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The evolution of slender inviscid drops in an 
axisymmetric straining flow 
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(Received 28 June 1979 and in revised form 17 March 1980) 

The evolution of the shape of a slender inviscid drop in an axisymmetric straining 
motion is studied at  low Reynolds numbers. It is found that the shape equation can be 
solved by polynominals with time-dependent coefficients. A global stability result 
can be used to show simply that only one possible equilibrium is stable. It is further 
shown that if the slender drop starts with a long-wavelength waist then it cannot go 
to this stable equilibrium and must either extend indefinitely or burst. In the class of 
trinomial shapes, it  is shown that the drop either bursts or goes to the stable equi- 
librium, depending on whether or not the initial shape has a waist. 

1. Introduction 
A small drop of a low-viscosity fluid suspended in a fluid of high viscosity has been 

observed by Taylor (1934)  and Torza, Cox & Mason (1972)  to deform into a long 
slender shape when placed in a shearing flow. Taylor (1964)  used a slender-body 
theory for low-Reynolds-number flows to analyse slender drops in an axisymmetric 
straining motion. He found a slender equilibrium shape for sufficiently strong flows, 
E p A / y  >> 1 ,  where E is the principal strain rate, p the viscosity of the suspending fluid, 
y the surface tension and +nA3 the volume of the drop. Taylor predicted further that 
drops would break up if the flow was too strong, E p A / y  > 0.148 @/pi)& where pi is 
the internal viscosity. In this paper we shall consider axisymmetric straining flows 
which are sufficiently strong for the drop to be slender but not too strong for internal 
pressure differences proportional to the internal viscosity to be important, i.e. we 
consider slender inviscid drops with 0.148 (p/pi)* >> E p A / y  >> 1. 

Buckmaster (1972 ,1973)  re-examined Taylor's analysis and pointed out that Taylor 
had missed a wide class of possible solutions to his equation which governed the shape 
of a steady drop. Buckmaster observed that for a steady drop the cross-sectional radius 
R could be a function of distance along its axis z according to 

with 
R = A (  y/E,uA) ( 1  - I z In/Z")/2n, 

I = A ( E p A / y ) 2 + ( n +  1 )  ( 2 n +  I), 

where n is an arbitrary positive real number; Taylor having selected n = 2.  33uck- 
master thought that it would be desirable if the steady shape were a smooth analytic 
function, i.e. n were an even integer. This restriction to analytic shapes was found to 
be necessary by Acrivos & Lo (1978)  when they studied a small singular region of the 
flow near the centre of the drop, see also Brady (1980) .  In  this paper we shall restrict 
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attention to time-dependent shapes which are smooth analytic functions and so 
avoid fast processes which might occur in this small singular regim. 

The final selection of a single realizable equilibrium shape n = 2 (Taylor's choice !) 
from the infinite number of equilibria with n an even integer was made by Acrivos & 
Lo (1 978) after a stability analysis had found all the other equilibria unstable. In this 
paper we shall go beyond Acrivos & Lo's infinitesimal stability analysis; we shall 
consider the general initial value problem for the evolution of the shape. 

Some recent studiea of slender drops (Hinch & Acrivos 1979, 1980) have developed 
the theory for two-dimensional straining motion and for simple shear flow. In this 
paper, however, we shall keep to the simpler axisymmetric straining motion. 

The equations governing the evolution of a slender inviscid drop in an axi- 
symmetric flow are derived in the following section. Then in $ 3 a polynominal in the 
axial distance with time-dependent coefficients is shown to satisfy this governing equa- 
tion. The case of a trinomial is studied fully: it  is shown that depending on the initial 
shape, such a drop goes to a unique stable steady shape, or it bursts into two smaller 
drops in a finite time. Generalizations to an arbitrary polynomial are made in $4. 
Finally in $5, the positions of local maxima and minima of the radius are shown to move 
with the undisturbed axial flow. It can then be concluded that a slender drop with a 
long-wavelength waist cannot go to a steady equilibrium without part of it breakingoff. 

2. The governing equation 

motion, given in cylindrical co-ordinates by 
Following Acrivos & Lo (1978), we consider a drop placed in an uniaxial straining 

u,, = - +Er, u, = Ez. 

The drop is chosen to be axially symmetric with a surface at 

The normal to this surface is 
r = R(z,t), 1, < z 6 I, .  

n, = ( 1  + R:)-t, n, = - R,( 1 -!- R,2)-4. 

We shall assume that the drop is long and slender, i.e. 

R Q I , - I ,  and IR,I Q 1. 

Thus we shall not be able to study the evolution of disturbances which have a wave- 
length which is not long compared with the thickness of the drop. For a slender drop 
Acrivos & Lo have shown that the Stokes flow outside the drop can be represented, at 
leading order in the slenderness, by the undisturbed flow plus the flow due to a line 
distribution of sources &(z)  in I ,  < z < I , .  Thus for r = O(R) and I ,  < z < I ,  

As there are no pressure gradients at the leading order, the normal stress exerted by 
the flow on the drop is 

g,(z) = -pE-/@(z)/nR2(z).  
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This normal stress must balance the interior pressure p of the drop, plus the jump in 
normal stress due to the surface tension, 

Y grr(z )  = - p + - .  
R(z) 

Here we have assumed that the second curvature R,, is negligible compared with R-' 
for the long slender drop. Thus we have excluded here the stabilizing influence .of 
surface tension on the short wavelength disturbances. We assume further that the 
viscosity of the drop is so small that the interior pressure p is constant along the 
drop, the pressure changing in time so as to keep the volume of the drop constant. 

Solving the normal stress balance, we obtain the line source strength &(z) in terms 
of the instantaneous shape of the drop. This source strength can be substituted into 
the velocity field. The evolution of the drop shape then follows from the kinematic 
boundary condition 

R,n, = u.n  at r = R. 

Note on the right-hand side we must retain the small n, because u, is O(l/R) larger 
than u,. Rearranging, we obtain the governing equation 

Y 

It is now convenient to non-dimensionalize the problem without change of notation. 
We scale time with E-l and R with y/Ep. The pressure is scaled with 2pE and measured 
with respect to 2pE so as to absorb the constant - E in the bracket. In order to pre- 
serve the volume of the drop as gnA3 we must scale z, 1, and 1, with A3E2p2/y2. The 
condition that the drop is slender is thus the condition of high strain rates: 

(y/Ep.A)3 < 1.  

The non-dimensional governing equation is then 

R,+zR,-pR = -8. (1)  

This equation is defined over the range 

Zl(t) < z < Zz(t) 

which varies in time as the drop changes length (drop ends R(z, t )  = 0 at z = Zl(t)  and 
Iz(t)). If the radius of the drop shrinks in time to zero at  some point between the ends, 
the drop will break into two parts. The governing equation would then be applicable 
to the two parts separately, with possibly different pressures in the two parts. 

The pressure p is required to keep the volume of the drop constant in time. In  the 
non-dimensional variables the volume is 

Differentiating this constraint with respect to time, substituting R, from the govern- 
ing equation, and using R = 0 at  the ends yields 

It is this expression for p which makes the governing equation (1)  nonlinear. 
IR-2 
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3. Some particular solutions 
Polynomial shapes. An intriguing property of the shape equation (1) is that it is 

polynomial-preserving : a polynomial in z with time-dependent coefficients gives EL 

closed solution to ( l ) ,  because the multiplication by z restores the z derivative to its 
original order. It is useful first to study solutions with the particular form 

R(z, t )  = ~ ( t )  - b( t )  2% - ~ ( t )  2%. 

This form is sufficiently flexible to enable full generalizations to be made in the follow- 
ing section. To avoid examining a certain singular region at  z = 0, we let m and n .be 
even integers (Acrivos & Lo 1978) with m > n. At least one of b and c must be positive, 
and we shall see later that if one is negative, it cannot be very negative. 

Substituting the above polynomial shape into the shape equation ( 1 )  yields equa- 
tions for the development of the coefficients 

a - p a =  -4, ( 3 4  

b + ( n - p ) b  = 0, ( 3 b )  

E+(m-p)c = 0. (3c) 

This system of equations must be solved with p (a function of a, b and c )  found from 
equation ( 2 ) ,  with 1 = - I ,  = l2 the lowest positive root of the polynomial. 

We shall view the solution of equation (3) as a trajectory on the bc plane. This is 
permitted because a can be found in terms of b and c from the volume constraint. 
Figure 1 shows the bc-phase plane solution for n = 2 and m = 4 .  We argue below that 
this particular case is typical of the general case. 

Figure 1 was obtained numerically by integrating equations ( 3 )  with a fourth order 
Runge-Kutta scheme. It is worth noting that the numerical integration was unstable 
to volume-changing disturbances if the integral in the denominator in ( 2 )  was replaced 
by the value 9. 

Shape-preserving solutions. We first examine shape-preserving solutions, those with 
b or c vanishing. Suppose c = 0 initially, then equation ( 3 c )  implies that c vanishes at 
all times. From the definition of the end, R = 0, we then have b = al-n. The normaliza- 
tion of the volume then requires 1 = (2n + l ) ( n  + 1)/3n2a2. Thus in the case c = 0 we 
can relate b and 1 to a. The pressure can now be evaluated in equation (2) in terms of a. 
Substituting this pressure into (3a) yields a particularly simple equation for a with 
solution 

a(t)  = - + a(0) - - e-it. 
2n ( z'n) 

Thus starting from c = 0 and any value of b, we tend along the b-axis in the be-plane 
to the point solution 

B: b = [3/4(2n + l ) ( n  + l)In/2n, c = 0. 

A similar conclusion applies to c, with b = 0 and m replacing n. 
Shape changes. An immediate conclusion from ( 3 b )  and ( 3 c )  is that the signs of b 

and c do not change in time. Hence the solution trajectory remains in the same 
quadrant in the bc plane. 
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FIGURE 1. Solution trajectories in the bc plane for n = 2 and m = 4. 

A more powerful deduction from (3b) and (3c) is that 

Hence (with m > n) b grows exponentially relative to c, unless b vanishes initially. 
The acute angle between the b axis and the lime from the origin to the point 
(b(t), c(t)) thus rapidly decreases. 

A consequence of the above result is that the point solution B on the b-axis is stable 
to c-perturbations, whereas the point solution C on the c-axis is unstable to b-perturba- 
tions. Acrivos & Lo (1978) came to the same conclusions about the stability of the 
equilibrium shapes but by considering the linearized motion near the equilibria. The 
above prediction (4) plays the role of a global stability result. 

The origin and injnity. If b and c are initially both small, the solution will start 
rather as if b = 0. Thus from the shape-preserving solutions we can expect c to grow, 
and from equation (4) we must expect b also to grow. 

If initially b is small and c is somewhat smaller, O(b(2m+1)/(2n+l)), then the solution 
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FIGURE 2. The inaccessible regions. 

differs from that with b = 0. However in this case it is clear from the volume nornializa- 
tion and the definition of the length that a is small O(b1/(2n+l)) and I is large O(b-2’(2n+1)). 
Hence in equation (2) p is large O(b-1/(2n+1)) and so both b and c grow. 

Similar arguments can be presented to show that if b and c are initially large then 
they must decay. 

Inaccessible regions. We must now consider what values of b and c give sensible 
shapes. 

When b c 0 and c > 0 the drop has a waist, i.e. a constriction at  its centre. From 
physical intuition and from equation (3a),  which gives a = - 8 at a = 0, it is clear that 
there is a possibility with this shape that in time a(t) = R(0, t )  will decrease to zero 
and thus the drop will burst into two. At a = 0 we have 1 = ( - b/c)l/(m-n) and then 
from the volume normalization 

(m-n)/(%n+l) 
( - b)(Zm+1)/(2%+1). 1 3(m - n)2 

( 2 m + l ) ( m + n +  1)(2n+ 1) 
c =  [ 

For a to be positive b must be greater than the value which gives the equality in (5). 
The inaccessible region in the bc plane of nonsensical shapes is thus the shaded region 
in the second quadrant of figure 2. 

To find the motion near this forbidden region we note that any straight line from the 
origin meets the curve (5) once in the quadrant, because the index of the power laws 
exceeds unity (m > n) .  By the global stability result (4) the solution trajectories move 
across this line away from the c axis, and so must eventually meet the curve. (They 
cannot escape to the origin because b and c grow when they are small.) Hence any drop 
shape with b < 0 at the initial instant must burst. 

When b > 0 and c c 0, there is a possibility that the shape of the drop does not 
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close, the limiting case having a cusped end. From the volume normalization and the 
condition for a double root of R(z, t )  = 0 at z = I ,  we find 

c > - k(m, n) b(2m+l)/@nfl),  (6) 

where k(m, n) is a complicated function of m and n and is positive. We now argue that 
the drops must move away from this region of inadmissible shapes in the fourth 
quadrant. First we observe that the global stability result (4) implies a solution trajec- 
tory might only enter the region of inadmissible shapes with 6 < 0 and C > 0. But 
from the expression for the pressure ( 2 )  we see p > - 4 and so by ( 3 b )  and (3c) along 
such a trajectory dc/db < (2m + l)c/(2n + 1) b. This restriction on the tangent to the 
trajectory just ensures that the trajectory cannot leave the region (6). 

4. Further solutions 
In  the previous section we considered particular shapes 

R(2, t )  = a(t) - b(t)  2% - c(t )  zm, 

m and n even integers, and concluded that if such a drop starts with b > 0 it must go 
to the point solution B, while if it starts with b < 0 it must burst by R(0, t )  decreasing 
to zero. This simple solution will now be used to discuss the evolution of an arbitrary 
shape. 

We first consider the more general shape of an arbitrary polynomial of even powers 
of 2 ,  

n 

k=O 
R(2, t )  = 2 a 2 k ( t )  22kv 

If we use the volume constraint to eliminate a,, we can view the solution as a trajec- 
tory in the a2a,. .  phase space. The previous section gives the solution on the special 
two-dimensional surfaces in this phase space which have all but two of the a2k vanishing. 
In  the full phase space there will be a complicated domain of inadmissible shapes. 

Now for the more general shape, the equation governing a, has the form (3a)  and 
the equations governing u2k ( k  2 1) have the form ( 3 b )  and (3c). There are thus n point 
solutions, one on each of the ask axes ( k  2 l ) ,  corresponding to steady drop shapes. 
Only one shape, however, is stable (the one with a2 + 0), the remaining ones being 
unstable to perturbations in shape with a lower degree polynomial. 

From the equations governing the a2,(k 2 1 )  we can deduce that the signs of the 
do not change. Hence the solution trajectory is confined to a (+)n part of the phase 

space. The equations governing the a2k(k 2 1)  also lead to a series of Qn(n- 1 )  global 
stability results similar to equation (41, which say that the coefficients of the lower 
powers grow exponentially relative to the coefficients of the higher powers. Thus the 
confined trajectory is compelled to move rapidly towards the u2 axis. The drop must 
therefore tend to the unique steady shape, or if the trajectory first enters the domain 
of inadmissible shapes, the drop must burst. If initially the a2k < 0 for 1 Q k Q n- 1 ,  
the drop will certainly go to the stable steady shape; while if initially a2 > 0, the drop 
will certainly burst, Further division of the initial conditions does not seem possible 
with the above approach, but a further criterion is given in 5 5. 

We now consider the further generalization of the polyynomial shape to include odd 
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powers of z, e.g. a2k+l ( t )  zZk+l. With odd powers included the drop is no longer reflection- 
ally symmetric about z = 0. In  the extended phase space there are no point solutions 
corresponding to steady shapes on the a2k+l axes, and in fact the entire aZk+l axes 
must be in the domain of inadmissible shapes. 

If the lowest odd power is higher than a non-trivial even power, then the coefficients 
of the odd powers all decay exponentially relative to the coefficient of this even power, 
just like the coefficients of the higher even powers. Thus the significance of the odd 
powers decays and the drop will go to a steady even shape or burst as before. 

If the lowest odd power is lower than all the non-trivial even powers, as must hap- 
pen for a,(t)z,  then the coefficient of this lowest odd power will grow exponentially 
relative to the other coefficients. Although the solution trajectory in the phase spece is 
rapidly moving away from the even axes on which the equilibria are to be found, the 
drop need not burst. Instead the drop, which is no longer reflectionally symmetric, 
can just be translating exponentially fast along the z axis; the exponential change in 
the translation compensating precisely for the exponential decay of the coefficients 
of the higher powers, so restoring their significance. This translation can be conven- 
iently absorbed by referring the shape to a moving origin at  z = zoet, i.e. 

n n 

k=O k=O 
R(z, t )  = ak( t ) zk  = ai( t ) (z-zz,et )n,  

where z = zo is the position of the maximum of R(z, t )  at t = 0. The equations governing 
the a; differ from those governing the ak only in the expression for the pressure. As the 
lowest non-trivial coefficient a i  is for an even power at  t = 0 (if R(z, 0) is to have a 
maximum at z = zo), we may thus deduce the lowest non-trivial coefficient a i  is 
always for an even power (and z = zOet remains a maximum of R(z, t ) ) .  Thus the case 
of the lowest non-trivial power being odd has been turned into the opposite even case 
by referring the shape to a moving origin, and we may conclude again the drop either 
bursts or goes to a steady shape now translating exponentially along the axis. 

5. The motion of stationary points 
In  Q 3 it was shown for a restricted class of polynomial shapes that drops with a single 

maximum in R(z, 0 )  went to a steady equilibrium shape, while drops which started 
with a waist had to burst. Note that the bursting shapes have two maxima and a 
minimum in R(z, 0).  An incidental result at the end of $ 4  was that a maximum of 
R(z, t )  moved in time exponentially along the z axis. We now generalize these results. 
By considering the motion of the stationary points of R(z,t), we will show that if 
R(z, 0) has more than one maximum the drop cannot go to a steady shape. 

Let z = c(t) be a stationary point, i.e. R,(C(t), t )  = 0. We can find how c(t) changes in 
time by differentiating this stationary condition with respect to time 

4 = -R,,(Y, ~ ) / R Z Z ( Y ,  t ) .  
To find R,, we differentiate the governing equation ( 1 )  with respect to z, 

R,, + zR,, + ( 1  -p )  R, = 0. 

Substituting this evaluated at  z = [, and using the stationary condition again, we 
obtain t = c  
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Thus all stationary points move exponentially along the z axis just as if they are 
moving with the undisturbed axial flow. 

As the stationary points move along the z axis with the same exponential rate, the 
distance between them must increase in time. Hence the number of stationary points 
must remain fixed until one of the stationary values of R(z, t )  moves in time through 
zero. This can happen by a minimum value decreasing to zero as the drop bursts, or 
by a point of inflexion being created or annihilated at the ends. 

If we consider the difference between two of the stationary values, AR = R(C, ( t ) ,  t )  - 
R(&.(t), t ) ,  then from the governing equation (1) we find 

AR = PAR. 

The sign of AR does not therefore change in time. Hence the relative ordering of all 
the stationary values cannot change, and so the nature of each stationary point 
(maximum, minimum or inflexion) is fixed. 

We can now conclude that a drop which starts with a shape with two maxima 
cannot go to a steady shape. The two maxima must be separated by a minimum and 
the nature of these stationary points is fixed. If the drop does not burst by a minimum 
value decreasing to zero, the distance between the two maxima must increase exponen- 
tially. In  neither case does the drop go to a steady shape. The conclusion that a drop 
cannot go to a steady shape if it  has a waist is a criterion that disturbances of the 
stable equilibrium must exceed a finite amplitude before they destroy the equilibrium. 

It seems likely that an arbitrary drop will eventually split up into several fragments, 
equal in number to the number of maxima in the initial shape, with each fragment 
tending to a scaled version of the unique stable equilibrium. This however is a con- 
jecture which as yet I cannot support convincingly. 

It should be recalled that the conclusions of this section, and the previous sections, 
are restricted to slender shapes, i.e. those with only long wavelength disturbances. 

I am grateful to Prof. A. Acrivos for bringing this problem to my attention. This 
work was supported in part by a NATO research grant 1442. 
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