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A similarity solution is used to analyse the flow in the thin gap between a floating disk 
and an air table, the similarity solution being that for an axisymmetric stagnation 
point but with an upper boundary condition within the boundary layer. Viscous 
effects increase the height of the floating disk by 20% even at a Reynolds number 
of 50. Theoretical predictions are compared with experimental observations. The 
effect of the pressure distribution under the disk on the air flux through the table is 
examined. 

1. Introduction 
An air table consists of a horizontal porous plate above a reservoir of pressurised 

air, so that there is a flux of air up out of the plate. Light flat disks placed on the 
table will float on a cushion of air with relatively little friction. Such a device has 
been used to study the geometry of packings in two dimensions of disks, of mixtures 
of disks, of ellipses and of pentagons (Lemaitre et al. 1991; Lemaitre et al. 1993; and 
Lemaitre et al. 1992), to study the dynamics of a two-dimensional gas (Annic 1994 
and Annic et al. 1994), and by joining together several disks by a light thread and by 
having some scattered fixed heavy disks to study the diffusion of a polymer molecule 
in a porous medium (Tasserie, Hansen, & Bideau 1992). The construction of the air 
table was described by Lemaitre et al. (1990). In an appendix they give a theory for 
the height of the floating disks in the limit of high Reynolds numbers where all effects 
of viscosity are neglected. The opposite limit of zero Reynolds number was studied 
by Petit (1986) for a similar device. The purpose of this paper is to study the effects 
of viscosity on the height of the floating disks at an arbitrary Reynolds number. In 
order to design experiments with mixtures of different disks it is necessary to be able 
to predict the height at which the disks float. Following the earlier work, we shall 
first assume that the air flux through the porous plate is fixed. Afterwards we shall 
examine the effect of the pressure distribution under the disk on this air flow. In 
the future it would be desirable to examine the transient motion and the interaction 
between two disks in isolation and in a dense packing. 

2. Governing equations 
Let the disk be of radius R and be floating at a height h above the air table. Let 

the velocity of the air be (u, w) in cylindrical polar coordinates I ,  z. Mass conservation 
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i a  aw 
r dr a Z  
--(ru) + - = 0 . 

For thin gaps h << R, we need only consider the radial momentum equation in which 
we can assume that the pressure gradient is independent of height: 

The boundary conditions are 

and 

u = O ,  w = q ,  on z=O, 
u=O,  w = O ,  on z = h ,  

at r = R, p =pa 

where pa is the atmospheric pressure above the disk. The inflow q across the porous 
plate is assumed to be linearly related to the pressure difference across the plate, 

where k is the membrane permeability of the plate and pr is the pressure in the 
reservoir under the table. We simplify our initial investigation by assuming that the 
inflow q is constant independent of position under the disk, which is appropriate for 
large reservoir pressures compared with the variations of pressure under the disk. We 
return to this approximation in the final two sections of the paper. We need to find 
the pressure distribution in the air gap p(r). The vertical force balance on the disk 

R 

M g  = 1 (P-PPa)2lcrdr 

will then give an equation from which we will determine the height h at which the 
disk floats. 

3. Similarity solution 
Now there is a simple solution for the flow, which is the similarity solution for the 

boundary layer at an axisymmetric stagnation point. In this flow, diffusion of vorticity 
away from the upper rigid surface is balanced by the uniform advection towards it 
from the uniform efflux out of the porous plate, resulting in a boundary layer whose 
thickness is also uniform independent of the radial position. In our problem, this 
boundary layer may be larger or smaller than the gap. The constancy of the boundary 
layer thickness in the gap is however essential in permitting our similarity solution. 
Thus 

Pq2 
P = Pa + - (R’ - r’) p, 2h2 

with [ = 4 
h’ 

with f satisfying 
-1f” + f f”  = -2p + --f”’, 1 

Re 2 

with the Reynolds number Re = pqh/p and with boundary conditions 

f(0) = 1, f’(0) = 0, f(1) = 0, f’(1) = 0 . 
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This ordinary differential equation for f must be solved to find the pressure gradient 
coefficient f i  as a function of the Reynolds number Re. In $6 we give results of a 
numerical integration, but first we examine the limits for small and large Reynolds 
numbers, finding the leading-order term plus one correction term. 

In using a similarity solution for the flow in the thin gap, we ignore edge ef- 
fects O(h/R).  

4. Solution for Re <1 
Expand in a series in Re << 1: 

f - f o  + Ref1 and p - Re-lP-1 + P O  
with Re > h / R  in order for the correction term to be larger than the ignored edge 
effects. The problem for the leading-order f o  and p-1 is 

f”’ - 2 - /I-1 with fo(0) = 1, f&(O) = 0, fo(1) = 0, fl,(l) = 0 . 
Integrating twice and applying the boundary conditions on f b  gives 

fl, = P-l(C2 - 1;) 

f o  = P 4 C 3  - ;1;2 + i )  

- 
Integrating again applying the boundary condition on f o  at C = 1 gives 

. 

Finally applying the boundary condition on fo  at 5 = 0 gives 

p-1 = 6  and f o  = 1 -3C2+2C3 . 
The problem for the correction f l  and PO is 

f y  = 2Po - iff  + f0f;l = 2po - 6 + 121; - El3 + 6c4 

with f l ( 0 )  = f;(O) = fl(l) = f ; ( l )  = 0 . 
Integrating once finds 

f;’ = 2PoC - 61; + 6c2 - 3C4 + $1;’ + a 

and again applying the boundary conditions on f; 

f; = Po(C2 - 1;) + S C  - 3c2 + 2C3 - ;c5 + t C 6  . 

Integrating a third time applying the boundary condition on f l  at 1; = 0 

Finally the boundary condition on f l  at 5 = 1 gives 

27 
Bo = jj 

Bringing together the results for Re << 1, we have found 

p - 6Re-’ + 8 and f”(1) - 6 + E R e  . 

5. Solution for Re >>1 
As Re + co a boundary layer develops near the top boundary 1; = 1 of thickness 

The role of this boundary layer is to permit the slip boundary condition 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 21 Jul 2009 IP address: 131.111.16.227

316 E. J.  Hinch and J .  Lemaitre 

f' = 0 to be satisfied there. The slip boundary condition is satisfied at the other 
boundary ( = 0 because the fluid comes through the porous plate with zero radial 
momentum. 

Outside the boundary layer, in the majority of the flow, we may expand 

f - f o  + Re-'/'fl and p = PO + Re-'/2P1 

with Re-'/2 > h/R in order for the correction terms to be larger than the ignored 
edge effects. The problem for the leading order is 

-;f: + fof; = -2po 

fO(0) = 1, f N )  = 0, f O ( 1 )  = 0 . 

satisfying all the boundary conditions except the top slip condition 

The governing equation can be solved by any quadratic in c. Choosing that quadratic 
which also satisfies the boundary conditions yields 

f o  = 1 - c 2  and PO = 1 . 

This leading-order result is given in the appendix of Lemaitre et al. (1990). The 
solution has a slip on the top wall f{(l) = -2. 

For the boundary layer on the top surface we rescale both f and c in such a way 
as to maintain the same order of magnitude of the slip velocity f ' ,  i.e. 

f(() - Re-'/2F(5) with 5 = Re'/2(1 - 5) . 

The governing equation then becomes 
+'2 + FF" = -2 - F"' 

using p - 1. We need to apply the two boundary conditions on the top boundary 
< = 1, i.e. 4 = 0, 

F(0)  = 0 and F'(0) = O  
and the matching condition 

F ' + 2  a s < + c o  . 

This problem must be solved numerically. Using a fourth-order Runge-Kutta method 
and shooting from t = 0 with a guess for F"(0)  which is adjusted until F' + 2 as 
5 -, co, we find 

F"(0) =2.624 and F + 25 - 1.138 as t +co . 

In the boundary layer the radial flow is reduced, and so less fluid needs to be 
supplied into the boundary layer. Thus outside the boundary layer it appears that 
there is a uniform flow of 2 up to an effective surface at c = 1 - iRe-1/21.138. This 
drives a correction f l  in the flow outside the boundary layer, governed by 

-281 = - f ; f ;  + f o f ; '  + flf;; = (1 - 2 ; ' ) f Y  + W', - 2fl 

which satisfies the boundary conditions 

fl(0) = 0, f i ( 0 )  = 0, fl(1) = -1.138 . 

Again the f l  equation is solved by any quadratic. Choosing the quadratic which 
satisfies the boundary condition, we have 

f l  = -1.138c2, and = 1.138 . 
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P 

Re 

FIGURE 1. The pressure coefficient fi  as a function of the Reynolds number Re, with the 
asymptotic results of low and high Re. 

Bringing together the results for Re >> 1, we have found 

p - 1 + 1.138Re-’12 and f”(1) - 2.624Re’I2 

6. Numerical results 
When the Reynolds number Re is neither large nor small, one must solve the 

ordinary differential equation governing the similarity solution by numerical methods. 
A fourth-order Runge-Kutta method was used, shooting from 5 = 1 to [ = 0 with 
a guess for the values of f”( 1) and p. These values were adjusted until f(0) = 1 and 
f’(0) = 0. It was decided to shoot from ( = 1 because at Re >> 1 there is a part of 
the solution which decays exponentially away from 5 = 1. A step size of d l  = 0.01 
was found to be sufficiently for the displayed accuracy. 

The numerical solution for the pressure gradient factor p is plotted in figure 1, 
where it is compared with the asymptotic solutions for Re << 1 and Re >> 1. It is 
found that the low Reynolds number solution is good up to Re = 4, whereas the high 
Reynolds number solution is not so accurate until quite large values of the Reynolds 
number, having a 5% error at Re = 40. 

7. Prediction of the height 
Now that we have an expression for the pressure distribution under the disk, we 

can calculate the net lift force, and this will lead to a prediction of the height at which 
the disk floats. The vertical force balance on the disk is 

7wq2PR4 
R 

4h2 
Mg = .I 2xr(p-pP,)dr = 

It is convenient to introduce a non-dimensional reservoir pressure p: and a non- 
dimensional suspension height h’. The pressure is scaled with the weight of the disk 
divided by its area, i.e. 

This pressure scale sets via the momentum equation a scale for the radial velocity 
(Mg/pxR2)’ i2 ,  and via the porous plate law a scale for the vertical velocity Mgk/pxR2.  

11 F L M  273 
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Mass conservation then gives that the ratio of these two velocity scales must equal 
that for the geometry with radius R and height h. Thus we obtain a scale for the 
height 

In terms of these non-dimensional variables, the vertical force balance gives the 
prediction for the height of the disks floating above the air table 

where p = P(Re).  This assumes that the height is small h << R, i.e. k(Mgp)l l2h*/p << 
R. The earlier result of Lemaitre et al. (1990), h* = i p : ,  was for the high Reynolds 
number limit with p = 1. 

The Reynolds number for the air flow can also be written in terms of the non- 
dimensional variables 

In the two series of experiments discussed below, it is the non-dimensional group Re* 
rather than the true Reynolds number Re which is held constant. 

The above analysis has assumed that the flow of air across the porous plate q 
is independent of position under the disk, i.e. that the pressure distribution under 
the disk has no effect on the inflow. Now the pressure variations under the disk 
are pq2R2p/2h2 = 2Mg/7cR2b. Hence the variations are small compared with the 
difference between the reservoir pressure and atmospheric pressure p:  Mg/7cR2 only if 
p:  > 2. Clearly when p r  - p a  < M g / n R 2  the reservoir pressure cannot lift the disk, so 
we should have h' = 0 when p:  < 1. Predictions for the suspension height when p:  is 
just greater than one are given in 4 9 for low Reynolds numbers and in 9 10 for high 
Reynolds numbers. 

8. Comparison with experiments 
Experiments were performed with two large disks of diameter 7.9cm and 11.9cm 

with masses 14.1 g and 31.7 g respectively. These large disks hovered relatively stably 
on the air table. 

The height at which the disks floated above the table was measured at various air 
flows. Heights less than lmm were difficult to measure accurately. To measure the 
pressure in the reservoir for each air flow, small masses were added on top of the disk 
until the air pressure just failed to lift up the disk. The non-dimensional reservoir 
pressure p:  is then simply the total mass (disk plus that added) divided by the mass 
of the disk. 

The membrane permeability of the porous plate was found previously to be k = 
2.61 x lo-* m (Lemaitre et al. 1990). Other parameters are gravity g = 9.81 m ss2, the 
density of air p = 1.2kgm-3 and the viscosity of air p = 1.8 x k g m - ' ~ - ~ .  Thus 
for the two disks the non-dimensional group of parameters Re* = 0.984 and 1.46 
respectively. 

Figure 2 gives the comparison between the theory and the experiments. We have 
plotted h*/p: against p:  for the experiments, and for the theory i(B(Re))'I2 against 
[2Re/Re*(f i (Re)) ' /2]  ''2. 

We observe that the viscosity increases h*/p: by typically 20% from the high 
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FIGURE 2. Comparison between theory and experiments: (a) for the 7.9cm disk and ( b )  for the 
11.9cm disk. The numbers give the values of the Reynolds number Re. 

P: 

Reynolds number limit value of 0.5. The Reynolds numbers are 20 and 45 for 
p: = 5.5 and 8.5 for the 7.9 cm disk, and 30 & 76 for p: = 5.7 and 9.4 for the 11.9 cm 
disk. The agreement at low reservoir pressure 1 < p: < 2 is poor, due no doubt to 
significant variations in the air inflow across the porous plate. We do not understand 
why the theory and experiments agree less well at the high reservoir pressures for the 
large disk. 

9. Near lift-off at Re <<1 
When the pressure in the reservoir is just above the critical value to lift up the 

disk, the air flow through the porous plate is not uniform but is affected by the 
pressure distribution under the disk. The experimental results do show a significant 
deviation from the theory in the range 1 < p: < 2. A calculation of the effect of the 
pressure variations on the air flow at an arbitrary Reynolds number would require a 
numerical solution of the axisymmetric Navier-Stokes equations, a major task which 
is not justified by the normal operations conditions of the air table which avoid this 
regime. Some easier progress can however be made analytically in the limits of low 
and high Reynolds number, now working only to leading order. 

For low Reynolds numbers we can use lubrication theory. This has a depth- 
integrated flux 

l u d r = - - -  h3 dp . 
12p dr 

11-2 
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FIGURE 3. The non-dimensional height h" = h/  (5pkR') as a function of the non-dimensional 
reservoir pressure p;  in the low Reynolds number limit. The solid curve is for the solution of 99 at 
arbitrary p: ,  while the dashed curves are the near lift-off and the constant air flow approximations. 
The experimental data: 0, 7.9cm disk; ., 11.9cm disk. 

Equating the divergence of this flux to the inflow across the boundary, we obtain an 
equation governing the pressure distribution under the disk: 

This has a solution in terms of Bessel functions satisfying the condition p = pa at 
r = R :  

Integrating this pressure distribution over the disk we obtain the vertical force balance 

This equation must be solved for KR,  which then gives the suspension height h = 
( ;kR2) ' /32 (~R) -2 /3 .  The full solution is given by the solid curve in figure 3.  For large 
reservoir pressures, p:  >> 1 and so K R  << 1, we recover the low Reynolds number 
limit of $7, which assumed that the air flow through the porous plate was uniform: 

h = ( f l ~ R ' ) ~ / ~  (p:)1'3 . 
For near lift-off, p:  + 1 and so K R  >> 1, we find 

h = (3kR2)1'3 (p :  - . 

The cross-over between these two formulae occurs at p: = 2. Figure 3 shows that 
the near lift-off result is applicable when 1 < pr < 1.5, and that the constant air flow 
approximation has an error less than 10% once p:  > 6. 

Also plotted in figure 3 are the experimental results with Re < 10. There is 
reasonable agreement in the range 1 < p:  < 2. By p:  = 2 the Reynolds numbers are 
no longer small, being 3 for the 7.9cm disk and 4 for 11.9cm disk. 

Looking in more detail at the solution near to lift-off, we see that the pressure 
under the disk is constant except for a small region of width O(K-' )  near to the rim 
of the disk. The value of this constant pressure is that of the reservoir, and so there is 
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no air flow under most of the disk. In the rim region there is a pressure distribution 
K(R-r) P = pr - (Pr - pa)e- 

and this is where all the air flow takes place. 

10. Near lift-off at Re >>1 
The high Reynolds number limit is more difficult and a solution for arbitrary 

reservoir pressure has not been found. The near lift-off condition can however be 
tackled with a similarity solution for the active rim region, with most of the air under 
the disk being stationary at the reservoir pressure. 

In the rim region near r = R we seek a solution in the separable form 

112 

G(r)F’(z/h) and w(r , z )  = - ~ pa) 1’2 hG’(r)F(z/h) ( pr 

Pr - Pa 

with two unknown functions F and G (with F < 0). This satisfies the planar mass 
conservation, which is appropriate in the small region near = R. 

Substituting into the horizontal momentum equation we have 

dP (pr - pa)GG’ (F2 - FF”)  = -- 
dr 

In order for the pressure gradient to be independent of the vertical position, we take 

F’2 - FF” = 1 

where a constant has arbitrarily been set equal to unity. This equation for F must 
be solved subject to boundary conditions of no flux through the top boundary 
F(1) = 0 and no horizontal momentum of new fluid entering through the porous 
plate F’(0) = 0. At high Reynolds numbers, a boundary layer on the top plate will 
adjust any slip there, F’(1) # 0. The solution for F is 

2 7cz 
F ( z / h )  = -- 7ccos2h * 

We can therefore evaluate a constant in the inflow across the porous plate -F(O) = 

With the above vertical structure function F ,  the horizontal momentum equation 
2/n. 

can be satisfied if we set the pressure distribution to 

~ ( r )  = pr - +(pi -pa)c2(r) . 

The pressure being atmospheric at the outer edge gives 

G(R)= Jz . 

Substituting into the porous-plate law the results for the pressure distribution and 
for the air inflow, we obtain an equation for the radial structure function 

xk [APr - pa)] 1’2 
4Ph 

G ‘ =  KG’ with K = 

with solution 

G =  8 
1 + $K(R - r )  
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Finally the vertical force balance gives 

and so 

This result for p: -+ 1 does not intersect that for p:  -+ 00 (h' = i p : )  until p:  = 10, 
although one would expect it to be limited more to 1 < p:  < 2. 
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