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Sedimentation
In this paper we present direct numerical simulations of monodisperse and polydis
suspensions of non-Brownian particles sedimenting at low Reynolds number. We de
a scheme to generate ergodic ensembles of random particulate systems and a num
procedure for computing interactions among spherical particles based on Ewald sum
tion technique for hydrodynamic mobility tensors. From the generation process
random both monodisperse and multimodal size distributions of particles were obta
for dilute and moderate densities based on a minimum energy criterion. Concerned
computations of the Ewald sums our numerical procedure drastically reduces the
simulation time providing results of the hindered settling function in good agreement
available experimental data and asymptotic results for ordered and random per
arrays of particles. We show new computer simulations with no flux boundary per
dicular to gravity and periodic boundary conditions in horizontal direction. The simu
tions reproduce the experimental correlation-time and anisotropy of the velocity fluc
tions, but have the magnitude of these fluctuations increasing proportional to the s
the system.@DOI: 10.1115/1.1502665#
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1 Introduction
The sedimentation of solid particles in a viscous fluid is a co

mon industrial process in civil, chemical, and oil engineerin
Much theoretical and experimental research has been directe
determining the sedimentation velocity for monodisperse susp
sions,@1#. The most popular result is the simple formula of Ric
ardson and Zaki@2#: ^U&5U0(12f)n, whereU052Dra2g/9m
is the Stokes velocity for an isolated particle,a is the particle
radius,Dr denotes the difference between the density of the s
particles and fluid,m is the fluid viscosity,g is the acceleration
due to gravity, andn55.1 for spherical particles with low Rey
nolds numbers. On the theoretical side, the origin, significan
and interpretation of the convergence difficulties in calculating
sedimentation velocity are well understood after the rigorous th
ries of Batchelor@3,4# for predicting sedimentation velocities i
monodisperse and polydisperse dilute suspensions of spher
low Reynolds number. On the other hand the problem of velo
fluctuations in sedimentation is still unresolved theoretica
@5,6#. Theories,@7–13#, and numerical computations,@14–17#,
with randomly positioned monodisperse particles find that fluct
tions diverge with increasing system size. Most experiments
differently, @18,19#.

The first theoretical work to investigate the convergence pr
lem of the rms fluctuations in sedimentation was developed
Caflisch and Luke@7#, who pointed out that Batchelor’s renorma
ization does not resolve the divergence associated with calcula
the variance of the sedimentation velocity. A physical scaling
gument based on buoyancy-driven convection in sedimenta
was given by Hinch@8#. The scalings confirmed the predictions
Caflisch and Luke. Koch@10# has adapted Hinch’s scalings t
gas-solid suspensions and studied the behavior of fluctuations
range of moderate particle Stokes numbers, 1!St!f23/4. Sev-
eral theoretical approaches have attempted to explain the fluc
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tion screening in sedimentation. Koch and Shaqfeh@9# argued that
screening of the velocity fluctuations results from correlations
the particle distribution. The distribution is characterized by a
deficit of exactly one particle surrounding any test particle. T
theory predicts that the velocity fluctuations scale likeU0 , inde-
pendent of the solid volume fractionf, and that the correlation
length scales asaf21, in contrast to the experiments carried o
by Segre´, Herbolzheimer, and Chaikin@19# and Guazzelli@6# who
found velocity fluctuations of orderU0f1/3 and correlation length
of order 10af21/3. Recently, Brenner@13# has examined through
scaling and numerical simulations the effect of side walls on
guments leading to the prediction of diverging velocity fluctu
tions with container size. The analysis has not definitively e
plained the dependence of the velocity fluctuations on the siz
the settling box, although it seems to predict a divergence wea
than Caflisch-Luke theory. Dynamical simulations of sediment
particles with point particles approximation or full hydrodynam
interaction in periodic systems, and large-scale lattice-Boltzm
numerical simulations support the conclusion, finding an incre
in the magnitude of the velocity fluctuations and hydrodynam
diffusivity with the size of the numerical box,@14–17,20#.

Several experiments have also been carried out to investi
fluctuations in sedimentation. Davis and Hassen@21# examined
the spreading of the interface at the top of a sedimenting, slig
polydisperse suspension of non-Brownian particles. An invest
tion of the simultaneous effects of self-sharpening and velo
fluctuations in a sedimenting suspension of noncolloidal partic
has been made by Lee et al.@22#. Ham and Homsy@23# carried
out experiments to investigate the nature of the motion of a
particle sedimenting in the midst of a suspension of like partic
Their experiments found that fluctuations in the sedimentation
locity over relatively short settling distances are large~ranging
from 25% to 46% of the mean! with dimensionless self-dispersio
coefficients parallel to gravity increasing from approximate
2aU0 at f525% to 6aU0 at f55%, which is about a factor of
5 smaller than the gradient diffusivity reported by Lee et al.@22#.
Using a multiple light scattering technique, Xue et al.@24# mea-
sured the effects of hydrodynamic interactions on the aver

n
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sedimentation velocity, its variance and the short-time s
diffusion coefficient in a concentrated hard-sphere colloidal s
pension. Important experiments in sedimentation were carried
by Nicolai et al.@25#, who have also investigated velocity fluctu
tions in a monodisperse sedimenting suspension of spheres u
conditions of low Reynolds number. These experiments estim
velocity fluctuations between 75% and 170% of the mean, la
than those of Ham and Homsy@23#. In addition they observed a
strong anisotropy in the velocity fluctuations and self-diffusivitie
D i /D''5 at 5%, although substantially smaller than that fou
by the theory of Koch@14# and numerical simulations of Lad
@15,16#. The indices' andi denote quantities parallel and perpe
dicular to gravity. At moderate concentration, Nicolai and Gu
zelli @18# found differently from the theories and computatio
that particle velocity fluctuations and hydrodynamic se
dispersion coefficients did not depend on the container dimen
as the inner width of the vessel varied by a factor of four. T
experiments,@18#, unfortunately disagree with the theoretical pr
dictions. This contrary result may be an indication that a w
mixed particle distribution cannot, in principle, remain unchang
during sedimentation, and that information about the evolution
the microstructure in time is required to understand the beha
of the velocity fluctuations. We argue that after the suspens
evolves the strong convection current observed in the initial sta
of sedimentation will remove horizontal fluctuations in the nu
ber density leading to a saturation of velocity fluctuations.
should also mention here the related phenomenon of sh
induced hydrodynamic diffusion in sheared suspensions,@26,27#.

The objective of this paper is to investigate by computer sim
lation the average sedimentation velocity, the particle veloc
fluctuations, and particle-velocity correlations during sedimen
tion. We examine monodisperse and bidisperse suspensions
randomly positioned particles for different volume fractions a
size of the container. In Section 2 we will present scaling ar
ments for velocity fluctuations and dispersion in sedimentati
The basic method is presented in Section 3 where we describ
detail both the calculation of the far-field interactions and sho
range interactions for closing particles. In Section 4 the numer
scheme for polydisperse suspensions will be explained. This c
putational scheme will then be tested in Section 5 by compa
results of sedimentation velocity for ordered and random susp
sions with analytical predictions and Richardson-Zaki empiri
correlation. Simulation results for monodisperse and bidispe
sedimentation are presented. Conclusions will be stated
Section 6.
958 Õ Vol. 124, DECEMBER 2002
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2 Scalings
One can begin to understand the scaling of the velocity fluct

tions by considering a box of sizel containingN particles distrib-
uted uniformly, with the number of particles related to the size

the box and the volume fractionf by N5 l 3f/ 4
3pa3. If the box is

divided into two equal parts by a vertical plane, due to statisti
fluctuations one half of the box will typically containN/21AN
particles, whereas the other half will containN/22AN. This im-
balance drives convection currents during the sedimentation
cess. The extra weight on the heavy side ismgAN, with m
5

4
3pa3Dr. Balancing this fluctuation in weight with a Stoke

drag 6pmU8l on the velocity fluctuation, and usingU0

52Dra2g/9m, we find the fluctuation in the velocities.

U82;U0
2f

l

a
(1)

With this velocity fluctuation we can estimate the hydrodynam
self-diffusivity asD;U8l , corresponding to the particle velocit
remaining correlated for a timetc5O( l /U8). Thus

D;aU0f1/2S l

aD 3/2

. (2)

This scaling argument helps to explain how velocity fluctuatio
and hydrodynamic self-diffusivity in a random dilute sedimenti
suspension depend on the size of the system.

In the simulations we shall be monitoring the horizontal var
tion of density which is responsible for the convection currents
sedimentation. This is the important origin of the large veloc
fluctuations which has not been made clear by previous wo
who have worried about Koch and Shaqfeh’s mass deficit the
@9#.

3 Statement of the Problem
Consider a suspension ofN rigid and spherical particles inter

acting hydrodynamically. The spheres differ in radius and dens
The particulate dispersion is subject to a sedimentation pro
through a Newtonian fluid of viscositym and densityr f with
low-Reynolds-number flow about each particle. The system oc
pies a three-dimensional unit cell represented by a prismatic c
tainer with dimensionsd3 l 3h. In order to simulate an infinite
suspension, the unit cells comprise a periodic spatial structure
a Bravais lattice~see Fig. 1!.
Fig. 1 Representation of a typical lattice used in the simulations. The particles are
randomly distributed in a periodic cell with fÄ0.03. „a… Side view; „b… three-
dimensional perspective view.
Transactions of the ASME
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In the case in which the particulate phase consists ofm species
of particles, one follows an usual notation and denotes, res
tively, the radius, density, number density, and volume fraction
each particle of speciess by as , rs , ns , andfs . The dimension-
less polydispersity parameters concerned with speciess will be
denoted by aspect ratiosls and reduced density ratioshs as fol-
lows:

ls5
as

a
, hs5

rs2r f

r2r f
, ~s51,2, . . . ,m!, (3)

wherea and r correspond, respectively, to the characteristic
dius and density of the species adopted as the reference for
dimensionalization purposes. The other species are express
terms of the parametersl and h. Thus, the terminal settling ve
locity of an isolated particle, the Stokes-Einstein diffusivity a
the Péclet number of speciess are, respectively,

U0
(s)5hsls

2U0 , D0
(s)5ls

21D0 , Pe(s)5hsls
2Pe0 , ~s

51, . . . ,m! (4)

where

U05
2

9m
a2~r2r f !g, D05

kT

6pma
, Pe05

aU0

D0
, (5)

g is the gravitational force per unit mass,k is the Boltzmann
constant andT is the absolute temperature. The length quantit
are made nondimensional usinga as the characteristic lengt
scale. The Stokes hydrodynamic drag 6pmaU0 is taken as the
characteristic reference scale for force.

3.1 Lattice Sums. In view of the well-known convergence
problem inherent in the long-range nature of the hydrodyna
interaction, one adopts a formulation based on the Beenakk
Ewald-summed Rotne-Prager tensor,@28–30#, under the assump
tion that pairwise additivity of the hydrodynamic interaction
plausible at dilute conditions. An extension of the formulati
proposed by Beenakker for hydrodynamic interactions in a het
geneous suspension and some basic background inform
about the periodic array in space are presented next.

Let the center positions of theN spheres within a unit cell be
denoted by the set of vectorsCN5(x1 , . . . ,xN). Consider a peri-
odic lattice in which the setCN assumes the general formCN
5(xg1 , . . . ,xgN)5(x11xg , . . . ,xN1xg) where

xg5~g1d,g2l ,g3h!, ~g1 ,g2 ,g350,61,62, . . . ! (6)

defines the lattice points, obtained by a linear combination of
basic orthogonal vectorsde1 ,le2 ,he3 , g5$g1 ,g2 ,g3% being the
set of integer coefficients, named the cell indices, and the se
vectors $e1 ,e2 ,e3% being the canonical base of the Euclidia
space.

The reciprocal lattice vectorskz specifies lattice waves satisfy
ing the periodic boundary condition. Thus the functioneikz•xg is
periodic with respect to the basic vectors and assumes a unit v
for all gPZ. The vectorskz have the dimension of the inverse o
length and are written as

kz52pS z1

d
,
z2

l
,
z3

h D , ~z1 ,z2 ,z350,61,62, . . . ! (7)

wherez5$z1 ,z2 ,z3% is the cell index of the reciprocal lattice.
The evaluation of the sedimentation velocityUa of a test par-

ticle ~numbered by the indexa! considering the flow disturbance
induced by the neighboring ones involves the computation of
mobility matrices. The first matrix is relative to an isolated p
ticle being represented by an isotropic tensor. The second
consists of a two-sphere mobility which considers the part
images periodically replicated. The last mobility includes ter
with respect to the lattice sums in real and reciprocal space, b
the sums convergence rate controlled by a positive parametj.
One attributes to the convergence parameter a valuej
Journal of Fluids Engineering
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5p1/2V21/3 suggested by Beenakker@28# as a good choice in the
case of a simple cubic lattice, whereV denotes the volume of the
unit cell.

Now, consider an arbitrary pair of particles numbered by
indicesa andb, pertaining to speciess and p, respectively. The
velocity of a particlea is given by

Ua5Ma
•Fa1 (

g
xgbÞxa

(
b51

N

M (ps)~xgb2xa!•Fb

1
1

V (
z

kzÞ0

(
b51

N

M (rs)~kz!•Fbcos@kz•~xb2xa!#, (8)

where

Ma5S 126jp21/22
40

3
p21/2j3D I . (9)

Ma defines theath isolated particle mobility andI denotes the
unit second rank tensor. The periodic two-sphere mobilities
defined by the following expressions:

M (ps)~r !5H F3j3r 22
9

2
j1~4j7r 4220j5r 2114j3

1jr 22!lGp21/2exp~2j2r 2!1S 3

4
r 211

1

2
r 23l D

3erfc~jr !J I1H F23j3r 21
3

2
j1~24j7r 4

116j5r 222j323jr 22!lGp2 1/2exp~2j2r 2!

1S 3

4
r 212

3

2
r 23l Derfc~jr !J erer (10)

M (rs)~k!5S 12
1

3
k2l D S 11

1

4
j22k21

1

8
j24k4D6pk22

3expS 2
1

4
j22k2D ~ I2ekek!. (11)

M (ps) is the mobility associated to lattice sum in real space,M (rs)

concerns with the sum in reciprocal space,r 5uxgb2xau, er

5r /r , ek5k/k, l5
1
2(11ap /as) and erfc is the complementar

error function. The mobilities presented from the Eq.~9! to ~11!
provide two different levels of hydrodynamic interaction appro
mation. The terms which includel2 provide a leading order cor
rection due to the finite size of the particles.

Considering the system under the action of gravity and that
particles are torque-free, the forceFa acting on a particlea of
speciess is given by

Fa52hsls
3e31f l

a1fc
a . (12)

The term2hsls
3e3 is the net weight of the particlea andf l

a is an
artificial short-range repulsive force acting among pairs of p
ticles when they are close together andfc

a is a restoring force to
prevent eventual overlaps. One discusses short-range intera
next.

For a mobility problem the particle trajectories are obtain
simply by integration of the kinematic equation

Dxa

Dt
5Ua, xa~0!5xo

a . (13)

3.2 Short-Range Repulsive Forces. As mentioned above,
the mobility tensors include only the far-field interactions whi
cannot capture the lubrication forces arising from the squeez
DECEMBER 2002, Vol. 124 Õ 959
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flow within the gap between two approaching spheres. As a c
sequence, in a time evolution of disordered suspensions it is c
mon the occurrence of numerical errors owing to occasional o
laps between the spheres, even in dilute systems. Such a pro
is critical in regions of large solid volume fractions especia
when particles have settled at the bottom of the container.

In view of this a lubrication short-range force is modeled he
by employing an artificial repulsive force acting among pairs
particles when they are close together,@11#. Introduction of this
extra repulsive force to prevent particles clusters is not unreal
because forces acting between particles in nature and in labor
practice are often repulsive. Furthermore, the pairwise additio
near-field lubrication forces in Stokesian dynamics simulations
Brady and Bossis@31# requires time steps prohibitively small t
prevent overlaps.

The expression for this repulsive force is given by

f l
a5C1hplp

3expF2
~2«ab!

lpC2
G r̂ , for 0,~2«ab!,«0 (14)

whereC1 and C2 are arbitrary numerical parameters which re
resent, respectively, the intensity and the range of the repul
force, «ab5(ls1lp)2uxb2xau is the virtual overlap, and«0 is
the interparticle gap for which the forcef l

a is cut off. The param-
etersC1 , C2 , and «0 were determined by means of numeric
experiments with two unequal sedimenting spheres with an
stream impact parameter ofal5lpa. Figure 2 presents the tim
evolution of the gap between two closing unequal spherical p
ticles. The accuracy of the numerical simulation was tested
performing calculations for two interacting particles that ha
been studied extensively in the past and for which analytical
simulation results are available for comparison,@32#. For a time
step~1/100! Stokes time it is found a minimum gap around 1/
of the particle radius, when imposing the above short-range re
sive force with the appropriate constantsC1 , C2 , and«0 . Typical
values for these constants are:C1510, C250.1, and«050.1.

Although the lubrication forces have a divergent charac
when the particles come close at the creeping flow regime,
considered in addition the restoring forcefc

a due to eventual elas
tic collisions. For simplicity it was employed a linear force
displacement relation for interparticle contact in such a way t
the normal elastic force is proportional to the virtual overlap
the particles, so that

fc
a52Ke«ab r̂ , for «ab.0 (15)

whereKe denotes the contact stiffness, assumed to be cons
whose value depends upon material and geometric propertie
the colliding spheres. After several tests we found a typical va
for this constant equal to 100. Here, the repulsive forces may
also employed to model particle-wall interactions in a system w
no flux boundaries parallel to gravity.

3.3 Impenetrable Boundaries. The image system is con
structed by considering a unit cell with dimensionsd3 l 32h,
being the real and reciprocal lattice vectors defined now asxg
5(g1d,g2l ,g32h) andkz52p(z1 /d , z2 / l ,z3/2h), respectively,
where$g1 ,g2 ,g3% and$z1 ,z2 ,z3% are sets of integer coefficients
The procedure to obtain the flow solution within a no flux boun
ary is essentially to consider a linear combinationu(x)
5u(x;xa

s )1u(x;xa
i ) satisfying the following boundary condi

tions:

5
u~x!,v~x!,w~x! periodic in x and y directions

with period d and l , respectively

u~x!,v~x! periodic in z with period h

w~x!50 on z50 and z5h,

(16)

whereu, v and w denote the components of the fluid velocit
The termu(x;xa

s ) corresponds to the periodic flow solution due
960 Õ Vol. 124, DECEMBER 2002
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a stokeslet located atxa
s 5(x,y,z). The complementary term

u(x;xa
i ) corresponds to the image system which consists o

stokeslet equal in magnitude but opposite in sign located at
image pointxa

i 5(x,y,2z), @33#.
Using such an image system with Ewald’s summation te

nique in the version of Beenakker@28# we arrive at the fundamen
tal solution for the Stokes flow induced by a lattice of stokesl
with side periodicity and impenetrable top and bottom. The g
eral form for the velocity of a particlea is given by

Ua5Ma~j!•Fa1(
b51

N

G~xb2xa ,j!•Fb, (17)

whereG(xb2xa ,j) is the Ewald summed mobility tensor, give
by

G~xb2xa!5 (
g

xgbÞxa

J(ps)~xgb2xa!1
1

V (
z

kzÞ0

M (rs)~kz!Q

(18)

being the kernel tensorJ(ps) and the functionQ defined as

J(ps)5M (ps)~xgb
s 2xa ,j!2M (ps)~xgb

i 2xa ,j!, (19)

Q5cos@kz•~xb
s 2xa!#2cos@kz•~xb

i 2xa!#. (20)

The termM (ps) is the periodic Green’s function in the physic
space presented in Section 3.1 and the vectorsxgb

s 5(x,y,z)1xg

and xgb
i 5(x,y,2z)1xg locate the source point and the imag

point, respectively.

4 Numerical Method
Equations~13! and~17! will be applied to examine the dynam

ics of N particles sedimenting and interacting hydrodynamica
within a container with a no flux boundary perpendicular to gra
ity direction and periodic boundary conditions in the horizon
direction. This type of formulation represents a mobility proble
with hydrodynamic interactions, calculated by using pairwise
ditivity ~i.e., superposition of velocity in the mobility matrix!. It
should be important to note that the moderate number of parti
used in the present simulations makes the effect of periodi
dominate the sedimentation velocity at small particle volume fr

Fig. 2 Time evolution of the dimensionless gap between two
unequal sedimenting spheres. The figure is for an aspect ratio
of l l ÕlsÄ1.75 with upstream impact parameter l l . In the inset
are represented three steps of the time evolution, being „b… the
step of minimum interparticle gap.
Transactions of the ASME

cense or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t

a

e

l

m

c

p

T

c

p
s

n

c

y

n
n

e

n
r

s-
sed

b-
the

ich

a

ns

zed
a

ique

ic to
nds
the
re-
mit
alu-
Our
rse

ral

al

e
an-
s a
ta-

r of
dy-
in
nd
on-
on

nd
and
y-
ey-
re-

en-
e

-

es of
a

rix
the

ears

Downlo
tion, and the relatively low number of multipoles included~i.e.,
degenerate quadrupole only! reduces the accuracy at highf. Im-
provements could be made on both fronts by including more m
tipole on the one hand and more particles on the other. Eithe
these approaches, however, increases dramatically the numb
degrees-of-freedom and results in prohibitive computation tim
even avoiding the costly (N3) inversion from hydrodynamic lu-
brication. The simulations here requires for the calculation of
mobility interactionsO(N2) operations, which is still excessive a
moderatef.

4.1 Sampling Techniques. In this section, we describe
procedure based on the method proposed by Metropolis et al.@34#
to simulate the initial condition for either monodisperse and m
timodal size distributions of many interacting spherical particl
The main aim of this method is to generate ergodic ensemble
which each member consists ofN mutually impenetrable sphere
whose centers are randomly distributed in a prismatic unit cel
volumeV.

Consider the rigid sphere system defined in Section 3. The
tual impenetrability of the spheres imposes that the center of a
sphere of radiusas cannot be located within an excluded volum
shell ap,ur u,ap1as of any other one of radiusap . In other
words, these systems are characterized by a pair potential whi
zero when the interparticle distance is greater thanap1as and
infinite whenur u<ap1as .

In order to simulate a narrow fluid gap separating the sphe
when they are in close proximity, a geometric parametere is in-
corporated into the excluded volume. The amount of this ga
arbitrary but it is determined by considering the physical pheno
enon to be simulated, such as sedimentation or shear flow.
parameter is also considered in order to calibrate numerically
minimum distance between spheres during the generation pro
The value ofe must be chosen with some care, since it magnifi
the exclusion-volume effects, and consequently exerts an im
tant influence upon the randomness degree of the distribution
terms of the aspect ratios and the mentioned geometric param
the numerical excluded volume is written as

lp1
1

2
e,ur u,lp1ls1

1

2
e ~p,s51, . . . ,m!. (21)

The generation procedure for a given volume fractionf
5(4/3)p( i 51

m nil i
3 begins by placing sequentially the require

numberN of particles within the periodic domain under the no
overlap condition. Increasinge, the impenetrability condition im-
poses more severe restrictions on available particle arrangem
and decreases the physically accessible space.

From the setCN5(x1 , . . . ,xN), which characterizes the stati
initial configuration of the particles, one attributes to the system
potential energy, defined by

E~CN!5(
a51

N

(
b5a11

N

V~r ab!, (22)

whereV(r ab) is an arbitrary pair potential which falls off rapidl
with distance r ab5uxb2xau, and gives a weight P(CN)
5exp(2E), which defines an ergodicity criterion.

The system is subject to a temporal evolution simulated
merically as a random diffusive walk governed by the followi
Brownian-diffusion equation

xn115xn1Pe(s) dt1A6ls
21dt«n (23)

where«n is a random vector with each component having z
mean and unit variance and being generated independently o
other components and independently of previous time steps.
merically, this random vector is obtained by means of a stand
random number generator with enough independence betwee
jacent numbers,@35#. During the diffusion simulations the dete
ministic displacement Pe(s)dt was neglected by the imposition o
Journal of Fluids Engineering
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Pe(s)!1, which leads to isotropic particle motion. While the sy
tem evolves, the impenetrability condition was employed ba
upon the excluded volume criterion given by Eq.~21!, in which e
is set to a value representative of the lubrication gap.

The evolution of the system from the initial distribution to su
sequent nonoverlapping configurational states, in particular
motion of each particle, is subject to an energy criterion wh
prescribes: If the movement of a particlea implies in a reduction
of the system energy, the new position vectorxa

n11 will integrate
into the setCN by substituting the elementxa . Otherwise, one
considers the energy incrementDE due to movement and takes
random number« between 0 and 1. The positionxa

n11 will
be allowed only if «,exp(2DE). In the case in which
«.exp(2DE), the new position is forbidden and the prescriptio
outlined above are similarly followed for the next particle.

4.2 Computation of Hydrodynamic Interactions. To
compute hydrodynamic interactions among spherical multisi
particles in a semi-dilute (f<0.15) suspension, one presents
numerical procedure based upon the Ewald summation techn
for the Rotne-Prager mobility tensor,@28#. Although the Ewald
sum technique overcomes the convergence problems intrins
the long-range nature of interparticle interactions, it dema
great computational effort which decreases the suitability of
method for large systems. It is the purpose of the method p
sented below to reduce the computational effort in order to per
a study of some aspects of microstructural dynamics and an ev
ation of transport properties based on meaningful statistics.
computational resource permits the simulation of monodispe
and polydisperse suspensions characterized byN of O(103), N
being the number of particles in a periodic cell.

The lattice sum computation, in each time step of the tempo
evolution, demandsO(npcN

2) computations,npc being the num-
ber of periodic cells in the lattice. A significant computation
saving is achieved by tabulatinga priori the periodic Green’s
functions~10! and ~11! in order to avoid the computation of th
mobility tensor during the simulation. This scheme takes adv
tage of an important feature of the two-sphere mobility, which i
function of the relative separation only. Although the compu
tional effort still scales withN2, the avoidance of lattice sum
computations reduces drastically~about 98%! the CPU time.
However, the computational effort growing withN2 imposes se-
vere constraints on system size and consequently a numbe
particles greater than few thousands is prohibitively large for
namic simulations. A typical number of particles we simulated
a unit cell is 300 for dynamic simulations with 10 realizations, a
1000 for static simulations averaging over a hundred particle c
figurations. Typically it takes 5–10 s CPU time for the simulati
of one time step (Dt50.01a/U0) on a 933 MHz Dell work sta-
tion. The maximum memory required for the largest problem a
the tabulation process is around 25–100 MB. Recently, Sireou
Brady @36# have described a method for calculating the hydrod
namic interactions among particles in suspension at small R
nolds number based on a Stokesian dynamics method with a
duced computational cost ofO(N ln N). However, the work was
limited to evaluation of macroscopic properties of static susp
sions ~not evolving in time!. We should also mention here th
existence ofO(N) algorithms developed by Ladd@37# and by Mo
and Sangani@38#. Ladd’s method is based on the lattice
Boltzmann technique for finite Reynolds number ofO(N), al-
though he recognizes that there are several possible sourc
error in his simulations. Sangani and Mo’s algorithm follows
well-known approach by calculating the full resistance mat
through a fast multipole summation technique and inverting
resulting matrix iteratively. This method is in principleO(N),
although the iterative solution employed for these authors app
to perform poorly.
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5 Numerical Results
We first test the accuracy of the method by comparing sedim

tation velocities given by the present simulation with some a
lytical and experimental results available.

5.1 Hindered Settling Function for Ordered Suspensions.
The first case we consider is a periodic arrangement of sph
sedimenting in a simple cubic lattice. For this case the theore
hindered settling function scales asO(f1/3) for point particle
force ~i.e., dilute limit!, @39#. We verify our numerical scheme b
comparing calculated sedimentation rates with the asympto
low-volume fraction solutions of Sangani and Acrivos@40#, given
by

f ~f!5121.7601f1/31f21.5593f213.9799f8/323.0734f10/3

1O~f11/3!. (24)

Figure 3 shows the settling velocity for a simple cubic array
spherical particles as a function off1/3. It can be seen that the
numerical results, obtained by considering the finite size of
particles, yield close agreement with the theoretical predicti
given by Eq.~24! in the semi-dilute particle volume fraction rang
f<0.20. It is also displayed the point-particle numerical resu
in order to illustrate the effect of the level of the hydrodynam
approximation on the sedimentation velocity.

Fig. 3 Dimensionless settling velocity as a function of f1Õ3 for
a simple cubic arrangement of particles. The numerical results
for point-particle approximation „s… and including the finite
size of the particle „d… are shown in comparison with the low f
asymptotic solution of and Sangani-Acrivos †40‡ „solid curve ….

Fig. 4 Dimensionless settling velocity as a function of the
solid volume fraction. Simulations results „d… are shown in
comparison with the low f asymptotic result of Batchelor †3‡
„solid curve …, the Brady-Durlofsky †41‡ result „dashed curve …

and the Richardson-Zaki correlation †2‡ „dashed-dotted curve ….
962 Õ Vol. 124, DECEMBER 2002
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5.2 Hindered Settling Function for Disordered Suspen-
sions. The calculation of the settling velocity averaged over se
eral instantaneous random configurations of particles constitut
more realistic test than the above. In this section we validate
hindered settling function by means of comparisons w
Richardson-Zaki@2# correlation,

f ~f!5~12f!n, (25)

for which we assumed an exponentn55.1, and with the lowf
asymptotic result of Batchelor@4# for random and statistically
homogeneous suspensions, given by

^U i&/U05 f ~f!;125f1O~f2!. (26)

It is also made a comparison with the analytical expression
Brady and Durlofsky@41#

f ~f!5
^U i&
U0

511f2
1

5
f22

6

5
fS 52f11/2f2

112f D , (27)

derived by considering the Rotne-Prager approximation for
Percus-Yevick hard-sphere radial distribution function,@41#.

The instantaneous mean of the velocities of the sedimen
particles is

Ū~ t !5
1

N (
i 51

N

Ui~ t !. (28)

Figure 4 shows the results for the dimensionless average s
mentation rate as a function of the particle volume fraction fo
random monodisperse suspension together with Eqs.~25! to ~27!.
Each point corresponds to the mean velocity over 100 indep
dent particle configurations at a given concentration. Good ac
racy for the sedimentation velocity is obtained for the wide ran
of particle volume fraction simulated (0,f,0.20). At low vol-
ume fraction (f<0.03), however, the numerical results underp
dict Batchelor’s theory being the agreement within statistical
certainty. The small degree of scatter suggests that some o
initial random configurations accessible through our simulatio
were not perfectly statistically homogeneous as assumed
Batchelor’s analysis. Actually, the dilute limit is difficult to stud
through simulation, as very small effects must be compared
issues of system size, the effect of periodic boundary conditi
must be considered. In this limit the motion is in essence a su
position of the sedimentation velocity of the dilute periodic arr
of images which scales like (f/N)1/3, with that for the random
suspension which isO(f) for a low-volume fraction. Mo and
Sangani@38# have calculated this difference in the velocity in
duced at the center of a test particle in a periodic suspension
a random suspension. Experimental results do not seem als
give Batchelor’s coefficient, generally giving a value less th
6.55. The hindering of the settling observed is due to a back fl
outside the particle, which occurs since we imposed the condi
of no mean flow,̂ u&50. Our method can predict accurate velo
ity only for low to moderate volume fractions; for higher volum
fractions more moments are required to represent the part
correctly.~See Figs. 5 and 6.!

5.3 Hindered Settling Function for Bidisperse Suspensions
We now present the calculated hindered settling velocities fo
bimodal size suspension of equidensity particles. At dilute con
tions the comparisons are made with the theoretical resul
Batchelor@4# which states that the mean velocity of a particle
speciess in a suspension ofm distinct species is given by

f s~f!5
^U i

(s)&

U0
(s) ;11(

p51

m

Ssp~l,h!fp1O~f2!

~s51,2, . . . ,m! (29)
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where Ssp values are sedimentation coefficients which depe
upon the aspect ratiol5ap /as and the reduced density ratioh
5(rp2r f)/(rs2r f).

As another basis for comparison one adopts the correlation
posed by Davis and Gecol@42#, valid for a wider range of total
particle volume fraction, given by the following expression:

f s5
^U i

(s)&

U0
5ls

2~12f!2SssS 11(
pÞs

~Ssp2Sss!fsD (30)

where the sedimentation coefficientsSsp assume the appropriat
values calculated by Batchelor and Wen@43#.

In Figure 7 it is shown the numerical results for the mean s
tling velocity as a function of the total particle volume fraction
comparison with those predicted by the Eqs.~29! and~30!. For the
sedimentation coefficients it was assumed the numerical va
S115S22525, S12529.81, S21524.29 provided by Batchelor
and Wen@43#. The simulations were performed under the impo
tion of equal volume fractions for both particle species. The
merical results were obtained by averaging over 100 random
independent instantaneous configurations. We see that they a
good general agreement with the correlation,@43#, thus validating
the calculations of the average sedimentation by the presen
merical procedure.

Fig. 5 The settling velocity, nondimensionalized by U0 , as a
function of the total solid volume fraction for a bimodal size
suspension. Simulation results for small „h… and large „d… spe-
cies are shown in comparison with the low f asymptotic result
of Batchelor-Wen †43‡ „solid curve … and the Davis-Gecol corre-
lation †42‡ „dashed curve …. The simulations were performed
over 100 random and equally probable configurations. The sys-
tem is comprised of 1000 particles in a cubic periodic cell. The
results are for fsÄf lÄfÕ2 and l l ÕlsÄ2.

Fig. 6 Dimensionless horizontal density fluctuation obtained
over 100 random and independent configurations as a function
of the number of particles.
Journal of Fluids Engineering
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5.4 Fluctuations in Sedimentation. Several cases were
studied. The particle concentration was varied through the ra
0,f,0.10. Various different box sizes were studied, withl /a
ranging from around 25 to 350. The aspect ratio of the box w
kept constant ath/ l 53.

The horizontal fluctuations in the density of the suspension
the origin of the large convection currents during the sedimen
tion. We investigate the magnitude of these fluctuations by c
structing the Fourier amplitude for the lowest mode in t
x-direction of the number densitŷn'

2 &

^n'
2 &5(

j ,k
e2p i (xj 2xk)/ l , (31)

summing over the differences in thex-coordinates of the positions
of the particles.

We collect together in Fig. 6 the average of the horizontal d
sity fluctuations, normalized byN, over the 100 realizations in
each of the 12 different cases studied. Although the results
plotted as a function of the number of particles used in the diff
ent cases, we see that the horizontal density fluctuations are
sentially constant, equal to the standard6AN statistical fluctua-
tion. The small degree of scatter around the unit we attribute to
effect of the finite size of the box.

We measure the fluctuations in the velocities with the instan
neous variance

^U82~ t !&5
1

N21 (
i 51

N

~Ui~ t !2Ū~ t !!, (32)

Fig. 7 Dimensionless velocity fluctuation for a monodisperse
suspension as a function of the system parameter Af l Õa. The
simulations were performed over 100 random and equally prob-
able configurations. The system is comprised of 300 particles
in the unit cell with periodic sides and impenetrable boundaries
perpendicular to gravity. The dashed lines are the linear fit: „a…
AŠU8¸

2
‹ÕU0Ä0.79Af l Õa; „b… AŠU8�

2
‹ÕU0Ä0.20Af l Õa.
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constructed for the vertical and two horizontal components of
locity, the variances of the horizontal components then being

eraged to givêU i8
2
& and ^U'8

2
&.

In Figures 7~a! and 7~b! we examine the variation of the fluc
tuations in the vertical and horizontal velocities. The system w
comprised of 300 particles in a unit cell with no flux bounda
perpendicular to gravity, but with side periodicity. The results
the cases with different particle concentrationsf and box sizes
a/ l are plotted against the expected scaling parameter (f l /a)1/2.
We see that for low-volume fractions and small boxes both ve
ity fluctuations increase linearly with the square root of the b

size, with linear fits A^U i8
2
&50.79U0(f l /a)1/2 and A^U'8

2
&

50.20U0(f l /a)1/2. Thus in agreement with Caflisch and Luke@7#
and with the scaling argument presented here, we conclude
when the particles are positioned randomly in a monodispe
dilute suspension there are initially variances proportional to
size of the box.

The saturation of the velocity fluctuations in Figs. 7~a! and 7~b!
are obtained for a volume fraction around 0.19 andl /a 18.7. It is
seen that velocity fluctuations parallel to gravity reach the c
stant value of 0.85U0 for (f l /a)1/2 around 1.5, whereas the ve
locity fluctuations perpendicular to gravity reach the value 0.20U0

for (f l /a)1/2 around 0.8. The velocity fluctuation of the vertic
velocity is comparable to the mean sedimentation velocity. Thi
in good general agreement with the experiments@23# where the
fluctuations ranged between 25% and 50% of the mean in
dilute suspensions. Our results are also in good general agree
with the experiments of Nicolai et al.@25# and Guazzelli@6# who
found a relative fluctuation around 80% atf55%. The theoreti-

Fig. 8 Dimensionless vertical velocity fluctuation for a bidis-
perse suspension as a function of the system parameter Af l Õa.
The simulations were performed over 100 random configura-
tions. The system is comprised of 300 particles in the unit cell
with periodic sides and impenetrable box. The results are for
fsÄf lÄfÕ2 and l l ÕlsÄ2. The dashed lines are the linear fit:
„a… AŠU8¸

2
‹ÕU0Ä1.400Af l Õa; „b… AŠU8�

2
‹ÕU0Ä1.345Af l Õa.
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aded 10 Jul 2009 to 131.111.16.227. Redistribution subject to ASME li
ve-
av-

-
as

ry
or

oc-
ox

that
rse
the

n-
-

l
is

the
ment

cal value of Koch and Shaqfeh@9# gives a slightly higher value of
A^U i8

2
&52.2U0 . The ratio in Fig. 7 of the vertical to horizonta

velocity fluctuations was found to be 4, indicating a strong anis
ropy. This is near to the experiment value of 2.5 found by Nico
et al. @25# and Guazzelli@6#, and near to the ratio of 3.5 found b
theory and numerical simulations,@14–16#.

We next present simulations results for a bidisperse suspen
These simulations were performed for equal concentration of
large and the small species (fs5f l5f/2) and for a diameter
ratio 2. Figures 8~a! and 8~b! display the results for vertical ve
locity fluctuations for two species as a function of the syst
parameter (f l /a)1/2. It is seen that the hydrodynamic interaction
of small particles with larger ones produces an increasing in t
velocity fluctuations of about 30% compared to the results sho
in Fig. 7~a!. It is apparent from these results that random bid
perse suspensions present a system size dependence at
volume fraction, just as shown above for the monodisperse c
This leaves open the possibility that a dilute homogeneous p
disperse suspension could exhibit hydrodynamic screening.

5.5 Suspension Evolution. Microstructural change, that is
the variations in the relative arrangements of the particles, is
important feature of a sedimentation process. The time evolu
of the system was analyzed over 10–20 realizations. The m
problem that we examine was to know how the initial configu
tions of the particles evolve in time.

Typical evolutions for the cases of monodisperse and bimo
suspensions simulated are displayed in Fig. 9. Figure 9~a! shows
one realization of the monodisperse case for a particle conce
tion f55%, a box size ofl /a520 and an aspect ratio of the bo
h/ l 53; a simulation requiring 286 particles. The realization of t
bimodal suspension is shown in Fig. 9~b! for l /a520, a total
concentrationf50.05 (N5185), fs5f l50.025, and aspect ra
tio l l /ls51.5 andh/ l 53. We show at five different times~from
0 to 60 a/U0! the positions of the particles projected onto t
vertical xz-plane. The first time in both cases is the initial co
figuration with the particle distributed randomly inside the box.
time progresses, a sediment accumulates on the lower im

Fig. 9 Typical dynamic simulation of particle configuration at
different times during sedimentation: „a… monodisperse sedi-
mentation for aÕ lÄ0.05, h Õ lÄ3, NÄ286; fÄ0.05; „b… bimodal
sedimentation for fÄ0.05 „NÄ185…, fsÄf lÄ0.025 and aspect
ratio l l ÕlsÄ1.5; h Õ lÄ3.
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etrable boundary. Note that the impenetrable boundary is slipp
and not a no-slip rigid boundary, so that particles can be s
moving along it. The descending upper interface between the
pension and clear fluid above is diffuse and spreads slowly, so
the nearby concentration of particles decreases in time.

For each case studied, dynamic simulations were made fo
to 20 realizations with different initial configurations. Below w
give only averages over these realizations. Moreover in calcu

Fig. 10 Time evolution of the dimensionless horizontal den-
sity number fluctuations at different conditions of the simu-
lated system with the aspect ratio h Õ lÄ3. „h…: aÕ lÄ0.05; f
Ä0.03 „NÄ172…, „d…: aÕ lÄ0.06; fÄ0.02 „NÄ66….

Fig. 11 Normalized velocity fluctuation auto-correlation func-
tions parallel, C ¸ „h… and perpendicular, C� „n… to the gravity
direction. „a… Computer simulations for h Õ lÄ3, aÕ lÄ0.05, N
Ä114×fÄ0.02; „b… Computer simulations for h Õ lÄ3, aÕ l
Ä0.05, NÄ172×fÄ0.03. The error bars represent experimen-
tal data †25‡ with fÄ0.05, h Õ lÄ4, h ÕdÄ10 and d ÕaÉ100. The
dashed lines indicate the uncertainly range of the present com-
puter simulations.
Journal of Fluids Engineering
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ing the averages, we select the middle part of the suspens
away from the sediment and the diffuse upper front.

Variations in number density can result from different bounda
conditions, such as when a finite height of suspension settles
ward an impenetrable plane boundary as considered in our s
lations. Figure 10 shows the time evolution of the horizontal d
sity fluctuations, normalized byN, for two different combinations
of particle concentrations and box size. In each of the two diff
ent cases studied, the horizontal density fluctuations are see
remain essentially constant up tot520a/U0 , approximately the
time to fall through the width of the boxl or one third the time to
fall the height of the boxh. We had expected that during such
time the density fluctuations would drive a convection whi
would turn the horizontal variations in density into vertical vari
tions, and so the large velocity fluctuations would decay. O
dynamic simulations show, however, that the convection does
lead to a systematic decrease in the horizontal density fluctuati
Further simulations,@11#, with a taller box,h/ l 54 and h/ l 55
found the same behavior. This result indicates that, even in
case of considering no flux slip boundaries one would not exp
the probability density in the bulk of the suspension to be infl
enced. Thus, the fluctuations seem to be always limited by the
size in the dilute limit of a sedimenting suspension.

Corresponding to the lack of evolution of the density fluctu
tions, vertical velocity fluctuations therefore remain proportion
to the size of the box, as in the parameterf l /a, and do not evolve
to some value which is independent of the size of the box. T
computer simulations therefore remain at variance with exp
mental observations of fluctuations independent of the size of
box. A possible explanation to the discrepancy between exp
ment and theory is that side walls in the experiments may ind
large inhomogeneities as the suspension evolves in time. Fur
more, the experiments are always affected by polydispersity
low-volume fraction. Polydispersity could decrease the correlat
time for a particle allowing it to fall through the interaction vo
ume faster than it can sample the same volume by hydrodyna
dispersion. This effect would be important to decrease diffusiv
as observed in the experiments.

The velocities of the particles fluctuate randomly in time, a
parently with a magnitude which does not evolve during the se
mentation. The persistence in time of the velocity fluctuations
investigated using the auto-correlation function of the veloc
fluctuations, which correlates the velocity at timet with itself at
various time delayst. This is constructed for the vertical and tw
horizontal components. We shall report these auto-correla
functions normalized by the variances, i.e.,

Ci~ t !5
^U8~ t !U8~ t1t!&

^U8~ t !U8~ t !&
(33)

and similarly for C'(t). Here the angle brackets denote a su
over all particles, and an average over all configurations or r
izations~i.e., an average over time in dynamic simulation!.

Figure 11 gives the auto-correlation function, nondimension
ized by the variance~correlation with zero time delay!, for the
horizontal and vertical velocity, both for our computer simulatio
in the casef53%, a/ l 50.05 andh/ l 53 and for the experiments
of Nicolai et al.@25# in the casef55%, a/ l 50.01,h/ l 510, and
l /d52.5. There is good general agreement in which the veloci
lose correlation over a time ofO(10a/U0) and the horizontal
velocity de-correlates slightly faster.

The random motion of the sedimenting particles can be cha
terized by a diffusion process with diffusivity calculated as t
integral over time of the velocity auto-correlation function

D5E
0

`

^U8~ t !U8~ t1t!&dt, (34)

constructed for the verticalD i and averaged over the two horizon
tal directions forD' .
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D5ezezD i1~ I2ezez!D' (35)

An important question is to examine whether this integral c
verges at long times: if it does not, the diffusion process is ano
lous. The ratio of the diffusivities to the velocity variance giv
the integral time-correlationD/^U82&.

Figure 12 shows the time integral increasing to its asympt
value on the correlation time ofO(10a/U0). For the casef
53%, a/ l 50.05 andh/ l 53 we find a diffusivity in the direction
of gravity D i52aU0 . This value should be compared with th
experimental values of Ham and Homsy@23# increasing from
2aU0 at f52.5% to 6aU0 at f56%, and the experimenta
value of Nicolai et al.@25# around 5aUs . Hydrodynamic screen-
ing theory givesD i50.52aU0 /f, i.e., the larger value 17aUs at
f53%, @9#.

Figure 13 shows our results for the self-diffusivity parallel
gravity as a function of the scaling parameterf1/2( l /a)3/2. The
results for various particle concentrationsf and box sizesa/ l can
be approximated by the linear fitD i50.19aU0f1/2( l /a)3/2. While
the values of the diffusivity are comparable with those in labo
tory experiments, a direct comparison is not possible because
simulations depend on the size of the box and the laboratory
periments do not.

The random fluctuations during sedimentation exhibit consid
able anisotropy. We find thatD i /D''10 in all our simulations.
This value should be compared with a value around 5 in the
periments of Nicolai et al.@25#, and a value around 25 in th
theory of Koch@14#. In fact, Koch’s theory shows that it is pos
sible to reduce a degree of anisotropy from 100 to around 25
increasing the aspect ratio of the box fromh/ l 51 to h/ l 53. We
speculate, however, that this still high value results from the

Fig. 12 Dimensionless hydrodynamic self-diffusivities for h Õ l
Ä3, aÕ lÄ0.05, and fÄ3%. The dashed lines are the error bars.

Fig. 13 Vertical dimensionless hydrodynamic self-diffusivity
as a function of the scaling f1Õ2

„ l Õa…3Õ2. The dot line is the linear
fit D ¸Ä0.19aU0f1Õ2

„ l Õa…3Õ2.
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of a full periodic boundary condition in the vertical rather than o
no flux boundary perpendicular to gravity. Ladd@16# reported
numerical results of fluctuations and hydrodynamic dispersion
sedimentation for a large homogeneous suspension using 3
particles (f510%) at finite Reynolds number (Re50.45), based
on the width of the periodic cell. His results show an anisotropy
velocity fluctuations about 3 that agree well with our numeric
results and experiments. However, the ratio of diffusivities eq
to 24 for h/ l 54 are larger than the result here and about fi
times the experimental measurements.

Finally, we consider the results for velocity fluctuation field
across the whole box atf50.03. The simulations show how th
random initial structure develops in time. Figure 14 displays ty
cal velocity fluctuation fields taken during the dynamical simu
tion at timet from 0 to 75a/U0 . The starting time (t50) corre-
sponds to a random suspension generated as described in S
4.1. It is apparent that coherent large-scale structure that are o
of the size of the box forms~convective currents of particles! and
persists at later times. This larger scale vortex structure indic
that the velocity fluctuations depend on the system size.

From the above discussion it seems as though that simulat
with a finite height of suspension approaching a no-flux bound
with periodic boundary conditions in the horizontal direction
the key to better capture the anisotropic nature of the part
interactions and also to understand the difference between th
and experiments on dilute sedimenting suspensions. This prob
can be better explored through simulations considering a box w
no-slip boundaries in order to investigate the effect of the c
tainer walls on the dynamic of fluctuations as particles sedim

6 Conclusions
In this paper we report direct numerical simulations of mon

disperse and polydisperse suspensions of spherical particles
menting at low Reynolds number in a rectangular container w
side periodicity and impenetrable slip boundaries perpendicula
gravity. Our method is applicable for static~not developing in
time! and dynamic simulations of suspensions at moderately
ume fractions. The method of images was peculiarly adapte
the solution of the problem of many interacting particles. T
results show the importance of including the effect of a no-fl
lower boundary for reducing the vertical-horizontal anisotropy
particle diffusivities to realistic proportions.

We have compared our results of sedimentation velocity
ordered and random~monodisperse and polydisperse! suspensions
with theory and experimental correlations and have gener
found good agreement for particle volume fraction ranging from
to 0.20. It is seen that the sedimentation velocities do not ag
particularly well in the very dilute limit due to the effect of per
odicity of our numerical system. For higher volume fractions
good agreement of our sedimentation with experiments would
quire higher-order many-body multipole moments.

The results also show the evolution of the positions of the p
ticles in a finite box. Our numerical computations have fou
velocity fluctuations of monodisperse and polydisperse dilute s
pensions increasing in a predictable way with the system size.
seen that a saturation of fluctuations occurs only at volume f
tions larger than 10%. This result agrees with the scaling ar
ments presented here, with theory and with large-scale latt
Boltzmann simulations of dilute suspensions. We conclude
the sedimentation process observed in our simulations has
dominated by convection currents~large structure motion! of the
size of the settling box, which is preserved in time. In contrast,
experiments have found that large vortex structures diminishe
size at larger times.

The degree of anisotropy in velocity fluctuations and hydrod
namic self-diffusivities, both experimentally and in the prese
simulations are independent of the system size. Our simula
results for normalized autocorrelation functions are also in go
agreement with experiments at dilute limit.
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Fig. 14 Time developing of three-dimensional velocity-fluctuation fields
across the numerical box „20Ã20Ã60… during the sedimentation process of
monodisperse particles at fÄ0.05. The dimensionless time corresponds to
multiples of Stokes time aÕUo . Large-scale motions „i.e., convective currents …

dominate the sedimentation process with large swirl depending on the nu-
merical box.
o

u

a

e

g

Since the experimental systems are never perfectly hom
neous and the actual particle distribution is unknown, the exp
mental observations have not a definite answer for the phys
mechanism that renormalizes the rms fluctuations in a dilute s
menting suspension. Certainly new numerical simulations incl
ing the effects of the container walls would be important a
challenging to explain the experimental observations.

We hope that our simulations have given some new insig
into the study of fluctuations and dispersion in sedimentation
may help to stimulate new developments in the future.
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Nomenclature

a 5 particle radius
C 5 velocity autocorrelation function

C1 , C2 5 numerical parameters~see Eq.~14!!
D 5 hydrodynamic self-diffusivity

D0 5 Stokes-Einstein diffusivity
d 5 box width
F 5 force acting on the particles
f l
a 5 artificial lubrication force acting on a particlea

fc
a 5 artificial contact force acting on a particlea

f (f) 5 hindered settling function
eering

11.16.227. Redistribution subject to ASME li
ge-
eri-
ical
edi-
d-

nd

hts
nd

p-

.

G 5 Ewald summed mobility tensor
g 5 gravitational force per unit mass
h 5 box height
I 5 unit second-rank tensor
J 5 kernel tensor

Ke 5 contact stiffness
kz 5 reciprocal lattice vector

l 5 box length
M 5 mobility tensor
m 5 number of species
N 5 number of particles within the unit cell
n 5 number density of particles

Pe 5 Péclet number
r 5 relative distance vector

Re 5 Reynolds number
S(l,h) 5 sedimentation coefficients

St 5 Stokes number
U0 5 Stokes velocity
U8 5 particle velocity fluctuation

u,v,w 5 fluid velocity components
V 5 cell volume
x 5 position vector

xg 5 physical lattice vector
x,y,z 5 space coordinates

Greek Symbols

g 5 cell index of the physical lattice
DE 5 energy variation
Dr 5 particle-fluid density difference
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Downlo
dt 5 time step
e 5 geometric parameter~see Eq.~21!!

«n 5 random vector
«0 5 interparticle gap for which the forcef l

a is cut off
«ab 5 virtual overlap between particlesa andb

z 5 cell index of the reciprocal lattice
h 5 reduced density ratio
k 5 Boltzmann constant
l 5 aspect ratio
m 5 fluid viscosity
j 5 convergence parameter
r 5 particle density

r f 5 fluid density
tc 5 correlation time
f 5 solid volume fraction

Superscripts

a, b 5 particle index
(ps) 5 physical space
(rs) 5 reciprocal space

(s), (p) 5 given species

Subscripts

i 5 parallel to gravity
' 5 perpendicular to gravity
s 5 small species

s, p 5 given species
l 5 large species
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