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Numerical simulations are employed to study the Brownian motion of a bead-rod 
polymer chain dissolved in a solvent. An investigation is conducted of the relaxation 
of the stress for an initially straight chain as it begins to coil. 

For a numerical time step 6 t  in the simulations, conventional formulae for the 
stress involve averaging large AO( l/(6t)'!2) contributions over many realizations, in 
order to yield an O(1) average. An alternative formula for the stress is derived which 
only contains O( 1) contributions, thereby improving the quality of :he statistics. 

For a chain consisting of n rods in a solvent at temperature T ,  the component 
of the bulk stress along :he initial chain direction arising from tensions in the rods 
at the initial instant is kT x n($n2 + n + i). Thus the bead-rod model yields results 
very different from other polymer models, such as the entropic spring of Flory (1969), 
which would assign an infinite stress to a fully aligned chain. For rods of length ? 
and beads of friction factor t ,  the stress decays at first on O ( t p / k ?  x l /n2)  time 
scales. On longer time scajes, this behaviour gives way to a more gradual stress decay, 
characterized by an O(kT x n)  stress following a simple exponential decay with an 
O ( k T / l 1 2  x l /n2)  rate. Matching these two limiting regimes, a power law decay in time 
i' is found with stress O(k? x n2 x (kTt/<12)-'/2). The dominant physical processes 
occurring in these separate short, long and intermediate time regimes are identified. 

A A A  

A,+ A h  

1. Simple models of polymer microstructure 
In order to obtain realistic constitutive relations describing polymeric solutions, rhe- 

ologists increasingly realize that it is necessary to incorporate polymer microstructure 
into constitutive models. The simplest possible microstructural model for a polymeric 
chain replaces a long chain possessing a multiplicity of monomer units by an elastic 
dumbbell, consisting of two beads joined by an elastic link (see e.g. Hinch 1977; Bird 
et ,al. 1987 and Rallison & Hinch 1988). 

!The force law in the elastic dumbbell might in the simplest case be Hookean, i.e. lin- 
ear springs. Alternatively we could use a so-called 'entropic spring' with an 'inverse 
Langevin' force law (Flory 1969), or some other force law with finite extensibility, 
viz. the well known 'Finitely Extensible Nonlinear Elastic' (FENE) dumbbell (Bird et 
al. 1987; Rallison & Hinch 1988). We may also want to incorporate springs with a 
non-zero natural length. The Fraenkel spring force law for instance assumes a force 
with magnitude proportional to the difference between the actual spring length and 
some natural length (Bird et al. 1987). 
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Clearly we can extend the model beyond a dumbbell, by joining together many 
beads with elastic links, taking each bead to be subject to random thermal forces 
(Ermak & McCamnion 1978; Fixman 197th; Bird et al. 1987). The links may be 
either Hookean, FENE or Fraenkel springs. When an arbitrary number of beads are 
joined by Hookean springs we obtain the so-called Rouse model (Rouse 1953; Bird 
et al. 1987) and if hydrodynamic interactions between the beads are incorporated we 
obtain the Zimm model (Zimm 1956; Bird et al. 1987). 

This paper will initially focus on bead-spring chains in which the links are Fraenkel 
rather than Hookean springs, but for which hydrodynamic interactions are ignored. 
We shall therefore be considering a modification of the Rouse model. By inserting 
realistic physical parameters into the model, we shall show that the available thermal 
energy is only sufficient to deform the springs by a small fraction of their natural 
length, i.e. the springs are stiff. Thus it is appropriate to replace a bead-spring chain 
by one in which the beads are joined by rigid (i.e. inextensible) links. This is the 
so-called bead-rod model (Kramers 1946; Kirkwood & Riseman 1956; Hassager 
1974; Ermak & McCammon 1978; Fixman 19780; Liu 1989). 

This latter model will be used in the bulk of the numerical computations to 
be presented in the paper. We shall employ a stochastic simulation technique to 
study the effects of Brownian motion on the model polymer chain. Naive computer 
simulations of the bead-rod model however lead to erroneous results (Grassia, Hinch 
& Nitsche 1995). Modifications to the algorithm are necessary (Ermak & McCammon 
1978; Fixman 1978a) in order for simulations to model correctly the configurational 
changes of very stiff bead-spring chains. We shall describe these modifications and 
produce a corrected simulation technique. 

The long term aim of studying Brownian motion of polymer chains is to produce 
suitable constitutive equations for polymer solutions. It may be impractical to incor- 
porate every single feature of the simulations into a constitutive relation. Nonetheless 
it is hoped that the simulations will elucidate the key features of polymer chain 
physics which govern constitutive behaviour. 

One of the important issues that we aim to address is the following. Given the 
dynamics of a single link, how does the presence of many links affect the dynamics 
of the chain as a whole? In other words, how are time scales for the evolution of the 
chain configuration related to the evolution time scale of a single link? As we shall 
see, the bead-rod chain model unambiguously addresses this question. 

The problem that we shall simulate in this paper is the stress relaxation in the 
initially straight bead-rod chain. Physically this corresponds to the chain being 
stretched fully by a very strong flow and then the flow being switched off suddenly. 
Some of the questions we pose are as follows. Is the stress finite at the initial instant, 
and if so what is its value? Can we identify distinct regimes of chain evolution and 
the physics governing each regime? 

2. Formulation of the bead-spring model 
In this section we shall formulate the equations describing the Brownian motion 

of polymer chains. Then we shall non-dimensionalize these equations and identify 
governing dimensionless groups. 

We consider a polymer chain dissolved in a viscous solvent at temperature ?. 
Suppose the bead-spripg polymer chain consists of n + 1 beads and IE links. Label 
the bead positions by X , ,  0 6 i < n. For 1 < i 6 n, let D, denote X ,  -X,-l, the vector 
joining two beads across a link. We define a link length 2, = (b, - and a unit 

A *  
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vector along the link direction d ,  = b,/(bl - b,)1/2. Throughout the paper we shall 
employ the notation that L A ’  denotes a dimensional quantity. Removing the from a 
symbol gives the dimensionless analogue. 

Three types of forces act on the beads: viscous drag, tension forces in the links and 
random Brownian forces. We consider each in turn. 

The viscous drag is assumed to be linear in the bead velocity with a constant 
of proportionality t, known as the friction factor. Following Ermak & McCammon 
(1978) and Fixman (1978~) we discard the inertia of the beads. Physically this can be 
shown to imply that drag forces makc a bead ‘forget’ its initial velocity long before 
the direction of a link significantly changes. Grassia (1994) has estimated the ratio 
of this ‘memory’ time for bead velocity to the time scale for link directional changes, 
obtaining values 8 x 10-5-5 x loF4. This estimate involves data gathered from several 
sources (Weast 1971-72; Kaye & Laby 1973; Abe, Jernigan & Flory 1966; Flory 
1969). 

We shall suppose that the links are Fraenkel springs with a natural length i and a 
spring constant 2.  Stretching or compressing the springs will lead to tensions in the 
links + p  with 

The energy associated with stretching the links is thus $ ( I l  - I)2. The force on bead 
i - 1 due to the tension +:p will be while the force on bead i will be -?I’d,. The 
net tension force on bead i arises from tensions in both link i and in link i + 1, and is 

direction d, ,  only with changing link length i,. This implies that the links are freely 
jointed. 

The beads are also subjected to random bombardments from the solvent molecules, 
giving a fluctuating rzndom force. We write the fluctuating force on bead i at time ? 
as F?($. Note that F Y ( 0  has zero mean. We also make the ‘white noise’ assumption 
for the random forcing, i.e. we assume that the random force is uncorrelated between 
any two different instants of time. A general theorem from statistical mechanics, 
the fluctuation-dissipation theorem (see e.g. Reif 1965; Ermak & McCammon 1978; 
Fixman 1978a; Grassia et al. 1995 and Hinch 1994), relates the mean square value of 
the fluctuating force to the friction factor 

~ , + ~ d , + l  * SP - ZfPd,. Note that there is no elastic force associated with changing the link 

Here ( ) denotes the expectation valuc, k denotes Boltzmann’s constant, I is the 3 x 3 
identity tensor, 6,j is the Kronecker delta for beads i and j and 6(? - ?) is the Dirac 
delta function at times t and t’. The theorem is merely a mathematical statement that 
on average the work done by the random forces balances the energy lost to viscous 
dissipation. For beads of non-zero inertia, this ensures that the average bead kinetic 
energy remains constant, which is physically necessary since the polymer is in thermal 
contact with the solvent at temperature ?. However for the present case of vanishing 
bead inertia, the ‘theorem’ must be assumed, not proven. 

The sum of tension forces, random forces and viscous drag must vanish for 
negligible bead inertia. Mathematically we have 
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For more detailed discussions see Ermak & McCammon (19781, Fixman (1978a), 
Grassia et al. (1995) and Hinch (1994). 

Now we non-dimensionalize the above equations. We let X, = % , / I ,  D, = b,/i and 
1, = f , / f .  The unit link director d ,  is already dimensionless, and can be expressed as 
D , / ( D ,  D,)1/2.  Observe moreover that I ,  = ( D ,  * D,)' /2 .  

We define a non-dimensional time t as t = kTt/j12, and in future will use a dot to 
denote differentiation with respect to dimensionless t rather than dimensional i. Since 
k ? / [  is a diffusivity (the Stokes--Einstein relation), it is evident that we have chosen 
to non-dimensionalize ? according to the diffusion time scale of an individual link. As 
implied in the discussion of $1, a purpose of this paper is to investigate how this time 
scale is changed by the existence of n links, with in principle n being a large number. 

Dimensionless link tensions zsp are defined as zfp = t:p?/k? and dimensionless 
random forces as F y ( t )  = k:($?/k?. We also define a dimensionless group 

A A  A *  

which is a dimensionless analogue of the spring constant. 
The equations governing this bead-spring model are thus 

t p  = K(I, - 1) 
(spring force law), 

(fluctuation dissipation theorem), 
(F:"(t)F[;"(t')) = 216,6(t - t') 

8, = F y ( t )  + zT!,d,+l - Tf'd,. 
(equation of motion). 

Note that the dimensionless spring energy is $ K ( l i  - 1)2 

3. Bead-spring numerical algorithm 
In order to simulate the above equations numerically we must replace the differential 

equations by a discrete time-stepping scheme. Numerical schemes abound in the 
stochastic calculus literature (Kloeden & Platen 1980; Bskendal 1985). For schemes 
in the context of polymer dynamics refer to Ermak & McCammon (1978), Fixman 
(19784 and Grassia et al. (1995). 

In a numerical scheme the first task of any discrete time step is to assign the random 
forces F y .  Let us denote the size of the time step by 6t .  For a chain of n + 1 beads, 
we select n +  1 independent random vectors nj, 0 < i < n, each with independent 
components uniformly distributed on [-I, 11. Then we assign the random force on 
bead i, denoted FY, to be ( 6 / 6 t ) ' / 2 n i .  We shall employ the notation that (Fy) I  is the 
random force applying on the time step between times I 6t  and ( I  + 1) 6t. 

With the above definition of random forces we find 

which is the discrete approximation to the fluctuation-dissipation theorem. 
The bead motion will be described numerically by a midpoint rule. Subscripted 

parentheses placed around variables, O0, ()1/2 and 01, will denote values at the 
beginning, midpoint and end of a step respectively. For instance, for the first time 
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step, the midpoint rule can be written 

6 t  
(X,),,, = (XJO + ((FYI0 + (f:l)o(~L+l?o - (q )o (d , )* ) ,  

(XJl = (XJO + at @?>o + (~::1)1,2(~l+1)1,2 - (zsph/2(d*h,2) . 

In fact a simple forward time-stepping scheme would have been adequate here 
(Grassia et al. 1995), but the midpoint rule leads to smaller truncation errors in 
certain quantities, e.g. the energy stored in the elastic links. 

4. Bead-spring formula for stress 
The previous section gave a numerical scheme which can be used to follow the 

Brownian evolution of a bead-spring chain. If we want to study the rheology of 
polymer chains then we need to be able to calculate the bulk stress contribution 
of the chain, given the configuration and the forces acting. This section describes 
the formula used for the stress calculation and adapts it to the numerical scheme. 
Throughout this paper we shall use the term ‘stress’ to imply ‘bulk stress contribution 
per chain’. 

We shall denote stress by 0. For a polymer chain whose beads are acted on by 
forces F y ,  with in addition tensions zip in the links, Kramers’ expression for the stress 
(Bird et al. 1987) is 

1, 

i=O 
(Kramers’ stress formula) 

n n 

= - C(X,FI“ )  + C(z$ l id id i ) .  
,=O I= 1 

In the the second line we have used X ,  - 
The ( ) symbols denote an (ensemble) expectation, which corresponds numerically 

to an average over many realizations of a simulation. For a bead-spring chain 
in a known configuration the tensions are deterministic. Nonetheless we retain the 
expectation symbols around ~ : ~ l , d , d , ,  since the configuration is itself random, having 
been produced by past random forcing. 

The Kramers stress formula needs to be adapted and interpreted for numerical 
work. Especially problematic is that numerically X,Fp is kO(l/(6t)1‘2), yet we pre- 
sumably want to average many such quantities and obtain an O( 1) stress. Prohibitively 
many realizations may be required to obtain good statistics. Note that when we refer 
to quantities as being ‘O(l/(lit)1’2)’ or ‘O(1)’ in the present section, we are of course 
ignoring factors expressing how the stress depends on the number of links n. 

The stress formula as written in the above equation has a random forcing compo- 
nent and a spring tension component. Let us call them c,, and try,, say. Suppose we 
want to calculate the stress after the first time step. The numerical calculation of oSp 
is straightforward and is 

= D,  = l,d,. 

n 

i=l 

The appropriate numerical formula for era is less obvious, since the random force 
on bead i changes discontinuously at the end of the step from ( F y ) o  to ( F ; ) I .  We 
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take the mean of these values when calculating era. However ( X 2 ) l  is independent 
of (F:")I, SO that each - ~ ( X , ) , ( F : " ) ,  can be dropped from the G, formula, leaving 
-+(X,)l(F:")o to be summed over the beads. This is still a +0(1/(6t)1/2) quantity. 
However now we make the observation that (XI)o  is independent of (F:")o, so that an 
equally good formula for G,, is 

n 

bra = - c ; (((XJI - ( K ) o ) ( E . y a ) o >  . 
1=0 

This involves averaging O(1) not O(l / (~5t) ' /~)  quantities, so should give better statistics. 
The seemingly artificial requirement of taking the random force to be the mean 

of (FT)o  and ( 1 " : ) j  is a result of assuming vanishing bead inertia. For non-zero 
bead inertia, obtaining the correct stress would not rely on correlations between the 
fluctuating part of the force and the particle displacement, so there would be no 
numerical ambiguities concerning discontinuous random forcing. For chains of no 
inertia, the factor in c,, must be included to make the overall stress c agree with 
that of an inertial chain (in the limit as chain inertia approaches zero). 

We now possess the numerical algorithm for performing the bead-spring simu- 
lations, and the formula needed to calculate stress. It remains only to determine a 
reasonable value for the dimensionless spring constant K ,  a topic which is considered 
in the next section. 

5. Estimating K 
The above model of polymer structure is of course only a crude approximation to 

the true structure of a polymer. The model is for instance freely jointed whereas a 
true polymer has fixed bond angles, with (hindered) rotation about the bonds. The 
energies involved in distorting a polymer chain involve Coulomb interactions between 
large numbers of charged particles, much more complicated than the Fraenkel spring 
energies we have proposed. The hope is that for long polymer chains, these details 
will become of secondary importance by comparison to the sheer length of the chain, 
and the crude structure will then adequately describe the physics. 

Given the crudeness of the model there do not exist tabulated values of the 
quantity K for various polymers, nor would such tables be particularly meaningful. 
Nonetheless appropriate order of magnitude estimates of K can be supplied, based 
on other polymer data. Useful data for this purpose consist of bond lengths, angles 
and energies, spectroscopic data and also solvent viscosities (Weast 1971-72; Kaye & 
Laby 1973; Herzberg 1945; Kirkwood & Slater 1931 ; Pitzer 1959; Abe et al. 1966; 
Flory 1969). Details of how these data can be used to estimate K are given in Grassia 
(1994). 

The value of K one obtains depends to some extent on what physically constitutes 
the mathematical 'beads' and 'links' of the above model. If a link is supposed to 
consist of a single carbon-carbon bond then an appropriate value of K would be 
2 x 103-104 (Grassia 1994). However it appears better to allow a link to consist 
of a group of several bonds (Abe et al. 1966; Flory 1969; Liu 1989). The spring 
energies in the model then arise from the van der Waals interactions of the various 
atoms comprising the link as they are rearranged into different geometries. The 
dimensionless spring constant K will be much smaller for a group of bonds than for 
a single bond, reflecting the small energy of van der Wads interactions compared 
with covalent carbon-carbon bonds. A typical value is K x: 34 (Grassia 1994). 
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Regardless of whether we take beads and links to be composed of single bonds or 
groups of bonds it is clear that K is typically somewhat larger than 1. The random 
forcing leads to an 'equipartition of energy' (see Reif 1965; Grassia et al. 1995); for 
K >> 1 the expected value of the spring energy in each link is in dimensionless units. 
The I ,  will vary by a factor k0(l/K1'') about their natural value of unity. Since K is 
large, the available energy only extends or compresses the links by small amounts, or 
in other words the springs are quite stiff. 

A related consequence is the fact that once the links are stretched or compressed, 
they will (in the absence of other forcing) return to their natural length in a short 
time O( l /K).  For stability in a numerical simulation it is necessary resolve this rapid 
relaxation process, requiring very small numerical time steps 6t < 1/K. This rapid 
process however turns out to have no bearing on the evolution of parameters of 
rheological interest, e.g. the stress produced by the chain. Note that since 1, - 1 is 
+0(1/K'/2), the tensions in the links K(I[--l) are of magnitude 0(K1I2) >> 1. However 
when we average the tensions over all link lengths 1, for a given configuration of link 
directions d, we obtain a result independent of K .  We are again faced with the 
difficulty of averaging many quantities of large magnitude, to determine an average 
of smaller magnitude. 

Thus we wish to replace the bead-spring model by one in which the links are 
inextensible, i.e. rigid rods. The bead-rod model avoids the issue of link length 
relaxation, and permits us to choose time steps commensurate with the evolution of 
the stress relaxation phenomena we wish to observe. The only parameter remaining 
to govern the relaxation of the bead-rod model is the number of links n. Thus this 
model unambiguously addresses the question posed in $1 of how n affects the chain 
evolution. 

6. Formulation of the bead-rod model 
In this section we formulate the equations of the bead-rod model. As we shall see, 

it is necessary to introduce an additional force, which we call the pseudopotential 
force, to ensure that the bead-rod system mimics the statistics of the bead-spring 
system. 

or 
in dimensionless terms Z j  must be set to unity. The tensions, rather than being given 
by the configuration, must be chosen to satisfy the constraint that the links are 
inextensible. If random forces F'f" act on the chain then the tensions will respond to 
these. Let us now denote the tensions by T?, by contrast with the earlier bead-spring 
notation T:'. Then if the links are acted on by random forces F Y ,  the bead motion is 

k: = FY + ~:z ,d i+ l  - ~ y d i ,  

In the bead-rod model the link length f i  must be set to the natural length 

so that b: = Xi - Xi-1 is 

Di = FF - Fiz i  + ~::,di+i - 2 ~ y d i  + ~::~di-1. 

Inextensibility requires bi * di = 0. Substituting for bi from the above we deduce 

di * (-~:zldj+l + 2tYdi - ~;! ,d , - i )  = dj * (F'f" - Fr" 1-1 ) , 

giving a tridiagonal system of equations to be solved for the tensions. Numerically 
this can be solved in O(n) steps. Remember that di is a unit vector here, i.e. diedi = 1. 
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Thus we have 
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-di * d,+l~i:1 + 2 ~ r  - d i .  di-lz!:, = dj ( F y  - F;?1). 

A suitable generalized coordinate set for describing the bead-rod chain configura- 
tion consists of the following two sets of variables: firstly the cosines of the angles 
between the links -dj - tiikl, and secondly the azimuthal angle by which a link is 
rotated out of the plane spanned by the previous two links, the rotation being about 
the axis of the previous link. This angle is 

arccos ((di+l dj-1 - di+l * didi di-1)/(1- (di+l * dj>2)”2(1 - (dj-1 * di)2)1’2). 

It is well documented in the literature (Kramers 1946; Kirkwood & Riseman 1956; 
Gottlieb & Bird 1976; Fixman 1 9 7 8 ~ ;  Rallison 1979; van Kampen 1981; Bird et 
aE. 1987; Hinch 1994) that the equilibrium probability distribution of the bead-rod 
system written in terms of these variables is just the square root of the determinant 
of the tridiagonal matrix appearing in the equation to be solved for the tensions. 
For simplicity we shall denote this determinant by ‘det’. For instance, in the much 
studied case of a trimer or trumbbell (3 beads, 2 links, n = 2) the determinant is 
det = 4 - ( d l  - d2)2, and the equilibrium distribution is @ = (4 - (dl d ~ ) ~ ) ” ~ .  
For longer bead-rod chains the equilibrium distribution @ is independent of the 
azimuthal angles. However there is a dependence on the cosines of the angles between 
the links. Bead-spring chains on the other hand are known to have a uniform 
distribution. 

The reason for the difference in the probability distributions can be seen by first 
allowing non-zero bead masses and then taking a limit as bead mass vanishes. 
Writing the bead-rod system in terms of our generalized coordinates reveals that the 
generalized mass of the bead-rod system varies like det. The equilibrium probability 
distribution is J&, favouring high-inertia configurations, since they explore more 
of momentum space for their allotted thermal energy. The actual value of the bead 
masses cancels in the normalization, so that the @ distribution continues to hold 
in the limit of vanishing bead mass. 

Physically, the bead-rod system is not the K +. co limit of a system with spring 
energy zyZl $ ( E i  - but rather the K -+ x limit of a system with an energy 
formula cr=l $ ( E j  - 1)2/det1’n. For li = 1 both these formulae give zero energy. 
We believe that it is physically unrealistic to have a spring stiffness varying with the 
configuration of the link directors di like det’/n. This is because det depends on the 
totality of directors, even those for links located far away from a given spring. In 
short we believe that the bead-rod system is physically wrong. 

In order make the bead-rod system behave like the physically correct bead-spring 
system, it is necessary to add additional forces, repelling the beads from those 
configurations where det is large (Fixman 1978~;  Hinch 1994). The forces required, 
denoted Ff“, can be derived from an additional potential energy log@. We call 
this additional energy a pseudopotential, and we define pseudopotential forces as 
Fp” = -Vi log &% Fortunately for a chain of n links these forces can be found 
in O(n)  operations. From a numerical point of view, this is an advantage, since 
calculating the Ff” does not lead to massive increases in the amount of computation 
for each time step. For details, see the Appendix. 

We must also introduce pseudopotential tensions, zpS say. These satisfy 

-dj d i + l ~ f i ~  + 277 - di * dj-1~:’~ = dj * (Ff” - F!:,). 
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Tensions are linear in the forcing so the introduction of the Ff" does not affect the 
definition of z? given earlier. 

The equation of motion of the beads is now 

7. Bead-rod numerical algorithm 
There are two remaining barriers to solving the above equation of motion numeri- 

cally. Firstly a midpoint stepping scheme must be used (Fixman 1 9 7 8 ~ ;  Grassia et aE. 
1995). This is a consequence of the variation of the generalized friction and gener- 
alized diffusivity when the bead-rod system is written in generalized coordinates. A 
drift is produced in the Brownian motion, and the numerical scheme must obtain the 
same drift. The requirement of using a midpoint rule is well known in the stochastic 
calculus literature, where it is referred to as the Stratonovich formulation (Kloeden 
& Platen 1980; Bskendal 1985). 

Secondly, since friction appears in the fluctuation-dissipation theorem, the variation 
of the bead- rod (generalized) friction, implies that it is no longer correct to choose 
random forces (6/dt)1/2 ni. It is necessary instead to choose random forces reflecting the 
link length constraints, and there are various ways to do this. Ermak & McCammon 
(1978) have suggested a procedure, which amounts to expressing the friction of all 
the beads in the form of a matrix and then carrying out a Choleski factorization. 
For numerical purposes a better scheme is that of Hinch (1994), since it involves 
fewer numerical operations. In this latter scheme, firstly unconstrained random forces 
FI" (uizcon) are taken to be (6/dt)*i2 ni. Then constraining tensions r r  (eon) are calculated 
satisfying 

-di . d .  Tra (con) + lT? (con) - di . di-lt::l(cOn) = di . ( F y  (uncon) ya (uncon) 
1+1 i+l - Fi-1 ). 

ra (con) The random forces required are FY = FY (uncon' + zra l+1 (con) di+l -T i  

We can now explicitly give the numerical algorithm for performing a time step. 
We again employ the notation that O0, ()1/2 and (1, denote values at the beginning, 
midpoint and end of a time step. The random forces active during the step are (Ff")o. 
Note that the construction of (F:)O implies that ( z ? ) ~  vanish. 

This fact has implications for the values of ( T ? ) ~ / ~  and ( T : ) ~ ,  which are the tensions 
produced by ( F 7 ) o  at respectively the midpoint and end of the time step. These 
tensions are products of O(1/(dt)1/2) forces with O((6t)1'2) configuration changes 
during a time step, and thus are O(1), not O(1/(6t)i/2) quantities. The case of ( T Y ) ~  
is particularly important since it will appear in the numerical implementation of the 
stress formula, to be considered in the next section. As in 54 it is vastly easier to 
determine an 0(1) average of O(1) values, rather than an 0(1) average of O(l/(6t)1/2) 
quantities. 

4. 

The numerical scheme is 
6t 

(xi)1/2 = (xilo + ( ( ~ ~ 1 0  + ( F Y I ,  + (t::l)o(di+l)o - ( r~)o(d i )o) ,  

(x;)l = (xilo + d l ( ( ~ y ) o  + (7;;1)1/2(di+1)1/2 - (7:)1/2(di)1/2 

+ ( ~ ? ) 1 / 2  + (T::, )1/2(di+1)1/2 - (Ty)l/2(di)1/2). 

This numerical scheme possesses truncation error and therefore will not maintain 
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exact inextensibility of the links. However the link directors d,  are unit vectors by 
construction, and so can be used to reset the bead positions X , ,  restoring link lengths 
to unity. In our numerical scheme we carry out this procedure whenever the link 
lengths deviate from 1 by more than 0.5%. Liu (1989) has performed simulations 
with an alternative numerical scheme which always maintains link inextensibility 
within any desired tolerance, thereby avoiding the need to reset bead positions. The 
disadvantage of Lids scheme is that a nonlinear equation for the tensions must be 
solved at each time step. 

8. Bead-rod formula for stress 
The numerical algorithm has been specified, and it remains to give a numerical 

implementation of the Kramers stress formula. Care must be exercised here owing 
to the discontinuity of the random forcing from time step to time step. Liu (1989) 
has considered stress formulae for a bead-rod chain in an applied flow field, but 
used simulations only to calculate the equilibrium stress. Thus he obtained a stress 
formula involving the flow field and the configuration of the beads, but not the 
random forcing. In the present paper however we wish to investigate the unsteady 
stress evolution of a chain, with no applied flow, and for this the random forcing 
needs to contribute to the stress formula. 

Indeed the stress c can be separated into a part depending on the random forcing 
and a part depending on the pseudopotential. We denote these or, and cps respectively. 
We have 

n n 

b r a  == - C i(((xi)1 - ( ~ L ) o ) ( ~ y ) o )  + C ~ ( ( ~ ~ ) l ( ~ l ) ~ ( ~ l ~ i ( ~ l ) i ) .  

I=o 1=1 

The first term is identical to c,, in the bead-spring stress formula. The factor 
in the second term arises since at the end of the time step the tensions z; change 
discontinuously from (z?)~ to 0. In future sections shall employ the symbol (7: ( a u e ) ) ~  

to represent the average of these two values, which is $(z?)l. The term (&)I in the 
stress formula is ideally unity, but may ditrer slightly from 1 owing to truncation 
errors. Resetting the link lengths back to unity will make negligible changes to the 
stress, in practice much less than statistical fluctuations. 

The pseudopotential contribution to the stress up., in the configuration ( X , ) ,  is given 
straightforwardly by 

n n 

i=O i=l 

This completes our description of the numerical method for bead-rod chains. 
In subsequent sections we shall employ this method to investigate a problem of 
rheological interest: the relaxation of stress in an initially straight polymer chain. 

9. Stress in an exactly straight chain 
We now possess the numerical formulae needed to investigate stress evolution in 

both bead-spring chains ($4) and bead-rod chains ($8). This is an appropriate point 
to describe briefly the structure of the remainder of the paper. Our ultimate aim 
is to study the stress evolution in a problem of rheological interest: the relaxation 
of stress in an initially straight polymer chain. In this section we shall describe the 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Jul 2009 IP address: 131.111.16.227

Computer simulations o j  polymer chain relaxation viu Brownian motion 265 

stress evolution we expect, deriving a formula for the initial stress. The formula to 
be obtained has an important physical interpretation, which we shall discuss in the 
next section. Then we shall confirm for short chains that both the bead-spring and 
bead-rod models bear out the expected stress evolution. Having established this, there 
will be no further need to consider bead-spring chains, and thereafter we shall focus 
exclusively on the bead-rod model, treating considerably longer chains. 

Let there be Cartesian coordinate vectors el, e2 and e3. Imagine an initially exactly 
straight bead-rod chain stretched along the el direction, 

w,)O = ( i  - 5) el, ( 0 ~ 0  = (d,)o = et. 

Physically this configuration corresponds to stretching the chain by a very strong 
flow, and then switching off the flow. We aim to calculate the stress at the instant the 
flow is switched off. 

Following the formula given in the previous section, we must perform one numerical 
time step, and calculate the stress at the end of this time step. 

The pseudopotential forces involve gradients of dot products of the unit link 
directors d, .  Since the d ,  are by construction unit vectors, they are normal to their 
gradients. However if all the cl, are in the same direction, then the gradient of any 
one of them is normal to every unit link director. Hence the F;f" all vanish in the 
exactly straight configuration. Moreover the drift terms (Hinch 1994), which ordinarily 
necessitate the use of a midpoint stepping scheme, can also be shown to vanish for the 
straight configuration. Hence for the present stress calculation we need only consider 
a simple forward time step ignoring pseudopotentials. 

Given unconstrained random forcing on bead i, FY (u"co") - - (6/6t)'/ '  n,, the (actual) 
random forces FY are simple to calculate for a straight chain. In directions normal to 
the el direction, the components of FF are precisely the same as those of Fy (uncon). 

For bead I, we shall denote this sideways random force by ( 6 / 6 ~ ) ' / ~  ni where we have 
defined nrl = ( I  - elel) - n,. Along the el direction the component of FY is the same 
for each bead, and is (6/6t)1/2 EyE0 n, * etel/(n + 1). Hence 

In the above we have put ( ) 0  around F y  to indicate that this is a force acting between 
times 0 and 6t .  

The simple forward time step gives 

112 I (WI = el + (66 t )  (n, - ni-,). 
The link director ( d , ) ~  is (OJl /[1 + 66t(ni - nip1) - (ni - ni-1)]1/2. 

The tensions (z?), are obtained by solving the tridiagonal tension equation given 
in 56. At leading order in the time step 6 t  we may replace the right-hand side of the 
tension equation (d,)l * ( ( F F ) o  - (Fl?,)o) by 6(ni - n;-l) 0 (ni - H : - ~ ) ,  and also replace 
( d , ) ~  on the left-hand side by 1. We take expectations to obtain 

-((T~;I)I) + 2((2:")1) - ((z:!~)I) = 6 ( ( 4  - n:-l) * (n: - n:-i)). 

On the left-hand side of the above equation we have a tridiagonal matrix with 2's 
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down the diagonal and -1’s above and below. In the literature this is called the Rouse 
matrix. We shall let its inverse, which is known as the Kramers matrix, be denoted 
Ai,. It is well known (see e.g. Rallison 1979) that 

(n  + 1 - i ) j / (n  + I), i 2 j ,  
‘I { ( n  + 1 - j ) i / ( n  + l), i d j ,  

A . .  = 

and hence 

with summation over j on the right-hand side. Now using the facts that (nini) = 
(Z - ele1)/3, that (ninj) vanishes when i # j and that Cj A ,  = i ( n  + 1 - i)i, we deduce 
((z?)~) = 4(n + 1 - i) i . Recalling the definition of (zi ), in the previous section, we 
note for future reference that 

( ( z y ) ~ )  = 6Aij((ni - .;-I). (ni - ni.-l)), 

ra (aue) 

( a 4  j1) = k((zr)l)  = 2(n + 1 - i)i. 

Thus the average tension in link i of a straight chain is 2(n + 1 - i)i. 
The stress contribution arising from the (z?jl terms is 

n 

i=l 

which to leading order is 
I1 11 

i= 1 i= I 

This equals n(in2 + n + !)elel. 
The stress cr, has an additional contribution 

n 

- C (((Xi)l- (Xi)o)(Fj”)oj = - 
i=O 

In the elel direction this gives 

whilst in the Z - elel direction it yields 

We conclude for an exactly straight chain that 

c = cr,, = yt ($2 + n + +) elel - elel - (n  + 1)(Z - elel) 

This result is in dimensionless units. In dimensional units the bulk stress contribution 
of (exactly straight) chains would be k ? x  n in2 + n + $) elel - ( n  + 1)Z).  The 
calculation indicates that the stress in the exactly straight bead-rod chain is finite, 
unlike in some other polymer models, such as the entropic spring model (to be 
reviewed in §13), which give infinite stresses in exactly aligned chains. The finiteness 

= n ( i n2  + n + $) elel - (n  + 1)Z. 

0 
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of the stress should be borne in mind when developing constitutive equations for 
polymeric solutions. 

The above initial stress formula was based on calculating by hand the expectation 
value of the numerical formula given in $8. It is unnecessary to use the numerical 
formula of $8 as a starting point, and indeed there are a number of theoretical 
approaches which give the same end result. One approach is to consider a free 
sideways diffusion of the beads at early times, and deduce from this the rate at 
which the el component of the link directors decreases. This information can then be 
substituted into an alternative stress formula, the Gisekus formula (Bird et ul. 1987) 
to give the above result. Another alternative (Grassia 1994) is to give the random 
forces in terms of the gradient of a logarithm of the probability distribution. Taking 
expectation values and integrating by parts, gives the desired stress formula. The 
various approaches do not necessarily agree with respect to the proportion of stress 
assigned separately to bead random forcing and to rod tensions, but the overall stress 
is always the same. In the next section we shall recalculate the link tensions using a 
specific theoretical approach, which clearly indicates the physical origin of the initial 
stress. 

For exactly straight bead-spring chains, we cannot repeat the stress calculation 
culminating in the formula 0 = n(5n2 + n + :)elel - ( n  + l)Z. This is because the 
correct initial stress for the bead-spring chain is only established on times longer 
than 0(1/K), the link length relaxation time. On the other hand numerical stability 
demands 6t < 1/K, so the correct stress is only established after several time steps. 

Thus far we have calculated the stress for (bead-rod) chains in the exactly straight 
configuration. We also wish to determine the stress for a randomly coiled chain, 
which will represent the end-point of the stress evolution. This calculation is trivial 
if we replace the Kramers stress formula by the equivalent alternative formula of 
Gisekus (Bird et al. 1987). The stress is found to be --I in dimensionless units, and 
corresponds to the chain supplying a pressure equivalent to that of a molecule in an 
ideal gas. The stress in a randomly coiled bead-spring chain is also - I .  Moreover the 
distribution of spring link lengths in such a chain will be governed by a Boltzmann 
factor involving the energy of the springs. 

Summarizing then, we hope in our simulations to see an evolution of stress starting 
from 0 = .(in’ + n + :)elel - (n  + l)Z and finishing with = -I. Moreover we hope 
to find agreement between the stress in the bead-rod and bead-spring chains. The 
results from the simulations will be considered shortly; however before turning to 
these, it is helpful to describe the physical significance of the stress in the straight 
chain. 

10. Physical interpretation of stress 
The bead-rod tensions have a simple physical purpose which was discussed at the 

beginning of $6: namely that they are of exactly the correct magnitude to maintain 
link inextensibility. In a straight chain it is particularly clear how the average link 
tensions calculated in the previous section ((T: = 2(n + 1 - i)i achieve this 
inextensibility requirement, as we now explain. The issues we describe in this section 
will not only be useful for interpreting the initial value of the stress, but in future 
sections will help us to understand the early and intermediate time stress relaxation. 

The chain is initially stretched along the el direction. For small values oft ,  the bead 
motion is predominately sideways in the e2 and e3 directions. We shall let z ,  denote 
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the sideways position of bead i, and this is a random function of time t. Provided the 
magnitude of z ,  is small compared with 1, then d,  = el + (z, - z,-I). 

As well as bead positions, we are also concerned with bead velocities. The sideways 
velocity of bead i is just 2,. There is also a longitudinal velocity component to be 
considered. This arises from the tensions in the adjacent links, plus a longitudinal 
diffusion of chain centre of mass superposed. The links are assumed to lie almost 
exactly along the el direction, so that the longitudinal velocity of bead i is (T::~ -T?) el 
with respect to the centre of mass. Hence 

Dl = (T;:~ - 227 + r ~ ! ~ )  el + z, - i,-l. 

The inextensibility requirement from $6 is b, d ,  = 0, which gives 

The last term on the left-hand side represents the average rate at which the links 
would lengthen due to the sideways motion if there were no tensions. The first three 
terms represent the shortening of the links due to the tensions in the absence of 
sideways motion. The equation implies that the role of the tensions is to offset the 
tendency of the sideways motion to increase link lengths. Recalling the definition of 
the Kramers matrix A i j  in the previous section we have 

with summation over j .  Taking expectation values yields 

Now for very early times, the beads diffuse freely in the e2 and e3 directions, with 
unit diffusivity. We shall adopt a notation which looks very similar to that of the 
previous section. At time t << 1 the sideways position of bead i will be written 
(6t j ' /2 N: where N :  is a random sideways vector of vanishing mean and with variance 
(NIN;) = ( I  - ele1)/3. Moreover the beads move sideways independently so that 
(NI - N:)  vanishes if i # j .  These facts all follow from the free diffusion, and also 
from adding together a total of t / 6 t  numerical time steps. We have therefore 

Apart from a factor of i, and the notational change of N :  replacing n:, this is identical 
to the equation for ( ( T ? ) ~ )  appearing in the previous section. The factor of can be 

absorbed by recalling that ((z: ( m ' e ) j l )  is ((z?)~). 
= 2(n+ 1 - iji. We have shown explicitly that the tensions 

in the straight chain ((zy as calculated in $9 are of precisely the correct 
magnitude to maintain link inextensibility. 

ra (aue) Hence (T?) = ((z, 

11. Comparing bead-rod and bead-spring chains 
We start with some results for the trumbbell or trimer molecule. We considered 

both a bead--rod and bead-spring trumbbell, initially stretched straight along the el 

direction. In the bead-spring simulations, we considered two different values of the 
dimensionless spring constant, K = 100 and K = 400. Here we took initial values for 
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FIGURE 1. Trumbbell stress relaxation for stress components cI1 and 6 2 2 .  In the upper part of the 
graph we find 611 data for a bead-rod trumbbell 0 and for bead-spring trumbbells with K = 100 
+ and K = 400 m. In the lower part of the graph we find 6 2 2  data for a bead-rod trumbbell x, 
and for bead-spring trumbbells with K = 100 A and K = 400 *. There were 4000 realizations in 
each case. The initial 6 1 1  is 7, whilst the initial rr22 is -3. After time roughly t = 0.5 an isotropic 
equilibrium stress is attained with 611 = 6 2 2  = -1. 

the lengths of the stiff spring links I I  = E2 = 1, so that the link tensions zip and 7;‘ 

both vanished at the initial instant. 
The time step was 6 t  = 0.001 for the bead-rod problem and also for the bead- 

spring problem with K = 100, but was 6t = 0.00025 for the bead-spring problem 
with K = 400. Recall that the need for a small time step at large K was the very 
reason we developed the bead- rod model in $6. 

The stress was calculated for each time step, but to reduce statistical fluctuations 
it was then averaged over several nearby time steps. The data were given as average 
stress over each group of several time steps us. the mean time within the group. Finally 
an average was taken over 4000 realizations. 

The results for the stress relaxation of the trumbbell are shown in figures 1 and 
2. We plot the diagonal elements of stress, both in the el direction, along which the 
chain is initially aligned, and the e2 direction, which is one of the two directions 
normal to el. We shall refer to these ‘11’ and ‘22’ stress components as 011 and 6 2 2  

respectively. 
Figure 1 shows the time evolution of 6 1 1  and cr22 for a trumbbell starling from the 

initially straight chain configuration at t = 0, up to a time 1 = 1.25. Broadly there is 
agreement between the stress calculated by the bead-rod and bead-spring systems. 
Moreover the initial stress for the bead-rod trumbbell in the figure agrees with the 
predicted value from the previous section (with n = 2) 

cr = 10elel - 31 = 7elel - 3(Z - elel). 
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FIGURE 2. An expanded view of the initial part of figure 1. The stress ull in bead-spring models 
disagrees with that in bead-rod models for very early times. This arises from the artificial bead-spring 
initial condition lI = l2  = 1 giving vanishing tension in the springy links. For times larger than 
O( 1/K) bead-spring and bead-rod models agree, the agreement being achieved somewhat sooner 
for spring constant K = 400 than for K = 100. 

On figure 1 at time roughly t = 0.5, 611 and 0 2 2  both attain the equilibrium value -1. 
Figure 2 shows an expanded view of the initial part of figure 1 on a finer scale. 

The most important point to note here is the failure of nl1 to agree in the bead-rod 
and bead-spring models at early times. This arises wholly from our artificial choice 
of 11 = Z2 = 1 as the initial spring lengths, meaning f P  and nsp vanish initially. Having 
the wrong initial oSp does not influence 0 2 2  since the springs do not initially lie along 
the '2' direction. Only 6 1 1  is affected. 

During a time 0(1/K), with K >> 1, the unit link directors dl and d2 are virtually 
unchanged from their initial values, but the artificial initial values of I1  and / 2  are 
forgotten. After this period there ceases to be a discrepancy between the bead-rod 
and bead-spring stress relaxation. Note that the K = 400 bead-spring graph joins 
the bead-rod curve somewhat earlier than the K = 100 graph does, so our 0(1/K) 
estimate is indeed plausible. 

We have investigated the energy stored in the stiff spring links. This is initially 
zero owing to our artificial initial conditions, but in time 0(1/K) it reaches the 
equilibrium value of per link. This value is demanded by equipartition of energy, 
and can be obtained via a Boltzmann distribution of link lengths. Hence we have 
discovered an important property of the bead-spring trumbbell: the link lengths and 
directions equilibrate essentially independently, the former on time scales O( 1 / K )  and 
the latter on O( 1) scales. The link lengths equilibrate to the Boltzmann distribution, 
whilst the relaxation of the link directions follows that of the bead-rod trumbbell. 
We emphasize that the dimensionless spring constant K is only defined for springs 
of non-zero natural length, since it compares the thermal energy with the energy 
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required to deform the springs by amounts comparable to their natural length. As we 
noted in $2, there is a diffusion time scale for link direction, defined in terms of the 
bead diffusivity and the natural link length, and this is independent of spring stiffness. 

There is one minor modification to the picture of separate link length and link 
direction relaxation for our bead-spring models. During the bead-rod relaxation, the 
difference between the actual bead-rod stress in the ‘11’ direction and the equilibrium 
value is positive. Thus the actual tensions in the rods must be on average positive and 
greater than the equilibrium values. In order for the bead-rod and bead-spring stress 
to agree, it is necessary for the springs to be on average slightly stretched with respect 
to a Boltzmann distribution. In other words the distribution of link lengths cannot be 
a perfect Boltzmann distribution, until the link directions have fully relaxed. However 
the departure from the Boltzmann distribution is small. An O(1) stress in the links 
can be produced with I ,  - 1 = O(l/K), whilst under the Boltzmann distribution I ,  - 1 
fluctuates by larger +O(l/K1/2) amounts. The energy involved in giving an extra 
O( 1 / K )  stretch to the springs is negligible compared with the equipartition energy. 

Another point which is clear from figure 2 is that there is rather more scatter in 
the el1 data for the bead-spring models, than for the bead-rod models. This arises 
from the cSp part of the stress formula (we consider times larger than O(l/K)). The 
tensions in the links will be fO(K’i2),  and we are faced with the statistical difficulty 
of averaging quantities of large magnitude to extract a smaller magnitude average. 
We anticipated this effect in 155. There is no large scatter in the bead-spring 6 2 2  data 
at early times, since the links are aligned so that oAP has only a small ‘22’ component. 

The results we have described here are for the trumbbell. We have performed 
analogous simulations for bead-rod and bead-spring chains with n = 4. The same 
features occur, namely the stresses in the bead spring and bead-rod chains agree, 
except for an initial O( 1/K) period, during which bead-spring link lengths equilibrate 
in energy. We anticipate that these features will be reproduced for a chain of any length 
provided the time scales for changes in the spring lengths remain short compared to 
the scales for evolution of link direction. We can therefore confidently discard the 
bead-spring model, and focus henceforth on bead-rod chains. 

12. Relaxation of polymer chains: short time scales 
We are now ready to investigate the primary question posed in this paper: How 

does the presence of a (typically large) number of links affect the process of chain 
relaxation? We shall consider the behaviour of the chain first at short time scales, 
then at long time scales, and finally will try to find a matching between the two. We 
are interested in the evolution of stress and we focus on the 611 stress component 
(rather than say the c22 component) since cll is known to fall from an O(n3) initial 
value, whereas 16221 decays only from an initial value n + 1. Thus the 611 decay is far 
more dramatic. 

For a chain of length n we already know that there are initially O(n2) link tensions 
associated with the initial O(n3) stress. We estimate the time scale on which the stress 
will start to relax as follows. 

As in $10 we denote the sideways position of bead i by z,. We suppose that stress 
relaxes significantly whilst the links are still directed primarily along the el direction, 
i.e. while the magnitude of z ,  -zlkl remains small. This permits us to use the tension 
formula ($10) 
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and the stress is essentially obtained by summing over these tensions. The right- 
hand side of this equation is a weighted sum of the difference in the rates of sideways 
motion for adjacent beads. For very early times the beads in the chain diffuse sideways 
independently so that the right-hand side is roughly +A, ]  (d(z,-z,)/dt+d(:,-l -zJ-l)/dt). 
Clearly if we can reduce d(z, -z,)/dt = 2(z, sz,) ,  we can reduce the tension and hence 
the stress. 

Now z, consists of one part due to the sideways diffusive force, plus another part 
from the tensions. We consider them in turn, In the absence of tensions, the sideways 
diffusive force would lead to d(z, -z,)/dt = 4 and hence (z,.zJ = 2. The diffusive force 
can thus be estimated as 2z,/(z, a:,). The tension forces primarily act longitudinally, 
but they have a smaller sideways component arising from transverse projections of 
the link directions. The sideways tension force on bead i is T:;,(Z!+~ -z,)--t;(z, -z,-I). 

The beads diffuse independently early on, and so averaging this expression for force 
on bead i over the positions of beads i & 1 gives -($TI + T?)Z,. 

The diffusive force acts to increase the magnitude of z , ,  whilst the tension force 
acts to reduce it. Initially the diffusive force is much larger than the sideways tension 
force, however the former decreases and the latter increases as z, grows. When these 
forces balance, the free sideways diffusion is arrested, the growth rate of z, decreases, 
and hence so do the tension and stress. Balance occurs when z ,  ’:, = 2/(z? + T:!~).  

Using the relation from free diffusion (z, * z , >  = 4t, and the fact that the expectation 
values of the ZF’S are O(n2),  we predict that the stress will start t? relax on O(l/n2) 
time scales. In dimensional units, the relevant time scale is O ( t p / k T  x l/n2). The idea 
that tensions limit the sideways bead diffusion will be developed further in a later 
section. 

In the first set of simulations, we have considered the stress relaxation on short time 
scales, looking only at the first decade of the stress decay. Thus in general we halted 
the simulations well before equilibrium is attained. We took values n = 100, n = 50, 
n = 40, n = 20 and n = 16. The time step was 0.004/n2. For the first 20 time steps 
we plotted the stress on every 4th step and thereafter we plotted on every 50th time 
step. This procedure was designed to ensure that when we plotted the stress evolution 
the graphs did not look too crowded. Of course a great deal of data available for 
the plot were discarded by not using stress data from every time step. Nonetheless, 
given that the stress evolves quite rapidly at these early times, discarding data was 
considered to be preferable to averaging stress over groups of time steps. A total of 
1000 realizations was performed. 

For each time at which the stress cll was sampled, we subtracted from 6 1 1  the 
value -1, i.e. we subtracted the ‘11’ component of the final equilibrium stress. Then 
we divided by n ( in2 + n + 5) which is the difference between the ‘1 1’ components of 
the initial and final stress. 

In figure 3 we plot this ‘fractional stress’ (all + 1)/ ( n  (Sn’ + n + f)) against n2t 
for various n in a log-linear plot. Notice that for t -+ 0 in the graph the fractional 
stress has the value 1, implying that the initial stress formula derived in $9 is indeed 
valid. Also the curves for different n collapse almost onto a single curve, meaning our 
anticipated O(l/n2) time scale for relaxation is borne out. The fact that the curves 
with lower n lie slightly beneath those for higher n can be attributed to the finiteness 
of n. Indeed we could have taken just the leading-order approximation to ell, namely 
i n 3 ,  and plotted simply (oil + 1)/ ( fn3) .  Then the situation would be reversed, with 
the curves for high n slightly beneath those for lower n. 

The curve onto which the data collapse in figure 3 is certainly not a straight line, 
meaning that there is no single exponential for the short time decay. Instead there 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Jul 2009 IP address: 131.111.16.227

Computer simulations of polymer chain relaxation via Brownian motion 273 

1 I I I 

J 
i 

0 

n*t 

FIGURE 3. Relaxation of the fractional stress component (ull + 1)/ (n ( i n z  + n + :)) on short time 
scales. We have used values n = 100 0, n = 50 +, n = 40 D ,  n = 20 x and n = 16 A, with 1000 
realizations in each case. Plotting against n2t instead of t collapses the data onto a single curve, and 
indicates that relaxation rates scale like n2. The fastest relaxation rate is 2.1 n2, so that at very early 
times, the data are tangent to the line exp( -2.1 n 2 t )  (dashed). 

must be a spectrum of decay rates and those that govern the first decade of the stress 
decay must all have rate constants O(n2).  The most rapid decay rate can be obtained 
from the slope of the graph as t -+ 0. The best fit slope for 0 d n2t < 0.1 (where we 
have 25 data points) with n = 100 gives the highest rate constant as 2.1 n2. 

13. Entropic spring model 
Now we turn to the stress relaxation on long time scales. In this section we shall 

review a crude model for the stress in the polymer chain. In the next section we 
shall review a more sophisticated model which yields quantitative predictions for 
the stress. After that we shall compare the numerical data for the bead-rod chain 
with the quantitative predictions of the model. As before we focus on the stress 
component ~ 1 1 .  It is noteworthy that the models for stress relaxation on long time 
scales involve the decay of the longitudinal extension of the chain, with associated 
longitudinal bead motion. By contrast those for short time scale relaxation, such 
as that considered in the previous section, involve mainly sideways bead motion. 
On short time scales longitudinal motion does occur, but it only serves to maintain 
link inextensibility whenever adjacent beads move sideways at different rates. At 
some intermediate time, the chain must depart from straightness sufficiently to allow 
a change from predominately sideways bead motion to predominately longitudinal 
motion. 

The model we consider first is called the ‘entropic spring’ model (Flory 1969). It 
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expresses the fact that aligning the links of a bead-rod chain has an entropy cost or 
equivalently a free energy cost. Let us denote the end-to-end vector of a chain by R 
(measured in units of a link length), and its expectation value by ( R ) .  Clearly ( R )  will 
vanish for a chain in equilibrium with no forces applied. Applying a force, Fapp say, 
across the chain will give a non-vanishing ( R )  at equilibrium. We suppose that Fapp is 
measured in units of k?/?.  Flory (1969) shows that ( R )  is in the same direction as Fapp, 
and its magnitude (in dimensionless units) satisfies i(R)l/n = coth IFapp[ - l/IFappl. 
The right-hand side of this equation is a Langevin function in IFapp/, so that applied 
force is an inverse Langevin function of expected chain length expressed as a fraction 
of the fully stretched length. 

Flory (1969) surmises that a restoring force (denoted F say) inherent in the bead- 
rod chain must balance the applied force F = -Fapp. Approximately then a chain 
with a non-zero R must have a restoring force given by the inverse Langevin force. 
This force arises from the increase in entropy as lRI decreases, and so is called an 
‘entropic force’, whilst the bead-rod chain is said to behave like an ‘entropic spring’. 
The stress of the entropic spring is -RF - 21, the -21 term accounting for random 
forcing at each end of the spring unrelated to the entropic restoring force. 

It is worth describing some of the deficiencies of this model and how they arise. For 
a chain with a given configuration of the link directors, it is (in principle) possible to 
average over all random forces and deduce the stress as a function of the link directors. 
Knowledge of the end-to-end vector alone is insufficient to determine the stress; the 
totality of link directors must be known. Averaging the stress over all configurations 
of link directors subject to a given end-to-end vector will not in general agree with 
the stress of the entropic spring. 

One situation where the entropic spring model is clearly wrong is for an exactly 
straight chain. Here the inverse Langevin force is infinite. This is clear, since if the 
force applied across the chain were finite, there would always be small sideways 
deviation of the beads, and J(R)l/n would be less than unity. However the stress for 
an exactly straight chain is known to be finite (deduced in $9 and verified in $12). 
Loosely speaking the error in the entropic spring model arises because the expected 
stress given a configuration is not the same thing as the stress (strictly the force) 
required to maintain a given expected configuration. 

If IRi/n is not too close to unity, i.e. if the chain is not too close to being fully 
stretched, the inverse Langevin force can be linearized and the entropic force becomes 
F = -3R/n. The entropic spring stress is then (3In)RR - 21. 

Let us consider the two halves of a bead-rod chain, each with n/2  beads, coming 
together as the chain relaxes. The friction factor associated with the motion of n/2  
beads is just n / 2  in the present units. Hence the collapse of the end-to-end length of 
the chain is roughly described by (n /2 )R  = - (3/n)R,  provided the chain is not too 
close to being fully stretched. Thus R decays exponentially at a rate 6/n’. The stress 
is (3In)RR - 21 according to the model, and so decays at a rate 12/n2. Given the 
crudeness of the model, we can hardly expect the coefficient 12 in 12/n2 to be correct, 
but at least the O(l/n2) scaling for the decay rate should be robust. In dimensional 
units this corresponds to an O(k?/[T2 x l /n2)  rate. 

We have linearized the entropic spring force here, thereby requiring IRi/n be not 
too close to unity. The linearization should start to be approximately valid once the 
chain is less than about half of its fully stretched length. At this point (3In)RR is O(n). 
Hence in our stress relaxation simulations we expect an O(n)  value for 611 decaying 
on an O( l /n2) time scale. Remember that the final equilibrium oll in our simulations 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Jul 2009 IP address: 131.111.16.227

Computer simulations of polymer chain relaxation via Browxian motion 275 

will be -1. The entropic spring formula (3In)RR- 21 also gives an equilibrium value 
of -1 for crll,  since (RR)  = (n/3)1 at equilibrium. 

14. Rouse model 
The entropic spring model gives the broad physical picture of the stress relaxation 

at long times. More sophisticated models yield more precise predictions. Fixman 
(1 978h) has considered the relaxation of a variety of bead-spring and bead-rod 
chains, although not the freely jointed bead-rod chains we are considering. He 
focused primarily on the relaxation of chain modes, which are linear combinations of 
the link directors, which decay independently of one another. The longest wavelength 
modes determine the chain relaxation at long times. Fixman (197%) found that 
the (appropriately non-dimensionalized) decay rate of the longest wavelength mode 
depended only on the number of links in the chain. It was independent of whether a 
bead-spring or bead-rod chain was being considered, and independent of other chain 
structural details. The decay rate for this particular mode can therefore be calculated 
from a particularly simple model, which is a freely jointed bead-spring chain, with 
Hookean springs (the Rouse model). 

Since Hookean springs have no natural length, it is necessary to non-dimensionalize 
according to the equilibrium spring kngth, obtained by balaccing the spring and 
thermal energy. For a spring constant K ,  this length is (3k?)'/*/K, the factor 3 arising 
from the 3 degrees of freedom of a Hookean spring. We shall denote (3k'@/2/k by 
I, a symbol earlier reserved ($2) for natural spring lengths. As mentioned earlier ($11) 
this choice of length scale implies that for Hookean springs there is no analogue of 
the dimensionless group K appearing in the bead-'Fraenkel spring' model. 

The decay rate of the longest wavelength mode in the Rouse model with n links 
(Fixman 1978b) is 2, = 12 sin2(n/2(n + l)), or k ? / @  x 12 sin2(n/2(n + 1)) in dimen- 
sional units. For the Rouse model the long time stress decay rate is twice this rate. If 
n >> 1, then this gives a rate 6n2/n2 with an O(l/n3) correction. 

In addition to the decay rates, the Rouse model also predicts amplitudes of each 
mode. Consider a chain initially stretched straight, with all link lengths equalling the 
equilibrium length, with say D, = el. The amplitude of the longest wavelength mode is 
found by summing over the D,  with weightings [2/(n+1)]'/2 sin(in/(n+l)). The result 
for the straight configuration is [2/(n + 1)1''2 sin(n/(n + 1))/(1 - cos(z/(n + 1))) el. 
We can then show that the contribution to crll + 1 from the longest wavelength is 

* 

6 sin2 (n/(n + 1))  

(n  + 1) (1 - cos (n/(n + 1))) 

As n -+ cx), this formula is asymptotically 24n/n2,  or k? x 24n/n2 in dimensional 
units, and this agrees with the O(n) stresses predicted by the entropic spring model. 

Whilst the mode amplitude depends only on configuration, and not on the choice 
of model, the stress formula is specific to the Rouse chain. We see immediately how 
un-Rouse-like the bead-rod chain is at early times by comparing the initial stress in 
the two types of model. For the straight Rouse chain with unit link lengths we have 
CT = 3nelel - (n + 1)Z. Contrast this with the vastly different stress formula for the 
exactly straight bead-rod chain cr = .(in2 + n + $)elel - (n + 1)I which was derived 
in $9. 

We now summarize the results from this section. The Rouse model predicts an 
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exponential decay for stress at long times. For n + co, the decay rate is 6n2/n2, and 
the coefficient multiplying the exponential is 24 n/n2. 

15. Relaxation of polymer chains: long time scales 
Now we consider how well the numerical results fit the Rouse model described in 

the previous section. It is sensible to consider data (all + l ) / n  plotted against t /n2.  
Ideally we wish to perform simulations for very long chains. There is however a 

computational problem. We saw in $12 that the initial decay involves O(l/n’) time 
scales. We must choose a time step smaller than this to resolve the rapid initial stress 
decay. Yet we expect that the full stress relaxation will involve O(1/n2) rates and 
therefore take U ( n 2 )  times. There are also O(n)  numerical operations to be performed 
at each time step. So overall the number of operations grows like n5. Bear in mind 
also that we must perform many realizations to obtain good statistics. Clearly it is 
impractical to perform simulations for very large n, and we decided to simulate the 
full relaxation only as far as n = 10. 

Fortunately we can anticipate that the time to reach equilibrium will be the multiple 
of n2 with a fairly small numerical coefficient. This is because the Rouse model has a 
fairly large factor 67c2 appearing in the relaxation rate 6n2/n2, and also because the 
trumbbell (n  = 2) reached equilibrium by t = 0.5 (see figure 1). We simulated up to 
times t = 0.25 n2, which was more than sufficient to reach equilibrium. 

We simulated bead-rod polymer chains with the number of links n taking the 
various values n = 4, n = 6, n = 8 and n = 10. We took a time step 0.01/n2, and 1000 
realizations for each n. On the long time scales of interest, stress was averaged over 
several time steps in addition to averaging over the realizations, helping to reduce the 
statistical fluctuations. 

In figure 4 we show (all + l ) / n  plotted against t /n2  in a log-linear graph. Clearly 
all+ 1 approaches an equilibrium value of zero as t -+ m as predicted in 49. Towards 
the bottom right-hand corner of the graph we find a random scatter starting to 
develop. This scatter arises from statistical fluctuations, which are magnified in this 
region of the graph by the log scale. 

In the central region of the graph the points for each individual n lie along 
straight lines, meaning the stress has a Rouse-like simple exponential decay. The 
magnitude of the slopes seen on the graph does increase slowly with n. Best fit lines 
can be deduced by taking data for t/n2 between 0.01 where the straight lines begin, 
and 0.06 where statistical fluctuations dominate. For instance for n = 10 we obtain 
(all + l ) /n  = 2.0exp(-58.5 t /n2) .  For n = 8 the slope of the best fit line is 54.5, for 
n = 6 it is 52.4 and for n = 4 it falls to 43.4. Data for n = 2 have not been shown on 
figure 4, but are available from figure 1. For n = 2 a fit of the final stress decay to a 
decaying exponential in t/n2 gives a slope 29.3. 

The slopes for the different n fit the formula 70.2 - 129.7/n + 95.5/n2 with a 
correlation coefficient of 0.9977. A linear fit in l / n  gives instead 63.8 - 79.9/n with 
a correlation coefficient of magnitude 0.9891. These results suggest that the stress 
decay rate for a very long bead-rod chain will be between about 63 /n2  and 71/n2, say 
roughly 70/n2. This decay rate exceeds the Rouse chain prediction of 67c2/n2 = 59.2/n2. 
It is unclear what accounts for the discrepancy in decay rates. Perhaps there is a small 
amount of a shorter wavelength (faster decay rate) mode contributing to the observed 
stress decay. However the data for each n fit a straight line well on figure 4, so the 
amplitude of any extra modes must be small. Another possible explanation for the 
observed ‘faster than Rouse’ decay in our data is that stress decay rates may exceed 
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FIGURE 4. Relaxation of (all + l ) /n on long time scales, with values n = 10 9, n = 8 +, n = 6 
and n = 4 x and 1000 realizations in each case. Observe that the time axis is t / n 2 ,  not simply t. 
For large t / n 2 ,  (a, I + l) /n approaches 0, within statistical fluctuations, indicating the equilibrium 
value of a11 is -1. In the central part of the graph the data lie along straight lines for each 
n, and the slope of these lines increases slowly with n. The change in slope with n is fit by the 
expression 70.2 - 129.7/n + 95.5/n2, which suggests the relaxation for n + co would follow the line 
(all + l ) / n  FZ 2.0exp(-70.2t/n2) (dashed). 

twice the mode decay rates in certain bead-rod chains (Fixman 197%). We comment 
however that the bead-rod chains in Fixman’s study were not freely jointed. 

Now we turn from a consideration of the slope of the lines in figure 4 (the decay 
rates), to an analysis of their intercepts. This involves extrapolating the long time 
stress decays back to the initial instant. The intercepts for the best fit lines take the 
values 2.0 ( n  = 10 and n = 8), 2.2 (n  = 6) and 2.5 (n  = 4 and n = 2). This appears to 
have a secular decrease with increasing n. However there is not a particularly good 
fit to these data in the form of a constant plus O ( l / n )  and O(l /n2)  corrections, so we 
are unable to extract reliably the n 

Recall ($14) that the contribution of the longest wavelength mode to (all + l ) / n  in 
a straight Rouse chain with n .--t m is 24/n2 = 2.43. This is considerably larger than 
the intercept 2.0 for the bead-rod chain with rz = 10. The trend of the numerical data 
suggests that for bead-rod chains with larger n, the discrepancy will be greater still. 

The intercept obtained from extrapolating the long time stress decay of the bead- 
rod chain back to t = 0 is not directly related to the initial stress in the chain. Rather 
it will depend on how much of the mode amplitude for the longest wavelength mode 
remains when the Rouse-like simple exponential decay begins. The difference between 
the intercept for the bead-rod chain and the equivalent for the Rouse chain tells us 
therefore how effective the un-Rouse-like processes occurring in the bead-rod chain 
at early times have been at decreasing the amplitude of the longest wavelength mode. 

The amplitude of the longest wavelength mode is closely related to the end-to-end 

a3 intercept from the present data. 
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length of the chain. It would appear from our results that the bead-rod chain is 
more efficient at decreasing its end-to-end length than the equivalent Rouse chain. 
Physically we believe this is due to the differing distribution of tensions with respect 
to link location in the two types of chain. The tension equations defined in $10, along 
with the Kramers matrix of 99, suggest that the bead-rod tensions will generally 
peak in the chain centre whenever the link directors are roughly aligned. As a result 
of this, the beads feel an unbalanced force directed toward the centre of the chain. 
By comparing the unbalanced forces across each link, we find that the tensions 
cause the longitudinal projection of each link to decrease, giving considerable end-to- 
end shortening. For the straight Rouse chain on the other hand, the link tensions are 
initially uniform along the chain. In that case, the only beads which see an unbalanced 
tension force are those at either end of the Rouse chain, so only the outermost links 
will shorten initially. 

The dashed line shown figure 4 satisfies ( 6 1 1  + l ) / n  = 2.0exp(-70.2 tin'), and this 
should roughly fit the long time stress decay for large n. This line is obtained by 
taking the limiting slope 70.2 deduced from the numerical data at various n, with the 
intercept 2.0 of the best fit line for n = 10. 

16. Relaxation of polymer chains: intermediate time scales 
In the previous few sections we have established that there is an O(n3) stress on 

short O( l /n2)  times and an O(n) stress established on long O(n2) times. We wish 
now to investigate whether there is a simple stress decay law matching or joining 
these regimes. We search for a simple function which fits the data for times n2t >> 1 
but t /n2  <( 1. Observe that r ~ ~ ( n * t ) - ' / ~  = n(t/n2)-l/* = n2t-'/', so that a -1 2 P  ower 
law decay, with an O(n2) stress at O(1) times, achieves the required matching. In 
dimensional units this corresponds to an O(k? x n2)  stress per chain on O(gi2/k?)  
times. 

In figure 5 we have replotted the data from figure 3, this time on a log-log plot. 
The data do not show the full stress relaxation, only going up to a time 20/n2. For 
t greater than about 2/n2 the data do appear to lie along a straight line, with slope 
quite close to -;. Fitting the tz = 100 data to a line with -; slope over 2 6 n2t d 20 
gives (cll + 1)/ (n (+n2 + n + i)) = 0.504(n2t)-1/2 which can also be expressed as 

Now we consider whether this power law behaviour extends over the whole range 
l / n 2  << t << n2, thereby giving the required matching between the short and long time 
regimes. To determine this, simulations are required up to times 0.01 n2, since beyond 
0.01 n2 we know there is a simple exponential decay, not a power law decay. As in the 
previous section the amount of computation required becomes prohibitive for large 
n, and we have only considered values between n = 4 and n = 12. 

The results of the simulations on intermediate time scales are shown in figure 6. 
The -; power law line appears to be an asymptote for the data around the time 
t = 0.1, with the data points falling below the line for earlier or later times. The 
best fit for the asymptote is (a,, + l)/n2 = 0.177t-1/2 as opposed to 0.173t-1'2 in 
figure 5. For larger n the data points stay close to the asymptotic line for longer time 
periods, with the n = 12 data laying close to the line for about one decade of the 
decay. Presumably yet higher n values would stay close to the line for several decades 
of the decay, and it would be instructive io perform more simulations with higher n. 
As stated above such simulations should be performed out to times t = 0.01 n2, since 

( 6 1 1  + l)/d = 0.173 t-1'2, 
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FIGURE 5. The short time scale data of figure 3 replotted on log-log axes. The number of links was 
n = 100 0, II = 50 +, n = 40 m, n = 20 x and n = 16 A, with 1000 realizations in each case. For 
n2t greater than about 2, the data fall on a straight line with slope roughly -f .  A fit for n = 100 
on 2 d n2t d 20 gives (all + 1)/ ( n  ( i n 2  + n + i)) it: 0.504(n2t)-1’2, which can also be expressed as 
(all + l) /n2 it: 0.173 tr’’’ (dashed). 

for later times the simple exponential decay of the previous section would replace 
the power law. It may be possible to circumvent the requirement for O(n5) numerical 
operations in the simulations ($1.5) by increasing the step size once the rapid short 
time stress decay is complete. Nonetheless the number of operations cannot be less 
than O(n3). It is clearly nonsensical to have Brownian displacements during a time 
step exceeding the lengths of the links, so 6t must always be small compared to unity. 
Hence to reach O(n2) times we need O(n2) steps, with O(n) operations per step. In the 
next section we present a theory which explains the O(n2tP1l2) stresses observed here. 

17. Intermediate time scales: an explanation 
We saw in $12 that when tensions limit the free sideways diffusion of the beads, 

the stress in the bead-rod chain starts to relax. In this section we extend this idea 
of tension-limited sideways bead motion to cover the intermediate time scale regime. 
Dimensional arguments will predict O(n2t-’/2) stresses on O( 1) time scales, as observed 
numerically in the previous section. 

We start our analysis by considering an artificial physical system in which n + 1 
beads are permitted to diffuse only in the 2,3 plane, subject to tensions held constant 
in time. We let z i  denote the displacement in the 2,3 plane of bead i and zi denote the 
ith tension. All the zi are assumed to be positive. The (deterministic) forces arising 
from the tensions are taken as z i+ l (~ i+l  - zi) + q(zi-1 - z i )  and initially all the zi  are 
assumed to vanish. We also define the stress in the system (denoted 6 1 1 )  to be the 
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FIGURE 6. Relaxation of (all + l) /nz on intermediate time scales plotted on log-log axes. The number 
of links was n = 12 A, n = 10 e, n = 8 f, n = 6 LI and n = 4 x. A total of 1000 realizations 
were performed for each n. The data appear to asymptote to a line of slope -$. For larger n the 
data points stay close to the asymptotic line for longer time periods. The best fit line for n = 12 on 
2/n2 Q t d 0.01 n2 is (all + l) /n2 = 0.177 t-'/2 (long dashes). This lies very close to the best fit line 
from figure 5, which was deduced using data for n = 100 up to t = 0.002, and which was found to 
be (all + l) /nz - 0.173 t-'l2 (short dashes). 

sum of the T ~ .  For convenience we shall refer to this model as the 'sideways motion' 
model. We emphasize that this artificial system is not intended to represent a relaxing 
polymer chain, since it only involves bead motion in two sideways directions, not 
in the longitudinal dimension. However, under certain conditions to be specified, the 
model can represent the sideways component of the bead motion in a bead-rod chain. 

Hinch (1976a, b) has described a continuum theory for the sideways deviations of 
a flexible thread subject to Brownian motion and tension forces. This theory can be 
readily adapted to describe the discrete set of beads currently under consideration, 
and the equations obtained are essentially the same as for the continuum approach. 
The expected value of z i  - z j  evolves according to 

Letting Zi = z i  - zi-l this can be manipulated to give 
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For t -+ cc there is a steady solution (Zi * Zj> = 2dij /r j  corresponding to a 
probability distribution exp (- EL1 ;zjZi * Z i ) .  The argument of this exponential 
represents the work which must be done against tension forces to separate each pair 
of beads i and i - 1 by Zi. Thus the equilibrium probability distribution may be 
considered to be a Maxwell-Boltzrnann distribution. 

We estimate the time for the equilibrium probability distribution to be attained as 
follows. If the zi are uniform along the chain (with some value z say), we can show 
that the Rouse modes for the (Zi - Z j )  evolve independently. The weighting of the 
kth mode approaches equilibrium at a rate ST sin2(kn/2(n + 1)). Thus equilibrium is 
attained for each mode at a time O ( ~ / T  sin2(kn/2(n + l))), or roughly l / z  for short 
wavelength modes, and 4n2/n'z for the longest wavelength mode. 

Thus far we have been considering tensions T~ which are constant in time. If we 
allow time-varying (but still deterministic) tensions zi( t )  then the above equations 
for the evolution of ( z ;  * z j )  and (Zi * Zj }  are still valid, but will have no steady 
solution. Nonetheless if the tensions are evolving slowly enough there may be a 
quasi-steady solution (Zi * Z j )  = 26i j /~ i ( t )  corresponding to a probability distribution 
exp (- ELl +rj(t)zi - zj). 

Recall ($10, $12) that in the bead-rod model when the chain was nearly straight 
the expected value of the link tensions zy satisfied 

with Kramers matrix A,, defined in $9 and with summation over j .  
We derived this equation earlier, but then simplified it further by assuming the 

beads were diffusing freely sideways. However in the present section we treat the case 
when the beads are not diffusing freely sideways, but rather their motion is limited 
by the tensions. 

Suppose that we now choose the z,(t) in the above evolution equation for (ZL '2,) 
to equal these (T?)  from the bead-rod model. Eliminating d(Z, - Z,)/dt between the 
two sets of equations gives a tridiagonal system for the tensions 

We have a set of n2 first-order differential equations plus this tridiagonal system to 
solve. 

This 'sideways motion' model should approximately describe the transverse bead 
motion in the bead-rod case, provided 2, retains magnitude smaller than 1. The stress 
in this model can be defined as 

G = E ( z r > e r e l -  (n + I)(I - elel) - elel, 

and this should also agree with the bead-rod stress at early times. Apart from the 
sum of the tensions, the term -(n + 1)(1- elel) - elel in the above stress formula is 
included to agree with the 'random forcing' part of the bead-rod stress (cf. 39). 

The agreement between the bead-rod model and the sideways motion model will 
probably be better for larger n. This is because the bead-rod 7:" are weighted sums 
over all the dZ, - Z,/dt (cf. $10) and, when there are a large number of terms in the 
sum, the fluctuations in 5:" about the expectation {zr) should be relatively small. 

For present purposes we do not propose to supply detailed numerical solutions of 
the sideways motion model. It is sufficient to provide just an estimate to compare 
with the data from the bead--rod numerical simulations at intermediate time scales. 

I 
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FIGURE 7. Growth of {(z,/2 - Z C M )  * ( z , , ~  - z C M ) )  on intermediate time scales plotted on log-log 
axes. The number of links was n = 12 A ,  n = 10 0, n = 8 +, n = 6 oand n = 4 x. A total of 1000 
realizations were perfonned for each n. The data asymptote to a line of slope k. This t“2 growth 
appears to be centred around t = 0.8, a contrast with the c - ” ~  stress decay in figure 6 which was 
found to be centred around t = 0.1. The best fit line for n = 12 over the range 100/n2 < t < 0.01 n2 
is {(z,/2 -ZCM) - (z,/2 -zch,)) = 0.408 1’’’ (long dashes). If the beads were to diffuse freely sideways 
then ( ( z , ~ ~  - ZCM) * (z,p - ZCM)) would equal 4 t (1 - l / (n  + 1)) or simply 4 t for large n. This line 
is shown on the figure (short dashes). 

Supposing then that a quasi-static solution exists for the sideways motion model we 
have zi = 2 / ( Z j  - Zi). Equating this to {zy) gives 

This is a set of n nonlinear first-order differential equations for the ( Z ,  * 2,). We can 
give order of magnitude estimates for the solutions. The A,, are typically O(n),  except 
near the ends of the chain, so that the (Z ,  - 2,) must be O(tl”/n). The corresponding 
tensions t, are O(nt-1/2). The stress r~~~ is obtained essentially by summing the 
tensions and is thus O(n2t -1 /2) ,  precisely as observed numerically in the simulations of 
the previous section. A continuum analogue of the present model exists and predicts 
a stress 0 . 1 9 ~ ~ t - ’ ’ ~  for the quasi-static regime, in fair agreement with the data of 
figure 6 which gave 0.177n2t-1/2. 

The above analysis gives us information about how rapidly adjacent beads separate 
in the transverse direction, but does not directly tell us how rapidly an individual 
bead moves. Indeed the relationship between ( Z ,  Z , )  and (z, - z , )  depends on the 
typical wavelength of the sideways bead displacements. If this wavelength is O(n) then 
(z, - z,) = n(Z, - Z , )  NU O(L’/~). Figure 7 shows some data in support of the proposed 
quasi-static transverse bead motion. We have plotted the time evolution of the mean 
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square sideways displacement of the central bead in the chain (with the centre of 
mass motion eliminated) ( (z ,~ /~  - z C M )  (z,p - ZC.~)).  Like the stress in figure 6, these 
data also asymptote to a line corresponding to the quasi-static regime. The best fit 
formula for the asymptote is ((zn12 - z C M )  - (z,,/2 - zchl)) w 0.408 t'/2. Unlike the case 
of figure 6,  where the asymptote is centred around t w 0.1, here the quasi-static 
asymptote is centred at t w 0.8. 

The discrepancy in the time required to achieve the asymptote (t w 0.1 us. t = 0.8) 
arises because the actual sideways motion of the beads is a little more complicated 
than the simple order of magnitude estimate suggests. The sideways bead positions are 
determined by summing over many modes, with the wavelengths of the modes ranging 
from 0(1) to O(n). The short wavelength modes become quasi-static at Q(l/n2) times, 
but the long wavelength modes only turn quasi-static much later. The tension may 
well be weighted toward short wavelength modes, whilst ((z,p -ZCM) * (z,p -ZCM)) is 
weighted toward long wavelength modes. Hence the stress 611 displays the quasi-static 
n2t-'/2 decay some time before ((z,,~ - z C ~ )  * (z,/2 - Z C M ) )  exhibits the quasi-static 
t'l2 growth. 

For steady tensions, uniform along the chain with value z we have stated that 
the kth mode reaches equilibrium at time Q( l / z  sin2(kn/2(n + 1))). For unsteady 
tensions, we can expect quasi-static equilibrium when tz(t) sin2(kn/2(n + 1)) > O(1) 
where z(t) is some typical average tension along the chain. Setting z = nt-'!2 implies 
t > O( l /n2  sin4(kn/2(n+ 1))) for quasi-static equilibrium. For short wavelength modes 
this is simply f > O(l/n2), but long wavelength modes will not reach quasi-static 
equilibrium until t = O(n2). 

The sideways motion model is only an accurate description of the bead-rod chain 
if 2, * 2, << 1. According to the quasi-static estimates, this implies t'I2/n << 1, or 
t << n2. We have already seen that for t 3 O(n2) the relaxation is described by a 
simple Rouse-like decay. 

We conclude that, for short wavelength modes, there can be a time interval in which 
both the bead-rod model will be approximated by the sideways motion model, and 
the sideways motion model will evolve quasi-statically. However for longer wavelength 
modes, the sideways motion model will cease to be an accurate description of the 
bead-rod chain, before the quasi-static regime is attained. 

The simulations have been performed ignoring the effects of excluded volume. 
However excluded volume effects will have no influence in the intermediate time 
regime where beads move predominately sideways and the link directors are still 
essentially longitudinal. We can estimate the relative amounts of sideways and lon- 
gitudinal motion via the following argument. The growth rate of the sideways link 
projections in the quasi-static regime is d( (Z, Z,))'i2/dt = O(t-3/4/n1/2), while the 
links shorten longitudinally at rates roughly d(2 ,  - Z,)/dt = O(t-'/2/n). The lon- 
gitudinal rate begins to exceed the sideways rate at O(n2) times. Thus the onset of 
the simple Rouse-like decay at t = O(n2) corresponds to a change from a primarily 
sideways bead motion to one that is primarily longitudinal, as described in $13, 

In summary, the stress evolution of the bead-rod chain on intermediate time 
scales O(l/n2) < t < O(n2) is governed at least approximately by a quasi-static 
balance between link tensions and bead diffusion. This predicts that the mean-square 
sideways bead displacement will grow like t'/2 (not like t as in free sideways diffusion), 
and the stress 611 is O(n2tr1l2) as observed in our data. 
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18. Conclusions 
Computer simulations are a useful tool for investigating the influence of Brownian 

motion on polymer chain rheology. The bead-rod model for the chain is especially 
suited to numerical simulations, since it does not attempt to resolve very rapid 
(but rheologically uninteresting) processes, such as oscillations in the length of the 
individual links in the chain. This permits the use of a larger numerical time step, 
allowing the simulations to focus on the less rapid configurational changes of the 
entire chain, which have most bearing on polymer rheology. 

Care must be exercised when performing the bead-rod simulations. A midpoint 
stepping scheme must be used to give the correct bead drifts, and additionally a 
pseudopotential must be added to account for the difference between the bead-rod 
statistics and bead-spring statistics, the latter being physically correct for real polymer 
chains. If the bead positions are to be described by Cartesian coordinates subject to 
constraints, then we must also ensure that random forces chosen by the simulations 
act only in certain directions determined by the constraints. When all these factors 
are taken into account, both the bead-rod model and the bead-spring model (with 
stiff Fraenkel springs) are found to exhibit the same stress relaxation, except for a 
very brief initial period associated with equilibration of the spring link lengths. 

When calculating the stress contribution of a chain numerically, it is best to use a 
stress algorithm which eliminates any fluctuating terms of large magnitude known to 
have vanishing expectation value. This improves the quality of the statistics for the 
stress. 

We have presented results showing the stress calculated as a function of time for a 
bead-rod chain, where the number of links, denoted n, ranges up to 100. The chain is 
initially stretched exactly straight, and then its configuration is allowed to relax due 
to Brownian motion. Physically this would correspond to stretching the chain by a 
strong flow and then switching off the flow allowing the chain to coil. Tensions appear 
in the links initially in order to maintain rod inextensibility as the beads diffuse freely 
sideways, and summing over these tensions gives the stres:. The initial contribution to 
the bulk stress from each chain due to the tensions is kT x n ( i n 2  + n + i), roughly 
k f  x i n 3  for large n. This contrasts with the entropic spring model, which would 
have an infinite stress for a completely aligned chain. 

During the bead-rod chain relaxation, once the free sideways bead motion is 
arrested, the tensions maintaining rod inextensibility are also permitted to decrease. 
Initially an O ( k f / p f 2  x n2) relaxation rate for the stress is expected and indeed from 
the simulations the fastest relaxation rate is kT/c12  x 2.1 n2 or in dimensionless units 
just 2.1 n2. At long times, the stress has a Rouse-like simple exponential decay with 
an O ( k T / j 1 2  x 1/n2) decay rate (for large n). However the actual rate for large n 
appears in dimensionless units to be 70/n2, compared with 6 z 2 / n 2  in the Rouse 
model. At intermediate times there is evidence for a t-1/2 power law decay in time, 
which would match the short and long time regimes. The stress is found to be 
0.177kF x n2 x (k??/[?2)-1/2 for times O(pT2/k? x l / n 2 )  < ? < O(ti’/k? x n2), giving 
in dimensionless units an 0.177 n2t-‘/2 stress for times between O( l / n 2 )  and O(n2). This 
power law stress decay corresponds to a regime where tension forces quasi-statically 
balance the sideways diffusive forces on the beads in the chain. 

Clearly during the relaxation there is a large relative change in dimensionless decay 
rates from O(n2) (early times) to O ( l / n 2 )  (late times), and this limits the size of n in 
the simulations. Numerical time steps must be chosen smaller than O(l/n2) so as to 
see the rapid initial stress decay, whilst the simulation must proceed to O(n2) times if 
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we wish to see the final stress decay. At present only O(n) arithmetic operations are 
required at each time step, so overall the amount of computation grows like O(n5). 
Bear in mind however that these O(n5) operations must be performed for each of 
many realizations. In practice the full stress relaxation can only be simulated for fairly 
small n. Nonetheless it may be possible to reduce the number of time steps required 
by taking larger steps as the tensions decay, especially as we have now determined 
the power law behaviour by which this decay proceeds. Moreover it may be only 
worthwhile to simulate up to the point where the Rouse-like decay begins, since the 
chain behaviour is presumably well understood thereafter. 

The simulations we have performed represent modest progress toward the goal of 
producing constitutive relations for polymeric solutions. Our aim has becn to extract 
key features of chain physics which may have a bearing on a constitutive model. 
One feature we have discovered for instance is that for short and intermediate time 
scales the bead motion is predominately sideways. Moreover an initially free sideways 
bead motion (short times) gives way to a quasi-static regime (intermediate times). The 
‘sideways motion’ model, formulated in this paper may well reward further study. 

By no means have we exhausted the scope for performing numerical simulations 
with the bead-rod model. In future we hope to perform numerical simulations for 
a bead-rod chain in an applied flow field. A host of relevant questions arise. How 
rapidly does the chain reach equilibrium? What is the stress in the equilibrium state? 
What differences in chain behaviour do we see in extensional flow as opposed to 
shear flow? 

Hydrodynamic interactions have been ignored in the stress relaxation results we 
have presented. Incorporating these would involve considerably more computational 
effort at each time step, both in choosing random forces acting only in allowed 
directions, and in calculating the tensions required to maintain inextensibility. For 
the early part of the relaxation, when the chain is nearly straight, the effect of 
hydrodynamic interactions can be estimated by considering slender body theory 
(Hinch 1976b). The most important slender body effect is that the friction of the 
straight chain is reduced by an O(1og n) factor, leading to a more rapid relaxation. At 
long times hydrodynamic interactions would reduce the friction of the chain by an 
O(n”’) factor, meaning the long time decay rates would scale like O(l/n3/2), instead 
of O(l/n2), giving Zimm rather than Rouse relaxation rates (de Gennes 1990). 
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the form of a Hackett Studentship. Computing facilities were provided by the SERC 
‘Computational Science Initiative’ Grant GR/H57585, and an additional grant from 
the ‘DTI LINK programme on Colloids’. P. Grassia also acknowledges partial support 
from CCE Contract CI*-CT91-0947 awarded by CONICYT, Chile. 

Appendix 
In $6 we introduced the pseudopotential forces needed to convert thc statistics of 

a bead-rod chain to the physically correct statistics of a bead-spring chain. In this 
appendix we shall describe, for a chain of n links, how to calculate the pscudopotential 
forces on all the beads in O(n) numerical operations. It is computationally important 
to be able to do this, since (without pseudopotential forces) there are O(n)  numerical 
operations per time step and we do not want the introduction of pseudopotentials to 
vastly increase the computational expense. 

The key to efficient computation of pseudopotential forces is as follows. For each 
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bead i, at location X i ,  we must extract those terms from the pseudopotential which 
depend on Xi. When we take gradients of the pseudopotential to obtain the forces, 
the Vi operators will only act on the Xi terms we have extracted, giving relatively 
simple expressions for the forces. 

We recall the notation introduced in $2 in which Xi is the location of bead i, 
0 6 i 6 n, and adjacent vectors are joined by Di = X i  - Xi-l, 1 < i < n. We define the 
link length I ;  = (Di.Di)1/2, and the unit vector directed along link i, di = Di/(Di-Di)1/2, 
observing that Di = lidi. We impose the constraint that Ei = 1 for 1 < i < n. 

The pseudo otential (Fixman 1974; Hinch 1994) for the freely jointed bead-rod 
chain is log ,I“ det where det is the determinant of an n x n tridiagonal matrix whose 
non-zero elements in the ith row are -di - di-l, 2 and -di * di+l. 

We define det<i to be the determinant of the submatrix formed by rows and columns 
1 to i - 1 of the n x n matrix. Similarly we define det,i to be the determinant of the 
submatrix formed by taking rows and columns i + 1 to n of the n x n matrix. 

Note that det,l = 1 and det,2 = 2, with remaining det,i given by a recurrence 
relation (Fixman 1974) 

det,i+l = 2 detei - (di-l d J 2  det,i-l. (A 1) 

Similarly detzn = 1 and det>,-l = 2. The remaining detzi for i ranging from n - 2 
down to 0 are given by the recurrence relation 

detzi = 2 det,j+l - (di+l dj+2)2 det,i+2. (A 2) 

Clearly, using these recurrence relations, the entire set of det,i and det,i can be 
obtained in O(n) arithmetic operations. Note that det>,-, = deto+l and that these are 
just the determinant of the full n x n matrix, which we denote simply as det. 

The recurrence relation (Al) above is useful for calculating the pseudopotential 
force on bead n, if we set i = n. Note that det<,-l and det,, are both independent of 
X , ,  as is dn-l. Also 

which becomes simply Z - dud, when we impose the constraint I ,  = 1. 
The pseudopotential force on bead n, denoted by F f ,  is -t(V,det)/det. Setting 

i = n in recurrence relation (Al), operating on this with V, and taking account of the 
comments in the above paragraph we deduce 

Similarly recurrence relation (A2) with i = 0 can be used to get the pseudopotential 
force on bead 0, denoted Ff. We use Vodl = - ( I  - d l d l ) ,  and deduce 

However the relations (A1)-(A2) are of less use in determining the pseudopotential 
force for beads not at either end of the chain. It is more useful to consider instead 
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the relation 

det = (4 - ( d ,  6 d , + l ) 2 )  det,,det,,+l 

- 2 ( 4 + l  * d,+2)2 det<,det>z+2(1 - 4 n - 1 )  

- 2 (dL-I - dJ2 det<,-ldet>,+l(l - 611) 

+ ( 4 - 1  - dJ2 (4+1 - dl+2l2 det<,-ldef>i+2(1 - 6,1)(1 - 4 n - l L  (A 3 )  

an expression which applies for any bead i in the interior of the chain ( i  = 1,. . . , n- 1). 
This is a very convenient expression because det<,-l, det<,, det>,,+l and debl+2 

are all independent of Xi, so V, acting upon them gives zero. Thus to calculate the 
pseudopotential force on bead i, Fp” = - i (V,  det)/ det, we only need to consider V, 
acting upon the remaining terms of (A3), - d,, d ,  * d,+l and d,+l - dr+2. Therefore 
FY can be obtained in a straightforward but tedious manner, by repeatedly using the 
results that 

V,di  = Z - d,d,, V,d,+l = -(Z - d,+ld,+l), V,d,-l = V,d,+2 = 0. 

We shall omit here the actual formula for FY which contains about a dozen terms. 
If det,o to det,, and deLl to detintl have already been found, then finding each 

V, det (and hence Ff’ )  only involves O(1) further operations. Thus there are O(n) 
operations required to find the entire set FY through Ff- ,  via the expressions in 
(A3). 
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