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We present a calculation of the hydrodynamic self-diffusion coefficient of a tagged 
particle in a dilute mono-dispersed suspension of small neutrally buoyant spheres 
undergoing a steady simple shearing motion. The displacement of the tagged particle 
parallel to the longitudinal or streamwise direction resulting from a ' collision ' with 
one other particle is calculated on the assumption that inertia and Brownian motion 
effects are negligible. Summing over different pairs leads to a logarithmically 
divergent integral for the diffusivity which is rendered finite by allowing for the cut- 
off due to the occasional presence of another pair of particles. The longitudinal shear- 
induced self-diffusion coefficient is thus found to be 0.267a2y{c In c- l+  O ( c ) ] ,  where y 
denotes the applied shear rate, a is the radius of the spheres and c their volume 
concentration. 

1. Introduction 
The shear-induced migration of particles has been shown recently to play an 

important role in a variety of phenomena involving the flow of concentrated 
suspensions of solid particles in viscous fluids under conditions in which the flow is 
laminar and the particle Reynolds number is vanishingly small. For example, the 
shear-induced particle migration down gradients in concentration is responsible for 
the phenomenon of viscous re-suspension, wherein a settled layer of heavy particles 
underlying clear fluid is found to re-suspend under the action of shear (Leighton & 
Acrivos 1986). Such shear-induced migration in a unidirectional flow can often be 
represented as a diffusion process with a diffusivity proportional to the local shear 
rate y and to the square of the particle radius a, the proportionality factor being a 
function of the particle concentration c. 

The first experimental study of shear-induced diffusion was reported by Eckstein, 
Bailey & Shapiro (1977) who observed the random lateral motion of a tagged 
spherical particle in a suspension undergoing shear in a Couette device and thereby 
computed the coefficient of lateral self-diffusion (in the direction normal to the fluid 
velocity and the vorticity). Their technique was improved later by Leighton & 
Acrivos (1987~) .  In addition, by examining carefully the results of several 
viscometric experiments under a variety of conditions, Leighton & Acrivos (1987 b )  
were able to infer values for the diffusion coefficients both within and normal to the 
plane of shear for the case of particle migration due to gradients in concentration as 
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well as due to  gradients in shear. However, aside from numerical simulations in two 
dimensions (Brady & Bossis 1988), no theoretical calculation of any of these 
coefficients from basic principles has hitherto been made, mainly owing to the 
difficulty of analysing the hydrodynamic interaction of more than two particles. 

The purpose of the present communication is to  derive an expression for the 
coefficient of shear-induced diffusion in the direction of the fluid velocity in a simple 
shear flow for low values of the concentration c. We focus on this particular 
diffusivity because i t  is determined by pairwise particle interactions, which are 
tractable, in contrast to the transverse diffusivity which requires the solution of a 
three-sphere hydrodynamic problem. From a practical point of view, knowledge of 
this longitudinal coefficient is admittedly not of much value, because any lateral 
displacement of a sphere, resulting say from a three-sphere interaction, leads to  
differential convection in the streamwise direction which seems likely to dominate 
the longitudinal displacement. However, the theoretical argument used here may be 
of some interest as a start on the task of deriving expressions for other and more 
important shear-induced diffusion coefficients arising in the flow of suspensions. 

2. The basic approach 
Let us consider a dilute suspension of solid spheres all of radius a which are 

immersed in a viscous liquid. We suppose that the spheres are neutrally buoyant, 
that non-hydrodynamic forces are negligible, and that the particle Reynolds number 
is vanishingly small. We further suppose that the suspension undergoes the simple 

where y is the applied constant shear rate and (x1,x2,x3) is the position vector 
relative to a fixed origin. All lengths herein are regarded as having been made non- 
dimensional with the particle radius a. We shall consider in detail only two-sphere 
interactions. The instantaneous position of the centre of a given sphere, the so-called 
test sphere, is denoted by Xi and the instantaneous position of the centre of a second 
sphere is &. The axes are such that the test sphere is stationary when all other 
spheres are far away. Initially the test sphere is a t  the origin, i.e. Xi = 0, and the 
second sphere is far away a t  (T  co, yz, y,) where yz 2 0. It is well known that the 
resulting two-sphere interaction will not lead to a net lateral displacement of either 
sphere. In other words, a t  the end of the encounter the two spheres will be a t  their 
initial lateral positions X, = X, = 0, y2 = y z ,  y3 = y,. This result follows immediately 
from the reversibility of the creeping flow equations. 

In  contrast, there is a non-zero net displacement of the test sphere in the flow 
direction, as we shall show in $4. The mean value of this displacement, AXl say, is 
zero in consequence of the symmetry of encounters with particles coming from the 
two flow directions. In  a dilute dispersion such two-sphere encounters may be 
regarded as statistically independent, and the standard expression for the self- 
diffusion, or tracer-diffusion, coefficient of a particle resulting from random 
displacements with zero mean is then 

( 2 )  
l N  

D = lim - (AXjk')2,  

where AX$k' is the net displacement of the test sphere in the flow direction resulting 
from the kth encounter and N is the total number of encounters in time T. The mean 
rate of occurrence of encounters of the test sphere with spheres of mean number 

T+m 2 T k - l  
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density n having far-upstream lateral coordinates between yz, y3 and yz + 6yz, y3 + 6y3 
is ny  I y21 6yz 6y3, and the displacement of the test sphere resulting from an encounter 
is a function of y, and y3 alone, whence 

We see that when AX, is non-zero, two-particle encounters will lead to a shear- 
induced coefficient of diffusion in the direction of flow which appears to be O(c) .  In 
contrast, since AX, = AX3 = 0 for any two-sphere interaction, the corresponding 
diffusivities in each of the two lateral directions would be expected to be O(cz) and 
would require for their evaluation the solution of a problem involving the interaction 
between the test sphere and two other spheres. Although this should be possible in 
principle, i t  is a much more formidable task than the one we tackle here. 

3. The interaction of two spheres 
We denote the vector joining the centres of the two spheres by ri = q - X i ,  with r 
being the centre-to-centre distance. Then, as shown by Batchelor & Green (1972), the 
relative velocity of the two sphere centres, when the undisturbed velocity is the 
simple shear flow (l), is given by 

where repeated suffixes are summed and the dimensionless scalars A and B are 
tabulated functions of r with known asymptotic expressions. Moreover, owing to 
symmetry, the midpoint between the two spheres moves with the undisturbed 
velocity a t  that position, whence 

d 
dt -(X,+&.r,) = 6,,y(Xz++,) (i = 1 ,2 ,3 ) .  

We deduce that at any time 

and so 

From (4) and (7) we find 

d 
-(X,++,) dt = b y z .  (7)  

with X, + 0 as r1 +. - 00 if now without loss of generality we take yz to be positive. 
Thus AXl, the net displacement of the centre of the test sphere at the end of an 
encounter with a single sphere initially a t  ( -  co, yz, y3), is simply the integral of the 
right-hand side of (8) with respect to r1 over the interval - 00 < r l  < 00. Of course, 
before this integral can be evaluated, it is necessary to determine the way in which 
r2 and r3 depend on r, .  This can be achieved by solving (4) which, on using rl as the 
independent variable in lieu of the time t,  reduces to 
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subject to r2 + y2 and r3 + y3 as rl + - co. Thus the task of finding AXl for given values 
of yz and y3 reduces to  that of solving the system of equations (8) and (9) above. 

4. The longitudinal displacement resulting from an encounter 

requires the use of the following asymptotic forms of A and B as r + 00 : 
We begin by examining the far-field solution which applies when yz + 1.  This 

given by Batchelor & Green (1972). On substituting these forms into (9) we find by 
successive approximations that 

r i = y i  l+--- +-+... ( 3r3 lo 3r5 16) 9r3 l6 

and 

Hence (8) reduces to 

r3 = y3{ 1 + O ( V ~ ) } .  

in which r2 N r: + yi + yi. The first term on the right-hand side of (13) arises from the 
first 'reflection', which affects the motion of the test sphere in two ways. On the one 
hand, when y2 > 0 the test sphere is pushed downwards into the region of negative 
fluid velocity. On the other hand, the second sphere pushes the test sphere along the 
positive l-axis when rl < 0 and drags it in the same direction when rl > 0. It turns 
out that these two effects cancel each other exactly, as can be seen by integrating the 
first term of (13) over the interval - co < rl < co . We must therefore proceed to  the 
second term in (13) which, when integrated, shows that to leading order 

Thus the integrand in (3) decays sufficiently rapidly as y2 and y3 approach infinity for 
the integral to converge. 

Next consider the other extreme for which y2 < 1.  I n  view of (9), we have to 
leading order as rl + T co 

(Note that negative values of yi in this equation correspond to the closed trajectories 
of a sphere pair - see Batchelor & Green 1972. The closed trajectories are interactions 
between pairs of spheres which persist for an infinite time and which lead to no net 
displacement of either sphere. Hence we should not include these interactions, and 
they are excluded by our restriction of the integration to positive values of y; alone.) 
In  view of (15) we can rearrange (8) into 
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FIQURE 1. The displacement of the test sphere in the direction of flow, AXl, m a function of the 
upstream offset of a second sphere across the flow in the plane of shear, y2, with ys = 0. The 
continuous curves give the result of a numerical integration of the governing equations. The broken 
curves give the asymptotic results, (a) AXl - &;* as y2+ CO, and (b) AX, - -1 .0477~;~ '~  aa 
yz+O. Note that the vertical scales in (a) and (b) are different. 

which on integration gives 

AXl (m s d r ,  = - I(P) for y2 4 1, 
- w  dr, 

where /3 = (9y;/16)$ y3 and 

Although in general the function I ( 1 )  must be evaluated numerically, we note that 
I (0 )  = dT(8 )  r(i), whence 
when yn = 0. AX, = - 1.0447~,8 (19) 

Equation (4) was also solved numerically, and the net longitudinal displacement 
of the test sphere, AX,, is plotted against yz in figure 1 for the case y3 = 0. The 
numerical results are in excellent agreement with the asymptotic expressions, (14) 
and (19), in the two extreme ranges of yz. 
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5. The determination of the shear-induced coefficient of diffusion 
Finally in order to compute the shear-induced diffusion coefficient we return to (3), 

which requires the evaluation of the double integral. We see from (14) that  the 
integral is absolutely convergent as yz + 00 or y3 +. 00. However, as y, + 0, integration 
with respect to y3 gives, in consequence of (17), 

This has a logarithmic singularity when integrated with respect to y,, With such 
logarithmic singularities we are fortunate that the leading-order behaviour comes 
solely from the difference in the orders of magnitude of the small scale of some cut- 
off (yet to be discussed) and the scale yz = O(1); the details on the scale of the cut- 
off and the details on the scale yz = O ( l ) ,  neither of which will be calculated, 
contribute corrections smaller by a logarithmic factor. 

The singularity arises from very weak but long-lasting interactions between the 
test sphere and a very slowly moving second sphere when the latter is at great 
distances from the origin and close to  the mid-plane xz = 0. During such a long 
interaction, a third particle is likely to pass and interfere with the motion of the 
original pair. Now a fast third particle will interact separately and reversibly with 
the two distant spheres, and so will leave their relative configuration virtually 
unchanged. It is therefore necessary to  examine more complicated disruptions of the 
slow pair. We have considered the following possibilities, finding that ( d )  leads to  the 
largest cut-off of the small y, : (a )  the rare interaction of a slow third sphere moving 
at a similar speed to  the slow pair, ( b )  the accumulation from many slightly non- 
reversible fast third spheres, ( c )  the effect on the test sphere when a third collides with 
a fourth in its vicinity, ( d )  the effect on the test sphere when a third collides with a 
fourth at a moderate distance from the test sphere, and ( e )  the accumulative effect 
on the test sphere from many interactions from distant third and distant fourth 
particles. 

Now, as seen from (15), an approaching second sphere which originates a t  a small 
value of yz begins to be deflected significantly by the test sphere, i.e. yZ changes 
relative to its initial small value y,, when 5 = O(y$). The slow interaction of this 
pair lasts the long time taken to travel the distance Y, at  the small shear velocity yY,, 
i.e. the long time T = O(y-ly;)). 

We consider a third sphere colliding with a fourth a t  a distance L from the test 
sphere. During the collision the test sphere will feel the effects of the fluctuating 
dipole exerted by the combined third and fourth spheres. The net effect of this dipole 
will be to move the test sphere a distance O(Lp2).  Because the system of these three 
spheres (the test, third, and fourth) is not symmetric, the x,-component of the net 
displacement of the test sphere is non-zero and O(Lp2).  (Without the fourth sphere 
the interaction would have a symmetry which would exclude a net x,-component.) 
This interaction will therefore disrupt the slow pair (consisting of the test and second 
spheres) if this net x,-component is comparable with the x,-separation of the slow 
pair, i.e. if O(L-,) = O(y,). Hence the slow pair is disrupted by a collision between the 
third and fourth spheres which are within a distance L = O(y& from the test sphere. 

Now the rate at which third spheres collide with fourth spheres within the distance 
L of the given test sphere is yc2L3. Multiplying this low rate by the long duration T 
of the slow pair, we conclude that the slow pair must in all probability be disrupted 
if 

1 < 0(yc2L3 T )  = O(c2 y;:y;;), i.e. y2 < O(c"'le). 
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In a similar fashion we can show that the cut-offs for yz as obtained by considering 
the possibilities (a) ,  ( c )  and ( e )  mentioned above are respectively O(c3) ,  O(ct) and O(ct) ,  
which are all smaller than O(c12119) as c --f 0. The remaining possibility (b)  is found not 
to lead to a cut-off. 

On summing the contribution to the diffusivity from the slow pairs with 

c12119 4 yz 4 1, 

and using result (20 )  in (3), we find for the diffusivity in terms of dimensional 
quantities 

D = 0 . 2 6 7 3 ~ ~ 7 ~  (In c- l+ O( i ) ) ,  

which is our principal result. In the above, the O( 1) correction contains contributions 
from the fast pair interactions at  y2 = O( 1) and contributions from the colliding third 
and fourth spheres when y2 = O(cl2/lS). The diffusion process becomes established 
after the time required for a few slow pair interactions, i.e. a time T = O(y-1c-20/'9). 
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