed echo tracer 
dispersion measurements on various individual model fractures with controlled 
characteristics: in this technique (Hulin and Plona, 1989), tracer is first injected 
into the fracture during a preselected time and then pumped back through a 
detector. Compared with classical transmission dispersion, this method reduces 
strongly the influence of the length and velocity differences between the various 
flow paths. This allows one to obtain information on the local structure comple- 
menting that resulting from classical transmission dispersion measurements. 

Let us emphasize that the study of fractured media has many practical applications 
in the domains of hydrogeology and geothermics (Evans et al., 1992), as well in those 
of petroleum, chemical and nuclear engineering or waste management: the influence 
of the flow field heterogeneities and of the local structure of the fractures will be very 
significant in these problems. 

In the following, we call fractures the space between two parallel smooth or rough 
solid surfaces. We shall always assume that this space is completely saturated with 
fluid. We use model fractures with well-controlled geometries in order to analyse the 
relation between the dispersion characteristics, the mean aperture a of the fractures 
and their roughness. 

We first present our experimental tool. Tracer dispersion has been selected because 
of its high sensitivity to flow heterogeneities and to spatial velocity variations. 

!.1. Tracer dispersion and its different mechanisms 

First recall some basic results of tracer dispersion in media of various geometries. 
in homogeneous systems where the fluid has a uniform velocity U in the x-direction, 
the variation of the tracer concentration C should satisfy the classical advection- 
diffusion equation (Bear, 1972; Dullien, 1979): 

bC ~C ~2C [62C 62C 1 
bt + U~-xx : Dil ~-Yx2 + D± L6y 2 + 6z2j (!) 

where Dii and D± are the longitudinal and transverse dispersion coefficients, respec- 
tively; x corresponds to the direction parallel to the velocity U, while y and z are 
perpendicular to U. Generally, both the values of D n and D± depend on U. in 
the following, we shall assume that concentration is uniform in the direction 
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perpendicular to the flow and neglect the transverse dispersion term except when 
otherwise stated. Eq. I applies only if individual events indu i ng a spreading of the 
tracer have a short duration compared to the global transit time in the sample (this 
allows the central limit theorem to be applied). 

In three-dimensional (3-D) porous media such as homogeneous packings of grains 
of uniform size, DII is roughly proportional to the velocity U (Saffman, 1959; Pfann- 
kuch, 1963; Fried and Combarnous, 1971) for P~clet number values Pe > 10 
(Pe = Ud/Dm, where d is the typical grain size arid Dm is the molecular diffusion 
coefficient). Then one has: 

= ( 2 )  

where the dispersivity, ID, is nearly constant with respect to the velocity U and is of the 
order of d/2 for homogeneous packings. In this case, the dominant dispersion 
mechanism (called geometrical dispersion) is the variation of the velocity of the 
tracer particles as they move from one pore channel to another. Their trajectory 
can be pictured as a random walk through the sample superimposed on a mean 
drift motion. ID is then the length of an individual step of the random walk and the 
spatial disorder of the pore space structure is the key factor controlling dispersion. 

On the other hand, in ordered flow geometries such as capillary tubes, dispersivity 
is due to the fluid velocity differences associated with the Poiseuille parabolic profile in 
the flow section: the tracer motion is obviously much slower near the walls than at the 
center of the capillary tube. This spreading is limited by transverse molecular 
diffusion across the tube section which continuously exchanges tracer between slow 
and fast zones, in this mechanism, called Taylor dispersion, the dispersion coefficient 
Dll varies as the square of the mean velocity U at high P~clet numbers. For a capillary 
tube ef diameter d, one has (Taylor, 1953; Aris, 1956): 

DII = d 2 U 2 / 192Din +Dm (3) 

Note that the characteristic molecular diffusion time across the capillary tube section 
is Tm= d2/Dm • The dispersivity !o may then be expressed: 

ID = DII/U = UTm/192 + Dm/U (4) 

The second term in Eq. 4 corresponds to pure longitudinal molecular diffusion and is 
only significant at low P6clet numbers (Pe = Ud/Dm <~ 10). At high velocities, it 
becomes negligible and Io ~- (UTm/192). Thus, in order to describe Taylor dispersion 
by a random walk model like geometrical dispersion, U~'m needs to be considered as 
the typical path distance travelled before a tracer particle diffuses by a significant 
fraction of the diameter d from its initial location in the tube section. Thus, after the 
time Tm has elapsed, the velocity of the tracer particle parallel to the tube axis is not 
correlated any more to its initial value. 

For a fracture with smooth parallel walls, Taylor dispersion and longitudinal 
molecular diffusion are the only effective dispersion mechanisms in tl~e same way 
as in capillary tubes. The dispersivity is given by: 

ID = DIll U = UTm/210 + Dm/U = Ua2/21ODm + D m / U  (5) 
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where a is the distance between the walls (fracture aperture); rm = a 2/Dm; and the 
coefficient 210 replaces 192 in Eq. 4 because of the planar geometry (Aris, 1956). If 
one or both walls are rough, there will be some disorder in the flow field, particularly 
if the height of the asperities is comparable to the fracture aperture. A dispersion 
mechanism analogous to geometrical dispersion due to the random splitting of the 
flow tubes is then present. Roughness mostly introduces a two-dimensional (2-D) 
disorder in planes parallel to the fracture surface but does not move tracer away from 
or towards the solid surfaces. Thus, we may expect that the effect of wall roughness will 
be not to suppress Taylor dispersion but rather to be superimposed on it. 

In the following we shall first present our experimental set-up and the data 
processing procedure. We shall then analyse the dependence of dispersion on flow 
velocity, fracture aperture and wall roughness. We shall particularly seek the relative 
influence of the geometrical and Taylor dispersion mechanisms. Finally, we shall 
discuss how velocity gradients in the plane of the fracture (due to thickness variations 
and velocity gradients near the injection point) may influence the dispersion. 

2. Experimental procedure 

2.1. Model fracture 

The smooth model fracture we used corresponds to the gap bet~veen two 
rectangular parallel flat glass plates ( I m  x 0.15 m). Rubber spacers 10 mm wide 
and of thickaess 0.5 or I mm are placed at the rim of the model to give a constant 
aperture (Fig. 1). A Silicone ~> seal is then made all around the perimeter of the model 
to produce a leak-free assembly. 
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Fig. I. Schematic view ef the model rectangular fracture: 
a. View from above with mean flow lines. 
b. Side view with enlarged length scale in the direction perpendicular to the plates. 
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Fig. 2. Micrograph view of the rough etched zinc plate (the field of view is 25 × 17 mm). 

The rough fractures use a modified assembly in which a rough zinc plate is glued 
onto one of the glass planes (Fig. I). The asperities have a typical height of I mm; their 
average spacing is also of the order of I mm (Fig. 2). The predefined roughness 
pattern is generated by computer ana then printed onto a photosensitive protective 
varnish covering the zinc plate; then the plate is etched selectively by an acid solution. 

Fluid is injected (or pumped back) locally at a point A placed on the axis of the 
model at 10 mm of one end: it flows out (or enters) at the other end where a I-mm- 
deep rectangular channel has been milled in order to distribute evenly the flow (a 
small tube is connected to this channel at point B). This configuration produces a 
nearly parallel flow field in the outlet region. From the hydrodynamic point of view, 
the model has a flow field initially radial (slightly influenced by the injection details) 
which becomes parallel after a path length of the order of the width of the model: thus 
the modulus of the local velocity V (averaged over the spacing between plates) first 
decreases with the radial distance from the injection point and then becomes uniform 
and constant. 

2.2. Tracer dispersion measurements 

in the echo technique which we used, the tracer solution is first injected into the 
fracture and then pumped back through a detector (Hulin and PIona, 1989) located 
close to the injection point A. Such measurements strongly reduce the effect of the 
differences between the macroscopic flow paths. During an echo experiment, tracer 
particles located on the fastest flow paths move farthest during the injection part: 
however, they return to the detector close to ,4 at the same mean time as particles on 
the slowest paths, in this case, the width of the transit time distribution is due to 



92 !. lppolito et ai. / Journal of  Contaminant Hydrology 16 (1994) 87-108 

smaller-scale effects and is controlled by the local structure of the fracture. On the 
other hand, transmission measurements between points A and B would be controlled 
by the difference of transit times between the direct fast path and those flowing near 
the edges of the model. Such contrasts between the macroscopic transit times along 
various flow paths are also observed in stratified media (Leroy et al., 1992) or in 
dipole flow geometries (Kurowski et al., 1994). 

Practically, we use a salt solution (NaNO~) as a tracer; we detect the variations C(t) 
of the concentration at the inlet, using a conductivity measurement and a low volume 
detector connected to the injection point A. A steady flow of a salt solution of 
concentration C~ is initially established by a double syringe pump. Then an abrupt 
change of the concentration of tracer is induced by keeping the flow rate constant but 
connecting the inlet to the second syringe filled with a different solution C2. After a 
predetermined time, Tiny, following the concentration variation, we reverse the flow 
and C(t) is monitored while the mixture of the two solutions moves out of the system. 
in this way, we obtain after a time of the order of 2Tinv an echo signal at the detector. 
A typical experimental curve is shown on Fig. 3a. The mean penetration depth of the 
tracer into the fracture can be adjusted by varying T~nv. Note that curves obtained 
with this step variation of concentration are the integrals of the variations of C(t) 
corresponding to a pulse of short injection. This follows from the fact that the tracer 
transport equations are linear in the concentration, that we use a linear detection 
technique and that no noticeable adsorption occurs. 

2.3. Analysis of the tracer dispersion curves 

We have made measurements for a large range of penetration lengths (or injection 
times Tiny) and for9 different flow-rates Q ranging between 0.53 and 213 mm 3 s -I . All 
these studies were performed in a smooth model with a mean aperture a = i mm and 
rough models using the same rough zinc plate with a = I and 0.5 mm. 

The experimental curves are fitted with Gaussian solutions of the advection- 
diffusion equation (!) (Bear, 1972). We have computed the corresponding first 
and second moment,, ,.:f the tracer transit time distribution ~ and a~ = (T 2) - ('T) 2. 
The variation of the first moment is used to verify that all the tracer injected into the 
model is actually recovered: in this case, the mean transit time "T must be equal to 
2Tiny + K (K is a small additive constant corresponding to the dead volume of the 
injection circuit; Hulin and Plona, 1989). We have verified this condition with a 
precision of ,-, +2% by plotting the variations of T with Ti,v and performing a 
linear regression. 

The second moment tr~ of the tracer time distribution characterizes the tracer 
dispersion. For a uniform and constant flow velocity U, cr~ is related to the long- 
itudinal dispersion coefficient Dii and to the dispersi:rity Io by (Koplik, 1988): 

U 2 a~ U ~;~ 
DII-  2 T or I o =  2 T  (6) 

For the flow geometries shown in Figs. I and 7, the velocity varies with distance along 
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Fig. 3. Time variation of  the normalized concentration C(t) in an echo experiment performed after a step 
change at the inlet for a Prclet number Pe - 34: 
a. Experimental variation observed for an inversion time Tiny = 2400 s. 
b. Theoretical variation obtained from a numerical simulation with T,nv = 2500 s. 
In both eases, the dottedlines correspond to a best fit of  the experimental data with a "Gaussian" solution of 
the advection-diffusion equation. 

the flow paths and also across the streamlines. The second moment ~ then 
corresponds to an integral: 

,,2 = ( __d_i_dt ) = ( v ( t )  

where the ensemble averages ( ) are taken over all the streamlines. Let us remark that 
we have chosen to take the integral of the transit time deviation cr~ and not that of the 
spread 0.2 in distance. Deviations of the transit time acquired during one part of the 
path are indeed conserved as the velocity varies along the pate of a fluid particle: on 
the other hand, deviations in distance parallel to the flow are stretched and com- 
pressed in a ratio proportional to the flow velocity. Rigoro~tsly, the various contri- 
butions to the value of cr~ only add up if the various flow sections are independent and 
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the particles lose their memory as they pass from a flow section to the next (Leven- 
spiel, 1972). Practically, this implies that, for Eq. 7 to apply at all times, the velocity 
variations during the transverse diffusion time "rm must be small. 

This condition will be particularly easy to fulfil at sufficiently long times when the 
concentration front reaches the parallel flow zone: in this case, the fluid velocity has a 
constant value U and lo(U) is constant. In this situation, the Ioc,,I dispersivity should 
take the same value Io(U) for all particles. For two large mean transit times, Tt and 
T--~., one should have therefore: 

2to(u) 

o'~ should then vary linearly with the transit time at long times, allowing one to 
determine an effective value of the dispersivity from the slope of the curve. Even if 
the velocity variations are large at early times so that Eq. 7 does not remain valid close 
to the injection point: this will introduce only an additive term in ~r~ which will 
subtract out in Eq. 8 which remains therefore valid. 

3. Dispersion measurements 

3. I. Influence of roughness on echo dispersion 

We see in Fig. 4 that the linear variation predicted by Eq. 8 is well verified for 
sufficiently large penetration depths (corresponding to a diffusive behaviour) both for 
the fracture with two smooth walls and the one with one smooth wall and one rough 
wall and with the same mean aperture a = I ram. On the other hand, at short 
penetrations length,~ corresponding to the distances near the injection p,~'nt (a few 
tens of ram), we observe a small deviation from the linear behaviour. We so remark 
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Fig. 4. Variation of  the mean square deviation a~ of the residence time of  the tracer particles in the fracture 
volume with the mean residence time, T,  at a P6clet number  Pe = 50 (I--I = two smooth planes; • = one 
smooth plane and one rough zinc plate), mean aperture a = I ram. The straight lines correspond to a linear 
regression over all 'data points. 
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Fig. 5. Variation of the asymptotic dispersivity, I~, as a function of the P6clet number Pe = Ud/Dm for two 
model fractures with the same mean aperture a = I mm (D = fracture with two smooth parallel plane walls; 
• = fracture with one rough and one smooth wall). The straight lines correspond to linear regressions 
performed over data corresponding to Pe ~> 100. 

in Fig. 4 that, at the P6clet number used in the experiment (Pe ~ 50), the value of 
for a given value of the transit time is twice as large for the rough fracture compared 
with the smooth one. 

Using Eq. 8 we determine a dispersivity from the slopes of these curves. Fig. 5 
shows the variation of this asymptotic dispersivity !o = Dll/U with the P6clet number 
Pe between 10 and 900 for the two model fractures with the mean aperture a = I mm. 
The fractures correspond respectively to the smooth model (I-i) and the rough one ( I )  
with the type of roughness shown in Fig. 2. The P6clet number was taken equal to 
U a / D  m where D m is the molecular diffusion coefficient (Dm = 1.5.10 -9 m 2 s -I) and 
the mean spacing between plates a = I mm is used as the characteristic length scale of 
the flow. 

From Fig. 5, we observe for the smooth wall model that the dispersivity It) is 
proportional to the P6clet number at high values of the P6clet number (Pe > 100) 
as expected for a pure Taylor dispersion mechanism. 

A linear regression taken over Pe > 100 yields the following approximate dept:n- 
dence of dispersivity on velocity: 

In = 0.85 + 5.2. iO-3Pe (9) 

for the rough fracture and 

lo = 4.6.10-3Pe (10) 

for the smooth one. 
From Eqs. 9 and 10, we observe that the mean slope of the variation of lo with the 

P6clet number or the mean velocity flow U is about the same for the rough and the 
smooth fracture. The use of high-velocity points only allows one to eliminate the 
influence of transverse diffusion across the flow lines which will be discussed in 
Sections 4.1-3: this effect explains indeed the nonlinearities in the variation o f / o  
with Pe observed at low velocities. 

in the smooth model fracture we can extrapolate It, ~ 0 for Pe = 0. On the other 
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hand for the model with one rough wall, !o still varies linearly with De but it 
extrapolates to a non-zero value l~ ~ 0.85 mm for Pe = 0. This non-zero value 
would correspond to a geometrical dispersion mechanism associated with the spatial 
disorder of the rough surface. Such a contribution is independent of  the P&let 
number as long as it is sufficiently large: the value of 0.85 mm is in reasonable 
agreement with the mean characteristic spacing of the asperities which is also of 
the order of I ram. 

Let us compare now the relations (9) and (10) with the Taylor dispersivity ID: 
rewriting Eq. 5 as a function of the effective aperture aetr and the P6clet number 
Pc = Uae~/Dm and neglecting the longitudinal molecular diffusion term, we obtain: 
ID(Pe) ~ aerrPe/210. This allows to estimate the value aen- of the effective aperture a of 
the system: one finds aerr = i.09 and 0.97 ram, in the rough and smooth cases, 
respectively, close to the actual value i ram. 

This indicates that the roughness does not influence the contribution of the Taylor 
mechanism which only depends on the mean aperture. Finally, let us remark that 
Fig. 5 displays at sufficiently low P~clet numbers a small upward deviation from the 
linear behaviour both for the smooth and the rough fracture model. We shall describe 
below a complete Monte Carlo simulation of the smooth model allowing us to 
interpret this deviation. 

3.2. Influence of fracture aperture on echo dispersion.for rough fractures 

Let us analyse now how the dispersivity is modified when one varies the mean 
aperture for the model with one rough wall. We have performed for that purpose 
several echo experiments on a model using the same rough plate as above but with a 
different mean spacing a = 0.5 ram. 

Fig. 6a and b displays the variations of ID with the P6clet number in linear and 
logarithmic coordinates, respectively, for the two rough fractures of mean apertures 
a = 0.5 and I ram: both fractures have the same rectangular geometry and use the 
same rough zinc plate. 

We observe that, at low P6clet numbers Pe < 95 (a = 0.5 ram) and Pe < 50 (a = i 
ram), ID is about constant and equal to the same value lo = ! mm, this means that 
geometrical dispersion is dominant at low Pe numbers and that the limiting value 
io ~ i mm is related to the geometrical characteristics of the asperities of the plate. 
Let us note, however, that this limiting value is slightly higher than the extrapolation 
at Pe = 0 of the high-velocity variation (Fig. 6). 

At high velocities, !o varies linearly with Pe (or U) in both cases as expected for the 
Taylor dispersion mechanism. For a = 0.5 ram, one obtains: 

!o ~ 0.93 + 2.6.10-3Pe (li) 

The slope of the variation is, as expected, much smaller than that given by Eq. 9 for 
a = ! ram. Let us note that longitudinal molecular diffusion is negligible in all 
experiments for Pe > 10. We obtain an effective aperture aerr = 0.54 mm in good 
agreement with the actual value, as already mentioned for the other case a = ! mm. 
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Fig .  6. Variation of the asymptotic disperswity, io, in the parallel part of the flow field with the P6clet 
number Pe for a = 0 .5  m m  (I--I) a n d  a = I m m  ( i ) .  In  both cases, one ofthe fracture walls is rough as shown 
in Fig .  2. 

a. Linear coordinates. 
b. L o g - l o g  axis coordinates (the value of Io has been written in mm to compute the logarithm). The dotted 
line corresponds to Io = I m m .  

This confirms that Taylor dispersion is directly related to the spacing between 
plates. 

3.3. Interpretation of echo dispersion measurements 

The above results confirm that tracer dispersion in this type of fracture combines 
two mechanisms. The first is Taylor-like due to local velocity gradients normal to the 
wall. The second is geometrical due to the spatial variations of the velocity field in the 
directions parallel to the walls. The overall experimental dispersivity is the sum of 
these two contributions: 

!o = D/U ~ a2U/21ODm + lg + Dm/U (12) 

where a is the mean aperture; U the mean velocity; Dm the molecular diffusion 
coefficient; and lg is a characteristic length associated with the geometrical 
dispersion. The first term represents the Taylor mechanism and the last molecular 
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diffusion which is dominant only at very low velocities (we neglected it in the above 
sections). 

Eq. 12 has been confirmed by comparing measurements on fractures of identical 
mean apertures but without roughness: the contribution of the Taylor mechanism is 
the same (linear increase of ID with velocity) but the low-velocity limit of ID (corre- 
sponding to geometrical dispersion) is very different. For the smooth fracture, I~ at 
Pe = 0 has a very low value, while for the rough model, ID is of the order of the 
dimension of the asperities. We compared also the variations of ID for rough models 
with different spacings: ID increases faster with U when the spacing is higher while the 
low-velocity limit, determined by the roughness, is the same. Finally, the range of 
P~clet number values over which it) is constant (geometrical dispersion) becomes 
broader as the spacing decreases. Let us remark that, in the geometrical dispersion 
regime, the dispersion characteristics are very similar to those of a 2-D system. At low 
flows, transverse molecular diffusion homogenizes the tracer concentration over the 
fract~re thickness: then tracer dispersion is determined by spatial variations parallel 
to the plate. 

A similar behaviour has been previously observed (Charlaix et al., 1988) on 2-D 
square lattices of channels of random widths, modelling a well-connected porous 
medium. In contrast with usual 3-D porous media, ones does not measure a constant 
dispersivity in this case but a linear increase of ID with the mean velocity U as in Fig. 
6. The Dhysical origin of the effect is rather analogous. As in fractures, tracer particles 
that are close to the upper or lower solid walls of the 2-D model can only move away 
from them lhrough molecular diffusion: these surfaces are continuous throughout the 
model. 

We note that these measurements are much easier when the echo dispersion tech- 
nique is used instead of the classical transmission method. Take the example already 
quoted in Section 2.2 of a tracer transmission experiment performed between 
localized injection arid detection points. Then, the macroscopic differences between 
the various paths lengths are the dominant factor instead of geometrical and/or 
Taylor dispersion (Kurowski et al., 1994). In the echo measurement, the effect of 
differences in the path length is largely suppressed by the reversal of the flow field. 

4. Numerical simulations 

In Fig. 5, we have seen that the variation of dispersivity with the P~clet number 
deviated markedly at low velocities from the linear behaviour expected from Taylor 
dispersion mechanism. This feature is observed both for the smooth and the rough 
fracture so that the effect of geometrical dispersion cannot account for the 
phenomenon. We envision two explanations for this effect. Both are related to molec- 
ular diffusion across streamlines, a process ignored at the beginning of the paper. 

One possible explanation is the influence of the velocity gradients in the region near 
the injection point and t.he edges of the rectangular model (Fig. 7). Until it reaches the 
parallel flow region, a particle located on a flow line close to the axis of the model will 
move a short distance at high velocity. On the other hand, a particle located on a flow 
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Fig. 7. Mean flow lines in the rectangular cell computed in the Hele-Shaw approximation (Eq. 13). Only 
o n e  hall" of the whole cell is shown: the second o n e  is symmetrical with respect to the axis z = 0. The  space 

between all flow lines carries 5% of the total volume flow rate Q, while the two outermost ones carry 2.5% 
of Q each.  

line going close to the edge has to travel for a longer distance at a lower velocity, 
particularly near the corner of the model. Molecular diffusio,~ transverse to the flow 
lines may bring some tracer particles into very slow paths near the edges: after the 
flow has been reversed, such particles need much more time to reach back the 
injection point than if they had stayed on the original flow line. The reverse effect 
is observed for particles located near the edges in the injection phase and diffusing 
towards a faster path in the pumping phase: there results an additional dispersion 
component which was not taken into account in the discussion leading to Eqs. 7 
and 8. 

A second possibility is due to transverse velocity gradients in the parallel part of the 
flow. Assume that the glass plates are not exactly parallel: ;ince local velocity varies as 
the square of the local gap thickness, transverse velocity variations occur. Diffusion 
across these gradients induces additional dispersion which does not reverse when the 
flow direction is changed. 

We shall now investigate both effects through Monte Carlo simulations. These 
simulations take into account both the Poiseuille velocity profile between the parallel 
smooth plates and molecular diffusion parallel and perpendicular to the flat plates. 
The effect of the transverse velocity gradient in a parallel flow will also be computed 
a~ialyticaily in the Appendix. 

4.1. Monte Carlo numerical simulation of echo dispersion 

in these simulations (Bugliarello and Jackson, 1964), the tracer is assumed to be 
sufficiently diluted that tracer particles move independently of each other. One 
follows the 2-D displacement of a large number of particles moving in the Hele- 
Shaw cell. Initially (t = 0), all particles are released at a distance ro taken equal to I 
mm from the source at a height Yo. The starting positions on this circle are uniformly 
distributed according to the radial nature of the flow field close to the source, in order 
to reproduce the experimental conditions, the probability for a particle to start at a 
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given value of Yo is modulated to follow the variations of the local flux of fluid with 
the Poiseuille profile. The motion of each particle is the combination of Brownian 
motion and convection. 

We use the Hele-Shaw approximation: the local velocity is taken to be the product 
of a 2-D potential velocity field in the x-z-plane (Fig. 7) and the parabolic Poiseuiile 
velocity profile between the plates. The 2-D potential field is given by (Milne- 
Thompson, 1968): 

sinh(~rx/b) 
U sinh 2 vx(x,z) = ~ (~rx/2b) + sin2(lrz/2b) 

+_ .I 
+ sinh2[~-(x + 2c)/2b] + sin2(Irz/2b)J 

(13a) 

U sin(Irz/b) I ! 
'v.(x, z) = ~ .sinh2(~rx/2b ) + sin2(Trz/2b) 

, ] 
+ sinh2[Ir(x + 2c)/2b] + sin2(~-z/2b) ' (13b) 

where b = 50 mm is the half width of the rectangular model and c = 10 mm the 
distance of the injection hole from the cell edge (x = - c ) .  The flow lines shown in 
Fig. 7 have been computed from these formulas. The Hele-Shaw approximation is 
valid except very near the injection point and the rim of the model, because of the 
large ratio between the fracture aperture and its width. Note that this type of 
simulation can only be used in the case of smooth plates, since, for the rough 
model, the flow field is more complex and cannot be expressed analytically. 

The positions of all particles are periodically updated with a time step At; At is 
chosen such that it is small when the particle velocities are high in order to keep the 
length of the convective displacements below a limiting value. The random Brownian 
motion is simulated by performing at each time-step a random jump of length 
~/6DmAt (Bugliarello and Jackson, 1964) where Dm is the molecular diffusion coef- 
ficient. The direction of the steps is random and distributed uniformly in all direc- 
tions. The amplitude ~/6DmAt of a random step has been chosen so that the variance 
of any coordinate after n independent steps of equal duration At would be: 

I 
[x(t) - x(0)] 2 = n.6DmAt.~ = 2Dmt (14) 

where the factor ~ represents the variance of a random coordinate chosen uniformly 
on a unit sphere. Zero flux boundary conditions on the edges of the rectangular cell 
are implemented by reflecting the particles if they move outside the fluid volume. On 
the upper and lower surface of the cell, one uses a periodic boundary condition in 
which particles leaving at the top are reintroduced at the bottom: this does not 
introduce any bias because of the symmetry of the geometry and of the parabolic 
profile. The sequence of'convective and diffusive displacements is pursued up to the 
inversion time Tin v after which the velocity U is replaced by - U  in Eqs. 13a and 13b. 
Then the process is repeated until the particles arrive within a distance r,, from the 
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ir.jection circle. The corresponding time represents the transit time of the particle. The 
process is repeated for a very large number of particles (up to 30,000). After all 
individual transit times have been recorded, one computes a "numerical" concen- 
tration variation curve C(t) which is the fraction of particles with a transit time lower 
than t. This curve is analyzed with the same approach as that discussed above for the 
experimental results and fitted with solutions of the advection-diffusion equation. 
We have also computed directly the first and the centered second moments of the 
transit time distribution (for numerical simulations, the second moment can be 
computed directly since there is no signal drift and the initial and eventual values 
of the concentration are known exactly). 

4.2. Numerical simulation results in the rectangular geometry 

A first interesting feature is the fact that small deviations of the experimental curves 
from the Gaussian behaviour (Fig. 3a) are well reproduced in the simulations (Fig. 
3b): these deviations appear as small leading and tailing trails. This is confirmed by 
the experimental and theoretical variations of the second moment a~ with T~nv which 
overlay perfectly (Fig. 8). In order to compare the values of ~ with the predictions of 
the Taylor model, we have plotted in Fig. 9a and b the variations of the ratio 
o~t/4Tinv'r m with Tin v (both for the Gaussian fit and the actual second moment of 
the numerical simulation curves), in a parallel flow with no longitudinal molecular 
diffusion, ~/4Tin,,'rm should reach a limiting value of 2/105 at long times. At the 
highest flow rate Pe= 356 (Fig. 9a) the curves are nearly Gaussian and the ratio 
o'2/4Tinv'rm has the same value for the two types of fits: the limit at long times is 
slightly larger than the theoretical value from Eqs. 8 and 9 (0.022 against 0.019). The 
low values o f  o'~/4Tinv'r m at small times, such that Tin v < "rm, are not related to the 
particular geometry of the flow and are observed even in parallel flow geometries: this 
is due to the fact that the Taylor dispersion regime is not yet established (Taylor, 1953; 
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Fig. 8. Variation of the mean square transit time deviation ~ as a function of the ratio T,,v/rm for 
numerical simulations (I-l) and experiments (ll) of echo dispersion in the same rectangular model fracture 
at the same P6clet number Pe = 34. 
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Fig. 9. Variation of the normalized transit time deviation o~/4T,n,,rm as a function of the normalized 
injection time T,nv/r m for two P6clet number values: 

a. Pe = 356 (I-'1 = values of a~/4Tinvrm for a fit of a solution of the advection-diffusion equation with the 
Gaussian part of the curve C{t); • = direct computation of the cr~/4T, nvrm from the numerical data). 
b. Pe = 34 (l"l = values of cr~/4Tinvrm for a fit of a solution of the advection-diffusion equation with the 
Gaussian part of the curve C{t); • = direct computation of  the a~/4T,n,r  m from the numerical data; 
C) variation 2 = at/4T,~vrm without molecular diffusion in the plane of the model). 

Aris, 1956) so that the dispersion remains partly reversible. At the lower flow-rate 
Pe = 35.6 (square symbols in Fig. 9b), values of cr2/4Tinvrm computed directly from 
the data points are markedly higher than those resulting from the "Gaussian" fit. This 
is due to the contribution of the front and rear "tail" parts. These values are 450% 
and 50% higher, respectively, than the theoretical ones. 

In order to estimate the influence of diffusion across the flow lines we have 
performed numerical simulations in which molecular diffusion in the plane of the 
plates is suppressed (however, the flow field is kept identical, and molecular diffusion 
perpendicular to the plates, which is at the origin of Taylor dispersion, is retained), in 
this case (circles in Fig. 9b), the limiting value of t72/4Tinv%n is very close to the 
theoretical one corresponding to Taylor dispersion. This confirms the effect of 
molecuiar diffusion in the regions of high velocity gradients and near the edges of 
the model. We observe in Fig. 9b that a~/4Tin,,T m does not return to the theoretical 
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Fig. 10. Distribution of the location of 1000 tracer particles emitted during an echo experiment with 
T, nv = 15rm (= 2500 s) for a P~clet number Pe = 34. 
a and b. Particle distributions without molecular diffusion in the plane of the model (molecular diffusion ir~ 
the thickness is retained). 
c and d. Particle distributions with molecular diffusion in the plane of the model. 
The time lapse after particles emission is t = 20T m and t = 25T m for (a-c) and (b-d), respectively. 

value even in the parallel part of the flow. To help understand this result, we have 
plotted the locations of the particles in lhe simulations without a.ld with transverse 
diffusion. At the end of the injection phase, the particles are distributed over a very 
curved front (Fig. IOa and c): molecular diffusion transverse to the flow takes the 
particles ahead of the front and induces additional dispersion. At later times in the 
backflow phase, we observe more particles close to the injection point ahead of 
the main front when transverse molecular diffusion is included (Fig. IOd) than with- 
out including it (Fig. lOb). 

4.3. Influence of  transverse velocity gradients in the p.2railel flow 

in this part, we concentrate on the influence of a transverse velocity gradict,t in the 
parallel velocity region of the Hele-Shaw cell. We assume that the plates are no 
longer parallel but make a small angle a with the apex of the wedge parallel to the 
flow [the local gap thickness is a(z) = ao + z tg c~]. The velocity and constant-pressure 
lines remain parallel to Ox and Oz, respectively: if vx(0) = U, the velocity deviation 
&,,(z) = v¢(z) - U satisfies &,x(z)/U = (ztga)/ao.  Since a tracer particle diffuses 
laterally by an amount & ~ V~'m Tiny during an experiment, the relative variations 
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Fig. i l .  Variation of o~14Tinvrm with (Tinvlrm) 2 for an echo dispersion in a parallel flow with a constant 
gradient of the cell thickness normal to the flow velocity [&: tg a = 6.10-3; I1: tg o - 2.10-s; • tg 
a = i.  10 -s (a - angle between upper and the lower plane)]. 

6t of the transit time are given by: 6t/Tinv ~, 6vx(t~z)/U so that the term tr~/4Tinvrm 
should vary as: 

A(o'~t/4Tiny' t in)  oc tg2o~(Tinv/ ' rm) 2 (15) 

We have verified this formula numericali~ with the Monte Carlo simulation technique 
reported above with a model width 50 mm and a mean thickness ao = i ram. The 
tracer particles were injected at x = 0 over the whole width of the model but with a 
probability proportional to the local flow-rate. 

Fig. I 1 displays the variation of the ratio a~/4 Tinv'r m with (Tiny/tin) 2 for three angle 
values with tg c~ = 6.10 -3, 2.10 -3 and I. 10 -3. One indeed observes, particularly for 
the two largest gradients, a linear variation which extrapolates to a value 0.024, close 
to the value 0.022 for the combination of Taylor dispersion and molecular diffusion. 
The slopes are in the ratios I, 0.096 and 0.023 which correspond well to the theoretical 
corresponding ratios !, 0. ! ! !, 0.027 between the values of tg z c~. We obtain: 

A ( o r 2 / 4 T i n v r m )  = (0.3 + O.03)tg2o~(rinv/rm) 2 (16) 

The value of the prefactor (0.3 + 0.03) is in reasonable agreement with the analytical 
prediction obtained in the Appendix. In particular, for tg a = 6.10 -3 ,  the numerical 
simulation yields a value of 0.325. Note that tg a = 6.10 -3 would correspond to an 
exceedingly large variation of 0.6 mm in the thickness of our spacers. A more realistic 
variation of 0. ! mm for our experiments (tg a = 10-3) would not give any measurable 
influence as shown in Fig. !1, even for very long transit times (10 h). However, the 
effect of variations in gap thickness may be important in practical applications. 

We conclude from the numerical simulations that deviations from the Taylor 
predictions observed at low velocities can be accounted for by the complex shape 
of the flow field near the injection point. In addition, these velocity gradients induce a 
curvature of the front which results in some additional dispersion even when the 
parallel part of the flow has been reached. Velocity gradients transverse to the 
mean flow field have an effect increasing as the square of injection time but which 
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should be negligible in the range of thicknesses and transit time values which we have 
used. 

5. Conclusions 

We conclude from our results that echo tracer dispersion can be used to character- 
ize the transport properties of 2-D structures in which fluid flows between parallel 
solid plates. Echo dispersion allows one to analyse local parameters such as the 
effective spacing between the walls or their roughness: in contrast, transmission 
dispersion in such geometries is generally controlled by macroscopic differences 
between the flow path lengths. 

In parallel flows, the echo dispersivity is the sum of a geometrical term independent 
of the velocity U and of a Taylor-like term proportional to U. The former depends on 
the length scale of the asperities and dominates at low flow velocities; the latter 
becomes significant at high flow-rates and is controlled by the fracture aperture. 
Experiments performed on fractures with smooth parallel walls give markedly 
smaller low-velocity dispersivities than those measured with rough walls. 

Using the echo dispersion technique allows one to eliminate much of the dispersion 
associated with macroscopic variations of the velocity. However, we have found 
experimentally and numerically that, at low velocities, molecular diffusion across 
the flow lines may induce additional dispersion when velocity gradients in the 
direction normal to thc flow are present. In the geometry we have used, such 
gradients are present near the injection point and account well for the increase of 
the apparent dispersivity which we observed at low velocity. Variations in the gap 
thickness might also induce an increase of the apparent dispersivity as the square of 
the transit time: but this would however only occur at very long times in our 
experiments. 

While the present work demonstrates that asperities of relatively uniform size give a 
dispersion component analogous to geometrical dispersion at low velocities, it will be 
important in the future to analyse the quantitative relation between the echo dis- 
persion behaviour and geometrical parameters such as the aspect ratio of the 
asperities, their individual size and their spatial distribution. Another important 
point is the fact that recent experiments on both natural (Brown and Scholz, 1985; 
Schmittbuhl et al., 1993) and artificial (Bouchaud et al., 1990) materials have demon- 
strated that fracture surfaces have very often self-affine geometries with a very broad 
range of characteristic length scales. Self-affinity generalizes to anisotropic systems 
the statistical invariance of fractal structures with respect to changes of length scales 
and is therefore well adapted to the case of fractures: in these, displacements parallel 
and perpendicular to the mean fracture plane have different roles. This may have 
important implications on the transport properties of fractures such as their electrical 
conductivity or their permeability (Brown, 1987; Roux et al., 1993). it will be 
necessary to compare the dispersion characteristics of such multiscale systems with 
those of the structures which we studied above. Finally, some of the results which we 
have obtained may be generalized to dispersion for flow parallel to strata of porous 
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materials: in this case transverse hydrodynamic dispersion replaces molecular 
diffusion while the velocity variations across strata replace the parabolic velocity 
profile between the plates (Ackerer, 1987; Leroy et al., 1992). 
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Appendix --- Taylor dispersion in a Hele-Shaw cell with a varying gap 

Consider a flow in the x-y-plane in a Hele-Shaw cell with a slowly varying gap h(x,y). The depth 
averaged velocity u(u~, uy)can be related to the local pressure gradient using the momentum equation for 
the viscous flow, and can also be expressed in terms of a stream function for the volume flux, i.e.: 

I 0~], h 2 017 
u~ = -hO--yy = 1 2 # O x  (A-la) 

I~, F ap 
u~, = - ~ 0 ~ =  12~a~, (A-Ib) 

The stream function and pressure therefore form an orthogonal coordinate system. In terms of this 
coordinate system, the advection-diffusion equation for a concentration C with different diffusivities 
parallel and perpendicular to the flow takes the form: 

Ot h 2 0 p  = - ~  ~p Dll h 3 C~p + D I ~-~ (A-2) 

It is now convenient to make a further coordinate transformation in the streamline direction to a Lagran- 
gian variable moving with the flow. Along the streamline y - const., the pressure changes according to: 

f~ = .~.Vp = - 12#u2 /h  2 (A-3) 

Let p = P(t,) be the solution of this equation with the initial condition p = 0 at t -- 0. 
Now t,ansform from the variables t, p and ~b to the variables t, s and '~/,, respectively, with s defined by 

p -: P(t - s, ~,), i.e. the time the fluid element passed through p = 0. In the echo experiment, this new 
variable s is equal to the return time for a fluid element relative to the mean return time. 

in terms of the new variables the advection-diffusion equation becomes: 

where 0 = P~, h2/121tu 2. 

We now make Ihe thin pulse approximation. At high P~clet numbers an initial release of  a delta function 
ofconcentration simultaneously on all of the streamlines C(x,y,t)= 8(s) at t -- 0 for all '~, will spread little as 
it is advected rapidly. 

There will thus be high gradients of C for changes in s, but slow changes in C with respect to ¢,,. Also D, u, 
h and P~. will vary slowly in t, s and ~',. The spreading of the thin pulse is therefore governed by: 

o:  ,AS) 

where the bracket is to be evaluated at s = 0 and will be a function of t and '0. The factor u 2 dividing Dll 
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represents a spatial "piling up" of the advected information as the velocity reduces. The h~P~,/121 z term 
represents the shear between adjacent streamlines, producing gradients across streamlines and hence a 
diffusion to different s on those streamlines. Note the,. this effect is small at very high P~let numbers 
with smooth walls because Taylor dispersion makes D t << DII. 

We now apply this general theory to the simple case of flow in the x-direction with the gap h0,) between 
the plates varying across the flow. Writing G = (dp/dx)/121z, we have u = h2G = h't~/Jy so: 

L ~(y) = h 3 (y')Gdy' and 

~hich gives 

P¢,-- p~,/@~, = -241zh'Gt/h 2 

P(t,~h) - - 12/.~2(y)G2t 

Thus: 

DII 4- Dlh61~d144p 2 - DII 4- D~4h'2u2t2/h 2 (A-6) 

Hence for a significant effect one needs the parallel and perpendicular diffusivities to be comparable, as for 
instance with rough plates or smooth plates at moderately high P~clet numbers 0(!0). Also, the displace- 
ment ut must be comparable with the distance h/h' over which the gap varies significantly. 

For an echo experiment of  injecting for time T,;,v and then withdrawing at the same constant rate, the 
spread of the return times is predicted by the thin pulse approximation to be: 

Atr 2 = Dil(U)+ DI 16h°u2T2n~/3h2 (A-7) 
2T,.~ 

which is in agreement with the numerical simulations in Section 4 (Eq. 16). 
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