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In  a recent paper Hooper & Boyd (1983) have shown that the unbounded stratified 
Couette flow of two viscous fluids of equal density and with no interfacial tension 
is always unstable. They found that the instability arises a t  thc interface between 
the two fluids and occurs at short wavelengths where viscosity is more important than 
inertia. The purpose of this note is to provide a simple physical explanation of the 
mechanics of the instability. 

Consider two semi-infinite fluids in y 5 0 with respective viscosities p+ in a shearing 
motion u = (y+ - y,0,0). By continuity of the shear stress a t  the interface y = 0. 
y+ y+ = p-y-. We shall take the upper fluid to  be more viscous, i.e. y+ > p-. 

Now consider the disturbance caused by displacing the interface with a small- 
amplitude wave from y = 0 to y = ~ ( x )  = v,, coskx (see figure 1). At the disturbed 
interface, a t  both the peaks A and the troughs B,  the undisturbed velocity of the 
more viscous upper fluid is slower than that of the lower fluid. Thus the boundary 
condition that velocity is continuous requires that the upper fluid must speed up on 
the disturbed interface while the lower fluid must slow down relative to the 
undisturbed shear of the respective fluids. The magnitude of the speeding up of the 
upper fluid depends on the contrast in viscosity between the two fluids. If the 
viscosities are nearly equal, then the horizontal velocity at thc disturbed intcrface 
takes the average value of the nearly equal undisturbed shears. If on the other hand 
the upper fluid is much more viscous, then the horizontal velocity is low and most 
of the accommodation has to be made by the less viscous lower fluid. 

The adjustments of the horizontal velocity on the disturbed interface can be 
interpreted as disturbance velocities, which a t  the peaks d are positive in the upper 
fluid and negative in the lower fluid, while a t  the troughs B they are of the opposite 
signs. These disturbance velocities are maximum on the interface and decay away 
into the interior of the fluids. Thus we can convert the disturbance velocities into 
disturbance vorticities which are positive (anticlockwise) in both the upper and lower 
fluids a t  the peaks A and negative at the troughs I3 (see figure 1). Becausc the viscous 
stresses match a t  the interface, the vorticity will be larger in the less viscous lower 
fluid. 

At short wavelengths, viscosity dominates inertia, and so vorticity diffuses easily. 
The disturbance (subtracting off the undisturbed shear) will therefore take the form 
of cells penetrating a distance of roughly half a wavelength, and rotating anticlockwise 
above and below the peaks A and clockwise above and below the troughs. Thus well 
away from the interface (at a distance k-l roughly equal to of the wavelength) the 
horizontal disturbance velocity changes sign from its value a t  the interface. This 
consequence of mass conservation and the diffusion of vorticity dominating is 
indicated in figure 1. although it is incidental to the instability mechanism. 
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FIGURE 1. The horizontal velocity profiles. The continuous curves are the undisturbed shear, while 
the broken curves are the disturbed (i.e. undisturbed + disturbance) profiles. 

We can now estimate the magnitude of the disturbance vortieity w as the horizontal 
disturbance velocity divided by the vertical extent of the disturbance, i.e. k-l as 
explained above. When the viscosities are greatly different then w +  = O ( y ,  q o k ) .  On 
the other hand, if the viscosities are nearly equal then both w+ and w- are 
O((y-- y+) q o k ) ,  and their difference is smaller again by a factor (p+-p-) (p+ + p  -). 

If inertia were entirely negligible, then the interface would not move (in a linear 
theory) and so there would be no instability. This observation follows from the 
reversibility of Stokes flows. which reverses any vertical motion of the interface when 
the direction of the shear flows is reversed. Thus the instability requires an 
examination of the effects of small inertia, O(py/pP) .  

The small effects of inertia are best considered with use of the vorticity equation. 
The vorticity distribution derived above ignoring inertia will be advected by the basic 
shear to create small out-of-phase Components midway between the peaks and 
troughs (see figure 2 ) .  With the advected vorticity being diffused away strongly, the 
magnitude of the out-of-phase components will be w; = O(py+ w + / p +  k 2 ) .  ‘Thus the 
larger vorticity in the less viscous lower fluid produces-k relakively larger out-of-phase 
component of vorticity . 

We now consider the motion induced by the out-of-phase components of vorticity . 
As seen in figure 2, the out-of-phase componeiit of vortit+ty in the lower fiuid acting 
alone would induce an upward motion of the peaks and a downward motion of the 
troughs, while this vorticity in the upper fluid would induce the oppositP motion. 
Because the out-of-phase component of vorticitp is larger in the less viscous lower 
fluid, we conclude that thc peaks will mo+e up arid the troughs down, i.e. the 
disturbance on the interface grows. Note bhat the matability does not propagate along 
the interface a t  this order of small inertial ef3ects. 

From the earlier estimates of the magnitude of the out-of-phase components of 
vorticity we can estimate the induced upward velocity of the peaks and hence the 
growth rate of the instability. When the viscosities are nearly equal, the upward 
velocity will be O( (wL - w > ) / k ) .  which yields a growth rate O(py2(p+ - - - / ~ - ) ~ / k ~ p ~ ) .  
When the viscosity of the upper fluid is much larger than that of the lower fluid, the 
estimate O(w’/k) for the vertical velocity in the lower fluid is too large at the interface. 
In  order to move the interface, the very viscous upper fluid must also move. In  
response to the out-of-phase pressure disturbaiices O(p.. w’) from the lower fluid, the 
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FIGCRE 2 .  The disturbance vorticity, shown continuous, is advected by the mean shear t o  produce 
small out-of-phase components of vorticity, shown broken, which then induce a vertical motion 

of the interface. 

upper fluid will respond with vertical velocities O(p-wL/,u+ k ) .  This corresponds to 
a growth rate O(py~/ lk*p+) when the fluids have greatly differing viscosities. These 
estimates of the growth rate agree with Hooper & Boyd's full asymptotic results for 
short wavelengths. 

It should be noted that there is an implication in the above arguments that  the 
out-of-phase components of vorticity are single-signed on each side of the interface 
midway between a peak and a trough. This implication is not true, as is readily seen 
when the upper fluid is much more viscous than the lower fluid. In  this case the lower 
fluid sees an almost rigid interface, which will hence act as a source of counter-vorticity 
for the lower fluid. This counter-vorticity will not, however, reverse the sense of the 
circulation of the flow induced by the out-of-phase component of vorticity, because 
its purpose is only to reduce that flow in the lower fluid almost to rest at the nearly 
rigid interface. 

Finally a remark must be made on the practical diffulties in observing this 
instability. If the fluids have no surface tension, then they will diffuse into one another 
with a diffusivity D .  The condition that there is little diffusion over a wavelength 
before the instability has grown is 

Thus the Schmidt number p/pU has to be very large to offset the small Reynolds 
number py/pk2.  On the other hand, if the fluids are immiscible then the surface 
tension T will stabilize the disturbance with a decay rate O ( T k / p + ) .  Thus the con- 
dition for surface tension to be negligible is 

PY2 ---> 1 ,  
k3T 

while the condition for the lteynolds number to be small is py/pk2 < 1. These 
conflicting conditions are only satisfied by submicron wavelengths a t  shear 
rates of logsp1 for normal liquids with p = lo3 kg mP3, p = lop3 N s m-2 and 
T = 3 x lop2 N m-l. To have centimetre wavelengths a t  shear rates of one reciprocal 
second it  is necessary to reduce the surface tension by a factor 3 x 
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