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This paper addresses the cross-stream migration of rigid rods undergoing diffusion
and advection in parabolic flow between flat plates – a simple model of a polymer
that possesses internal (rotational) degrees of freedom for which the probability
distribution depends upon the local shear rate. Unequivocal results on the observable
concentration profiles across the channel are obtained from a finite-difference solution
of the full Fokker–Planck equation in the space of lateral position y and azimuthal
angle φ, the polar angle θ being constrained to π/2 for simplicity. Steric confinement
and hydrodynamic wall effects, operative within thin boundary layers, are neglected.
These calculations indicate that rods should migrate toward the walls. For widely
separated rotational and translational timescales asymptotic analysis gives effective
transport coefficients for this migration. Based upon angular distributions at arbitrary
rotational Péclet number – obtained here by a least-squares collocation method using
trigonometric basis functions – accumulation at the walls is confirmed quantitatively
by the effective transport coefficients. The results are extended to free rotation using
spherical harmonics as the basis functions in the (φ, θ) orientation space. Finally, a
critique is given of the traditional thermodynamic arguments for polymer migration
as they would apply to purely rotational internal degrees of freedom.

1. Introduction
Except for deliberately contrived viscometric equipment, flows confined by walls are

inhomogeneous in almost every natural or processing environment, i.e. they involve
spatial gradients in shear. Dissolved polymers are observed to undergo cross-stream
migration in inhomogeneous flow fields, thereby creating spatial gradients in rhe-
ological and other transport properties that can have important consequences in
practical applications. In particular, slip flow has been explained by depleted layers
at walls. The recent reviews by Jhon, Sekhon & Armstrong (1987), Larson (1992) and
Agarwal, Dutta & Mashelkar (1994) discuss these aspects in relation to experimental
investigations and to various theories that have been advanced for basic mechanistic
understanding and more quantitative predictions.

The traditional mechanistic view is that polymers should tend to migrate toward
regions of the flow where their conformational state is least restricted. Thus, shear
deformation is expected to cause migration toward low shear, and steric confinement
to cause migration away from walls (Bhave, Armstrong & Brown 1991). This paper
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analyses the former effect. Except for the case of channels or pores of macromolecular
dimensions, steric effects represent only a correction for the concentration field in a
boundary layer, which we neglect here. (Of course, any resultant slip effects would
have a global effect on the flow field.)

The above argument is most directly and appealingly phrased in thermodynamic
terms, whereby polymers become less elongated and thus maximize their entropy
by migrating toward low shear – e.g. toward the centreline in rectilinear tube flow.
Calculations along these lines require an entropic potential written as a function of
shear rate and/or other local properties of the flow (Marrucci 1972; Tirrell & Malone
1977; Cohen & Metzner 1982). In the elastic dumbbell model, the entropic opposition
to uncoiling and stretching of many ‘links’ in a polymer chain is replaced with an
enthalpic term: the potential energy of the spring (Marrucci 1972).

Thermodynamic reasoning cannot readily explain, however, why polymers migrate
toward the concave side of curved streamlines, for which the prototypical experiment
involves rotational Couette flow between concentric cylinders or cones (migration
towards higher shear in the former case). A simple mechanical explanation hinges on
misalignment between suspended dumbbells and the local streamlines, which can arise
deterministically from Jeffery-orbit tumbling in the local shear field (Brunn 1983) or
stochastically from Brownian motion. In this connection we cite relevant discussions
in Sekhon, Armstrong & Jhon (1982), Brunn (1983) and Agarwal et al. (1994), which
include the works of Shafer, Laiken & Zimm (1974), Bird (1979), Aubert & Tirrell
(1980), and Aubert, Prager & Tirrell (1980). With very few exceptions (see e.g. Brunn
& Chi 1984), most of the relevant kinetic theory, whether applied to rectilinear or
curvilinear flows, has neglected the tumbling effect.

These are just two mechanistic pictures of polymer migration, which are mentioned
here by way of illustrating that there is much discord – even as to the operative
mechanism or direction of migration – between the various theories (Agarwal et al.
1994). A direct comparison between different approaches is muddled by the specific
details of the polymer model in each case. There is an inherent paradox in the basic
premise of stylized micromechanical theory that the macroscopic results should, in
order to be valuable, transcend at least some of the details of the specific model
used. What creates particular difficulty for bead–spring or bead–rod idealizations of
polymers is that the approximations required to bring a particular theory of migra-
tion to fruition (e.g. neglect, truncation or preaveraging of bead-bead hydrodynamic
interactions) can bear significantly on the final results. For rectilinear flows, kinetic
theory predicts no lateral migration for a freely–draining dumbbell (Aubert & Tir-
rell 1980); but hydrodynamic interactions between the beads (or other sources of
hydrodynamic anisotropy, such as concentration effects) do lead to lateral migration
(Sekhon et al. 1982; Brunn & Chi 1984 and Brunn & Kaloni 1985). In fact, Brunn
& Chi (1984) conclude from an unexpected accumulation at the walls that the more
rigorous approach of not preaveraging hydrodynamic interactions must somehow
be incorrect, because it disagrees with the accepted thermodynamic arguments. For
further discussion of hydrodynamic interactions, see e.g. Larson (1992).

In view of the above observations, we conclude that there is significant value
in attacking the question of cross-stream migration with a model microparticle
that, if very simple, also allows definitive mathematical calculations based upon
unassailable physical assumptions. It is in this spirit that we consider the shear-
induced lateral migration of a Brownian rigid rod (equivalently, a suspension of
non-interacting rods) in parabolic flow between flat plates (figure 1). Rigid rods
represent, in their own right, a useful model of inextensible polymers. Further-
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Figure 1. Diagram of the translational (x, y, z) and orientational (φ, θ) coordinates used to describe
the motion of a rigid rod (prolate spheroid) between flat plates. Here the rod appears greatly
exaggerated in size.

more, the shear-dependent distribution over rotational (‘internal’) degrees of freedom
captures an essential physical analogy with more complex conformational degrees
of freedom of flexible polymer chains. In the face of questions as to the lateral
migration, we regard the Fokker–Planck equation and the resulting steady-state
probability distribution in position-orientation space as the final arbiter. Fortunately,
however, we are able to construct an asymptotic theory for the effective transport
coefficients in a physical-space (i.e. purely translational) advection–diffusion equation,
which predicts an accumulation at the walls, where the shear is highest and the rods
are most strongly aligned against the randomizing influence of Brownian motion.
This result being quite unexpected, we first offer some brief physical arguments
before proceeding with the detailed theory.

From the perspective of kinetic theory the crucial element is position dependence
of the orientation-average lateral diffusivity, which arises from anisotropic hydrody-
namics. The lateral diffusivity decreases as one approaches the wall (higher shear
rate) because the orientational distribution becomes biased toward orientations where
motion across streamlines must overcome the higher broadside resistance coefficient.
The rod is thrown out from the centreline by Brownian fluctuations more strongly
than it is thrown back by the weaker fluctuations near the walls, so migration occurs
toward the walls. (In Brownian dynamics simulations a similarly explained drift effect
can arise; but in that case it is a physically spurious artifact of some algorithms, for
which corrections must be made (Grassia, Hinch & Nitsche 1994).) Some previous
investigations have addressed shear-dependent diffusivity of polymers – mostly in
terms of its modulating effect upon migration. This aspect is reviewed by Agarwal
et al. (1994), including the works of Prakash & Mashelkar (1991, 1992). But that
shear-dependent diffusivity can directly cause lateral migration seems not to have
been recognized before, except by Brunn & Kaloni (1985) and Brunn (1987) in regard
to an encapsulated FENE dumbbell model.

In the studies of Brunn & Kaloni (1985) and Brunn (1987), hydrodynamic
anisotropy and the crucial resultant conformational dependence of the (unrelated)
friction and mobility tensors was attributed to concentration effects – i.e. partial
confinement of each dumbbell within an effective ‘reptation tube’ due to its neigh-
bours. Increased concentrations either near the wall or near the centre were predicted
depending on the choice of parameters. They did not however calculate the migration
velocity, and did not isolate the physical mechanism responsible for the migration.
Their computation of the shear-dependent diffusivity invoked specific assumptions
of preaveraging (which are avoided here with the rigid rod). Finally, in arriving at
the conclusion that concentration should vary inversely with lateral diffusivity, these
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papers seem to gloss over the order of taking derivatives in physical space vs. aver-
ages over conformations. This crucial interchange (multiplicative decomposition of
phase-space probability density into bulk concentration vs. conformational structure)
hinges on a wide separation between translational vs. internal timescales, which will
here be treated systematically using two alternative perturbation arguments.

As we have mentioned above, our study ignores the steric hindrance near the
walls. We also assume that the suspension is dilute so that the velocity profile
remains Poiseuille flow. Recently Schiek & Shaqfeh (1995) have studied a semi-
dilute suspension of slender rigid fibres flowing in a channel which is only a few
fibres wide. They do include the steric hindrance and the change in the velocity
profile, which is complicated by the non-local response of the semi-dilute suspension
where the velocity varies over the length of a fibre. To make progress they make
an expansion in small rotational Péclet number Pe and assume that the particle
aspect ratio is infinite. We on the other hand study the case of arbitrary Péclet
number and aspect ratio. In a sequel, Schiek & Shaqfeh (1997) have calculated the
O(Pe2) correction which does show a shear-induced migration towards the wall. They
compare their results with ours in their figure 6. The influence of walls has been
considered further in two directions by Nitsche & Roy (1996), in the simpler case of
a dilute suspension in homogeneous shear flow: (i) steric wall effects carried through
Pe4 terms for a point–bead dumbbell; (ii) combined hydrodynamic and steric wall
effects carried through Pe2 terms for dumbbells with appreciably sized beads. These
inner behaviours are mentioned because they match smoothly with our simplified
wall condition of vanishing normal derivative in physical space.

2. Fokker–Planck equation in position-orientation space
As a concrete example of lateral migration, we consider prolate spheroids under-

going translational and rotational Brownian motion while being carried along by a
Poiseuille flow between two flat plates; see figure 1. With reference to the distance H
between the plates, cross-sectionally averaged velocity U/6, and rotational diffusivity
Dr , we define an overall rotational Péclet number P = U/(HDr), which refers to the
shear rate U/H at the wall. Written in dimensionless form, the advection–diffusion
equation in position (r) and orientation (q) space for the probability density function
P̃ (r, q, t) is as follows:

∂P̃

∂t
+ ∇ ·

[
Py(1− y)exP̃ − εD(q) · ∇P̃

]
+ ∇Q ·

[
Pγ(y)q̇sP̃ − ∇QP̃

]
= 0, (2.1)

with q̇s the rotational velocity in a simple shear flow of unit strength in the absence
of Brownian motion. Here

ε =
(
D‖ + 2D⊥

)
/
(
3DrH

2
)
, (2.2)

where D‖ and D⊥ are the longitudinal and transverse translational diffusivities. Thus,
ε = O(`2/H2), where ` denotes the size of the particles; see Rallison & Leal (1981).
The reduced, orientation-dependent translational diffusivity D(q) will be written
explicitly later. The quantity Γ (y) = Pγ(y) plays the role of local rotational Péclet
number, which varies linearly between the two walls,

γ(y) = 1− 2y. (2.3)

Note that Γ (0) = −Γ (1) = P.
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Integrating (2.1) over x and z gives an equation for the projected probability density
function P (y, q),

P (y, q) =

∫ ∞
−∞

∫ ∞
−∞
P̃ (x, y, z, q) dz dx. (2.4)

Thus we find

∂P

∂t
− εDyy(q)

∂2P

∂y2
+ L{Pγ(y)}P = 0, (2.5)

where we have used the shorthand notation

L{Γ }P = ∇Q · [Γ q̇sP − ∇QP ] . (2.6)

Physically most salient are (i) the absence of lateral advection and (ii) the orientational
dependence of the lateral diffusivity. The probability density function is normalized,∫ 1

0

∫
Q
P (y, q) dnq dy = 1, (2.7)

with n (= 1 or 2) the dimension of the orientation space. Avoiding considerations of
steric confinement and hydrodynamic wall effects (Nitsche & Brenner 1990; Nitsche
& Roy 1996; Schiek & Shaqfeh 1995, 1997), we simply stipulate no flux of particle
centres through the boundaries y = 0, 1, irrespective of orientation q (Stasiak &
Cohen 1983):

∂P

∂y
(0, q) =

∂P

∂y
(1, q) = 0. (2.8)

The resulting probability density function will err at a dimensionless distance of
O(`/H) = O(ε1/2) from the walls. Equation (2.8) may be viewed as an ad hoc
approximation, but it seems also to represent a leading-order asymptotic match to the
rigorous inner solutions, at least to the order in Péclet number considered by Nitsche
& Roy (1996).

The terms describing rotational advection and diffusion are now written explicitly
in terms of the Euler angles θ and φ (figure 1),

qx = sin θ sinφ, qy = sin θ cosφ, qz = cos θ. (2.9)

We consider two cases:
Constrained. Axis vector q is confined to the (x, y)-plane. Rotation involves φ only,

with θ = π/2.
Free. Axis vector q can move over the whole unit sphere, involving both φ and θ.

The rotational operator, (2.6), becomes

L{Γ }P = Γ
∂

∂φ

[
φ̇s(φ)P

]
− ∂2P

∂φ2
Constrained, (2.10)

= Γ

{
∂

∂φ

[
φ̇sP

]
+

1

sin θ

∂

∂θ

[
θ̇s sin θP

]}
− 1

sin2 θ

∂2P

∂φ2
− 1

sin θ

∂

∂θ

[
sin θ

∂P

∂θ

]
Free. (2.11)

As given by Leal & Hinch (1971), the rotational advective velocities are

φ̇s(φ) = 1
2

[1 + β cos(2φ)] , (2.12)

θ̇s(φ, θ) = 1
4
β sin(2φ) sin(2θ). (2.13)
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Axis Rotation Diffusive
ratio parameter anisotropy
a/b β α

10 0.98020 0.25588
20 0.99501 0.29818
50 0.99920 0.33748

100 0.99980 0.35854
∞ 1.0 0.5

Table 1. Hydrodynamic coefficients for prolate spheroids
(cf. Rallison & Leal 1981; Happel & Brenner 1983 §5–11).

The reduced translational diffusivity is

Dyy(φ) =
(
1 + 1

4
α
)

+ 3
4
α cos(2φ) Constrained, (2.14)

Dyy(φ, θ) = 1 − 1
2
αP2(cos θ) + 1

4
αP 2

2 (cos θ) cos(2φ) Free. (2.15)

Spherical harmonics are used in the latter case in anticipation of the numerical scheme
to be used in §7. Values of the rotation parameter β and diffusive anisotropy α appear
in table 1 for several axis ratios of a prolate spheroid. All calculations in this paper
pertain to the axis ratio 100.

3. Direct numerical solution for the constrained case
In order to obtain the equilibrium probability density function P (y, φ; ε), equations

(2.5), (2.8) and (2.10) were solved by finite differences, using an evenly spaced
discretization of 100 intervals in each direction for the position-orientation domain
0 6 y 6 1, 0 6 φ 6 π, and Euler stepping in time. Owing to the π-periodicity of
the coefficients in (2.12) and (2.14), the angular interval π < φ < 2π is redundant.
A conservative finite-difference formulation prevented numerical drift away from the
overall normalization condition (2.7). Calculations were carried out at P = 10 for
seven values of the ratio of translational to rotational diffusivities: ε = 0.04, 0.02, 0.01,
0.005, 0.0025, 0.00125, 0.000625. Each run started with a uniform initial distribution
P ≡ (2π)−1 and proceeded (stably) in time steps of δt = 0.0001 until the steady state
was reached. For ε = 0.04 it was sufficient to carry the time integration through
to t = 10; each decrease in ε was accompanied by a proportional increase in the
integration time to allow equilibration in y. The terminal time derivative at any node
point did not exceed 3× 10−9. An angular integration (by evenly weighted ‘rectangle
rule’, which is exponentially accurate for periodic, analytic functions) then gave the
observable probability density (or concentration) profile across the flow channel:

P̄ (y; ε) = 2

∫ π

0

P (y, φ; ε) dφ. (3.1)

Examples of P (y, φ; ε) and P̄ (y; ε) appear in figures 2 and 3, respectively.
In figure 2 the angular distribution P (y, φ; 0.04) at fixed y is fairly uniform at the

centreline (y = 0.5), where the shear rate vanishes, and becomes increasingly biased
approaching the walls, exhibiting the expected central symmetry.

With reference to the singular limit ε → 0, we defer a derivation of the leading
outer solution to §4, below, for which the first correction will be seen to appear at
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Figure 2. Steady-state probability density function P (y, φ) for constrained rotation of a prolate
spheroid (axis ratio 100) with P = 10 and ε = 0.04.

Figure 3. Steady-state angle-averaged probability density functions P̄ (y) for P = 10: ————,
ε = 0.04; , ε = 0.02; , ε = 0.01; , ε = 0.005; , ε = 0.0025.

O(ε). Owing to the simplified boundary condition (2.8), the orientationally integrated
lateral distribution P̄ (y; ε) must have zero slope at the sides. This is inconsistent with
the requirement of a diffusive counterflux to balance the migration velocity, which is
largest at the wall. Thus, we expect to find a boundary layer of O(ε1/2) characteristic
thickness, whose role is to adjust the gradient. For example, in terms of the scaled
lateral coordinate η = (1− y)ε−1/2 near the wall y = 1 we have the inner problem,

Dyy(q)
∂2P

∂η2
+ L{P}P − ε1/22Pη∇Q · [q̇sP ] = 0.

The leading outer solution (to be calculated in §4) is, in fact, uniformly valid – within
terms of O(ε1/2) as dictated by the inner expansions.

Although the O(ε1/2) scaling of the boundary-layer thickness is difficult to ascertain
directly from figure 3, we can confirm it indirectly using figure 4, which shows the
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Figure 4. Extrapolation as ε → 0 of the numerical solution from §2 to the effective-coefficient
theory from §4, for the case P = 10: (a) y = 0; (b)©, y = 0.1; 2, y = 0.2; 4, y = 0.3; 3, y = 0.5;
(c) y = 0.4.

numerical extrapolation of P̄ (y; ε) as ε→ 0 for six fixed values of y. That corrections
to the leading-order solution should scale like ε1/2 within the boundary layer is
confirmed, at least approximately, from the extrapolation right at the wall (y = 0,
figure 4a). One does observe some deviation from the expected slope 1/2; at the
smallest values of ε this may be due to the fact that the boundary layers are no longer
much thicker than the (fixed) step size. The ε scaling of the correction in the outer
region is best exhibited at y = 0.2, 0.3, 0.5 in figure 4(b). At y = 0.4 (roughly where
the curves for different values of ε fan out approaching the centreline in figure 3) the
scaling at the larger values of ε plotted in figure 4(c) appears muddled. We also note
that at ε = 0.04 the boundary layers are not much thinner than the channel, so that
at least some of our interior sampling points used to illustrate the outer extrapolation
fail to start out lying ‘safely’ outside the boundary layers.

The profile P̄ (y; ε) levels off – by an O(ε1/2) amount within an O(ε1/2) distance
from the wall – rather than continuing to increase approaching the wall. Thus there
is O(ε) less accumulation of probability near the walls, which – by normalization – is
balanced by O(ε) greater probability in between, in the outer region.

The above remarks are offered by way of checking the numerical solution against
the expected scalings. Physically, however, it is of no particular importance to resolve
the boundary layers at the walls, because both steric and hydrodynamic wall effects
have been discarded at the outset.
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4. Effective transport theory for the steady-state distribution
Away from the boundary layers, the singular limit ε→ 0 represents a two-timescale

problem, with fast rotational diffusion and slow translational diffusion (Rallison &
Leal 1981). Before proceeding with such an analysis (§5), we shall first consider what
is equivalent with regard to the steady-state version of (2.5): a regular perturbation
expansion in ε, which is applicable away from the walls,

P (y, q; ε) = P0(y, q) + εP1(y, q) + . . . . (4.1)

At zeroth order one finds

L{Pγ(y)}P0 = 0. (4.2)

The most general solution is

P0(y, q) = ge[q;Pγ(y)]c(y), (4.3)

where c(y) is the net concentration in physical space (corresponding to limε→0 P̄ (y; ε)
in §3) and ge(q;Γ ) represents the orientation structure (conditional probability given
the concentration) as determined by the boundary-value problem

L{Γ }ge(q;Γ ) = 0, 〈ge(q;Γ )〉Q
def
=

∫
Q
ge(q;Γ ) dnq = 1. (4.4)

Here n denotes the dimension of the orientation space Q: the cases n = 1 vs. n = 2
apply to constrained vs. free rotation, respectively. Averaged over the orientation
space, the first-order equation is

〈L{Pγ(y)}P1〉Q +
∂

∂y

{[
−〈Dyy(q)geΓ [q;Pγ(y)]〉Q P

dγ

dy

]
c(y)

− 〈Dyy(q)ge[q;Pγ(y)]〉Q
∂c

∂y

}
= 0, (4.5)

where geΓ
def
=∂ge/∂Γ . The first term vanishes by the divergence theorem, leaving a

steady-state advection–diffusion equation written in the transverse coordinate y. One
can then read off expressions for the effective migration velocity and diffusivity; these
coefficients depend parametrically upon the local (Γ ) and global (P) rotational Péclet
numbers:

D̄t(Γ ) = 〈Dyy(q)ge(q;Γ )〉Q , (4.6)

V̄ (Γ ,P) = 2P〈Dyy(q)geΓ (q;Γ )〉Q = 2PV̄0(Γ ), (4.7)

with V̄0 a reduced migration velocity. (Note that D̄t(Γ ) > 0 is an even function,
whereas V̄0(Γ ) is an odd function that is positive when Γ < 0 (top half of the
channel).) In terms of these quantities we define a local Péclet number for lateral
migration, 2PV̄0(Γ )/D̄t(Γ ), which applies for −P 6 Γ 6 P.

The derivative with respect to Γ can be taken outside the integral over orientations
in (4.7), whereupon V̄0 = dD̄t/dΓ . Using this fact upon integrating (4.5) one finds

d ln{P̄ (y;P)}
dy

= 2P V̄0[P(1− 2y)]

D̄t[P(1− 2y)]
= 2Pd{ln D̄[P(1− 2y)]}

d[P(1− 2y)]

= −d{ln D̄[P(1− 2y)]}
dy

, (4.8)
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whence

P̄ (y;P) =

{∫ 1

0

dy′

D̄[P(1− 2y′)]

}−1
1

D̄[P(1− 2y)]
. (4.9)

It is the multiplicative decomposition (4.3) – see also (5.6) below – that allows us to
take the derivative with respect to Γ outside the orientational integral. This crucial
step hinges on a wide separation between translational and internal timescales, and
was glossed over by Brunn & Kaloni (1985) in arriving at the equivalent final result
in connection with an encapsulated dumbbell model; see also Brunn (1987).

With regard to the integrand in (4.7) we note that differentiating (4.4) with respect
to Γ gives an inhomogeneous differential equation for geΓ (q;Γ ):

L{Γ }geΓ (q;Γ ) = −∇Q · [Pq̇s ge(q;Γ )] , 〈geΓ (q;Γ )〉Q = 0. (4.10)

It is important to observe that lateral drift is a consequence of anisotropic mobility
of the rod – in particular, the orientational dependence of the lateral diffusivity Dyy(q).
If Dyy were simply constant, then it could be moved outside the orientational integral
in (4.7), and V̄0 would then vanish due to (4.10). In physical terms, slower lateral
diffusion in more strongly aligned orientations leads to an accumulation of particles
in such locations.

5. A two-timescale analysis
A separation of rotational vs. translational timescales was implicit in the regular

perturbation scheme applied in §4 to the steady-state Fokker–Planck equation. This
feature can be utilized explicitly in a two-timescale analysis of the parabolic equation
(2.5); cf. Rallison & Leal (1981). Defining the fast (rotational) and slow (translational)
time variables

τ = t, T = εt;
∂

∂t
=

∂

∂τ
+ ε

∂

∂T
, (5.1)

we write the two-scale expansion

P (y, q, t) = P0(y, q, τ, T ) + εP1(y, q, τ, T ) + ε2P2(y, q, τ, T ) + . . . . (5.2)

Substituting the above two formulas into the Fokker–Planck equation (2.5) gives the
following hierarchy of equations:

∂P0

∂τ
+ L{Pγ(y)}P0 = 0, (5.3)

∂P1

∂τ
+ L{Pγ(y)}P1 = −∂P0

∂T
+

∂

∂y

[
Dyy(q)

∂P0

∂y

]
, etc., (5.4)

together with the normalization conditions∫ 1

0

〈P0(y, q, τ, T )〉Q dy = 1,

∫ 1

0

〈Pi(y, q, τ, T )〉Q dy = 0 (i > 1). (5.5)

Now, the most general solution at zeroth order is

P0(y, q, τ, T ) = c(y, T )g[q, τ;Pγ(y)], (5.6)

where the orientational distribution function g(q, τ;Γ ) depends parametrically on the
shear rate Γ as given by the orientation-space advection–diffusion equation

∂g

∂τ
+ L{Γ }g = 0, 〈g(q, τ;Γ )〉Q = 1. (5.7)
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With this orientational normalization, c(y, T ) represents the observable (physical
space) concentration. Inserting the form (5.6) into the first-order equation (5.4) and
averaging over orientations gives

∂

∂τ
〈P1〉Q = − ∂c

∂T
+

∂

∂y

{〈
Dyy(q)

∂g

∂Γ

〉
Q
Pdγ

dy
c + 〈Dyy(q)g〉Q

∂c

∂y

}
. (5.8)

At long times compared to the rotational timescale we observe with reference to (4.4)
and (4.10) that

g(q, τ;Pγ) → ge(q;Pγ), ∂g

∂Γ
(q, τ;Pγ) → geΓ (q;Pγ) as τ→∞. (5.9)

The secular behaviour we must avoid in (5.8) is linear growth in τ. Thus we must
require that

∂c

∂T
+

∂

∂y

{
V̄0[Pγ(y)]

(
−Pdγ

dy

)
c − D̄t[Pγ(y)]

∂c

∂y

}
= 0, (5.10)

which is a Fokker–Planck equation written in lateral position y and the long (trans-
lational) timescale T using precisely the effective coefficients from (4.6) and (4.7).

6. Effective coefficients for constrained rotation
The periodic boundary-value problem (4.4) – with the operator L given by (2.10)

– was solved by applying a least-squares collocation procedure to determine the
coefficients of a truncated Fourier expansion,

ge(φ;Γ ) ≈ (2π)−1 +

M∑
m=1

[Am(Γ ) cos(2mφ) + Bm(Γ ) sin(2mφ)] . (6.1)

Restricted as indicated earlier to the interval 0 6 φ 6 π, the differential equation was
imposed at sufficiently many evenly spaced points,

φi = πi/I, i = 1, . . . , I, (6.2)

to yield an overdetermined system of linear equations. The least-squares problem
was solved with a LINPACK QR algorithm (Dongarra et al. 1979). Equal weighting
of the equations at each of the collocation points corresponds to the (exponentially
accurate) rectangle-rule integration of the error criterion

E =

∫ π

0

[
L{Γ }ge(φ;Γ )

]2
dφ. (6.3)

The approximate solution thus obtained was used to evaluate the right-hand side of
(4.10) at the collocation points (6.2). Thereby, the same QR decomposition could be
used to solve for the coefficients of geΓ (φ;Γ ),

geΓ (φ;Γ ) ≈
M∑
m=1

[am(Γ ) cos(2mφ) + bm(Γ ) sin(2mφ)] . (6.4)

Only the back substitution had to carried out anew. Given the form (2.14) of the
reduced translational diffusivity, the integrals (4.6) and (4.7) can be expressed in terms
of the Fourier coefficients:

D̄t = 1 +
(

1
4

+ 3
4
πA1

)
α, V̄0 = 3

4
πa1α. (6.5)
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Figure 5. Equilibrium angular distributions ge(φ;Γ ) and geΓ (φ;Γ ) for constrained rotation at three
values of the rotational Péclet number: ————, Γ = 2; , Γ = 10; , Γ = 50.

Figure 6. Reduced Péclet number for lateral migration |V̄0/D̄
t| plotted against rotational Péclet

number Γ for constrained (————) vs. free ( ) rotation.

Examples of the equilibrium angular distribution functions ge(φ;Γ ) and geΓ (φ;Γ )
are illustrated in figure 5. These were computed with the Fourier series taken to
M = 12, and with I = 120 collocation points. This discretization worked well up to
Γ = 50; round-off errors in the QR calculation seemed to limit further increases in
M (with I = 10M).

The reduced migration Péclet number |V̄0/D̄
t| is plotted against the local rotational

Péclet number Γ in figure 6. With regard to the lateral migration velocity, the
important part of the angular distribution geΓ (φ;Γ ) is the cos(2φ) component, as is
evident from (6.4) and (6.5). For small Γ the dominant mode is sin(2φ); for large
Γ the function geΓ (φ;Γ ) is uniformly small because the angular distribution ge(φ;Γ )
is so strongly aligned with the shear as to become relatively insensitive to further
increases in Γ (figure 5; see Hinch & Leal 1972). This explains why the curve of
reduced migration Péclet number |V̄0/D̄

t| vs. Γ undergoes a maximum in figure 6.
The large-Γ end of the curve can be regarded as a regime of rotational ‘saturation’. In
figure 7 the local Péclet number for lateral migration 2PV̄0/D̄

t is plotted against y for
various values of the overall rotational Péclet number P. Angle-averaged probability
distributions P̄ (y;P), (4.9), are shown in figure 8; they exhibit accumulation at the
walls. This effect requires orientational dependence of the translational diffusivity,
(2.14), in order that variations in the degree of alignment across the channel can drive
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Figure 7. Local Péclet number for lateral migration 2PV̄0/D̄
t plotted against position y between

the walls for three values of the overall rotational Péclet number: ————, P = 2; ,
P = 5; , P = 10. (a) Constrained rotation. (b) Free rotation.

Figure 8. Orientation-averaged probability density function P̄ (y;P) for various values of the
overall rotational Péclet number P. (a) Constrained rotation: ————, P = 1; , P = 2;

, P = 5; , P = 5; . . . . . ., P = 20; · · · · · · · ·, P = 50. (b) Comparison of
constrained vs. free rotation ————, P = 5; , P = 10.

lateral transport. As observed earlier, an orientation-independent diffusivity would
give V̄0 ≡ 0.

At small values of the overall rotational Péclet number P (which coincides with
the local rotational Péclet number Γ at the walls), alignment is weak throughout the
channel, so P̄ (y;P) is nearly uniform. For large P, throughout most of the channel –
except for an O(P−1) band about the centreline – the local rotational Péclet number Γ
is large enough to lie within the saturation regime of figure 6. The degree of alignment
with the shear is then uniformly high, which represents a small driving force for lateral
migration. This type of behaviour is seen already at P = 10 (figure 7), albeit in a
mild form. Only near the centreline, where |V̄0/D̄

t| passes through its maximum as
a function of Γ (figure 6), is lateral migration appreciable. Thus we see why the
probability distributions P̄ (y;P) in figure 8 first become more non-uniform as we
increase P, after which the central dip (internal boundary layer) becomes deeper and
narrower, while the rest of the distribution becomes more uniform again.
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7. Effective coefficients for free rotation
The solution of the boundary-value problem (4.4), (2.11) for free rotation, involving

both φ and θ, was solved by an analogous least-squares collocation procedure, using
spherical harmonics as the basis functions. Symmetry excludes odd orders and
degrees; our orientational domain can be restricted to 0 6 φ 6 π, 0 6 θ 6 π/2.
Thereby we use the following truncated expansion formula (Layec 1972):

ge(φ, θ;Γ ) ≈ (4π)−1 +

N∑
n=1

An(Γ )P2n(cos θ)

+

N∑
n=1

n∑
m=1

P 2m
2n (cos θ)

[
Bn,m(Γ ) cos(2mφ) + Cn,m(Γ ) sin(2mφ)

]
, (7.1)

geΓ (φ, θ;Γ ) ≈
N∑
n=1

an(Γ )P2n(cos θ)

+

N∑
n=1

n∑
m=1

P 2m
2n (cos θ)

[
bn,m(Γ ) cos(2mφ) + cn,m(Γ ) sin(2mφ)

]
. (7.2)

Using the least-squares collocation points

φi = πi/I, i = 1, . . . , I; θi = (π/2)j/J, j = 1, . . . , J, (7.3)

each equation was weighted by the factor (sin θj)
1/2, to represent a discretized version

(rectangle rule in φ, trapezoid rule in θ) of the integral error criterion

E =

∫ π

0

∫ π/2

0

[
L{Γ }ge(φ, θ;Γ )

]2
sin θ dθ dφ. (7.4)

With the same weighting, an analogous test calculation using all spherical harmonics
(not just even orders and degrees) on the whole unit sphere recovered the correct
symmetry to a high degree of accuracy. Using the decomposition (2.15), the transport-
coefficient integrals (4.6) and (4.7) can be expressed as follows:

D̄t = 1− 2
5
π
(
A1 − 6B1,1

)
α, V̄0 = − 2

5
π
(
a1 − 6b1,1

)
α. (7.5)

Figure 9 shows examples of the orientational probability density functions ge(φ, θ;Γ)
and geΓ (φ, θ;Γ ) generated using N = 8, I = 16 and J = 32. This discretization worked
well up to Γ = 20; as in §6, further increases in N, I and J seemed to be limited by
round-off errors in the QR decomposition.

Stewart & Sorensen (1972) used Galerkin’s method with spherical harmonics as the
basis functions in order to solve (4.4) for the orientational distribution ge(φ, θ;Γ ). Our
scheme is applied to the further inhomogeneous equation (4.10) in which ge(φ, θ;Γ )
appears on the right-hand side. Simplifications are possible for weak advective flows,
using a regular perturbation expansion in the rotational Péclet number (Bird &
Warner 1971; Layec 1972).

For the cases of constrained vs. free rotation, the respective functional dependencies
of reduced migration Péclet number |V̄0/D̄

t| upon Γ are compared in figure 6.
Figure 7(b) shows the local migration Péclet number 2PV̄0/D̄

t plotted against lateral
position y. Finally, the actual probability density profiles are compared with the case of
constrained rotation in figure 8(b). In both cases there is an accumulation at the walls,
although the effect is weaker for free rotation. This is clearly not a purely entropic
effect because it requires orientational dependence of the translational diffusivity,
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Figure 9. Equilibrium orientational distributions ge(φ, θ;Γ ) and geΓ (φ, θ;Γ ) for free rotation at
two values of the rotational Péclet number Γ . (a, c) Γ = 2. (b, d) Γ = 10.

(2.14) and (2.15). As observed earlier, an orientation-independent diffusivity would
give V̄0 = 0.

8. Critique of the classical entropic argument
The classical thermodynamic argument for migration starts by noting that the

particles are randomly oriented at the centreline and partially aligned near the walls
in a channel flow. Now a suspension with aligned particles has a lower entropy,
because entropy is maximized by a uniform distribution. Thus the orientationally
averaged entropy is lower near the walls and higher on the centreline. It is then
traditionally argued that the total entropy could be maximized if the concentration
at the centre were to be increased by migration of the particles away from the walls.
The basic premise that thermodynamics can resolve questions of migration must,
however, immediately be viewed with suspicion when one considers the inherently non-
conservative nature of the systematic orienting influence in the Brownian suspension.
The viscous couples are not derivable from a potential energy, because vorticity in
the flow makes the curl of the couple non-zero. Nevertheless, we shall proceed with
a summary of various versions of the thermodynamic argument (as applied to our
model problem of rigid rods) in order to illustrate its further pitfalls – all of which
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arise, in one fashion or another, from the order in which integration over rotational
degrees of freedom is combined with other operations.

Within a general configuration space D, simple advection–diffusion of non-
interacting objects in the presence of a potential V is described by the Fokker–
Planck equation,

∂P

∂t
= ∇ · (Pω · ∇µ), (8.1)

with ω the mobility tensor and µ the chemical potential per particle (within an
arbitrary additive constant),

µ = V + kT lnP . (8.2)

No-flux boundary conditions are applied on the walls:

n · (Pω · ∇µ) = 0. (8.3)

Their implementation in §2 regarded the walls only as hypothetical barriers to
the penetration of particle centres (Stasiak & Cohen 1983), and neglected steric
confinement as well as hydrodynamic wall effects.

The free energy density is

G = Pµ. (8.4)

At equilibrium the total free energy is minimized, subject to normalization:

Ġ =
d

dt

∫
D
G dnx = −

∫
D
Pω : (∇µ)(∇µ) dnx = 0,

∫
D
P dnx = 1. (8.5)

Positive-definiteness of ω then requires the −∇µ driving force to vanish identically,
which means µ must be constant throughout the configuration space. This is the
usual statement of the equilibrium condition as applied to colloidal systems; see e.g.
the discussions in Batchelor (1976, 1977) which refer to Einstein (1956). Thus in
thermodynamic equilibrium one has the Maxwell–Boltzmann distribution

P ∝ e−V/kT . (8.6)

Written with reference to the full configuration space, this result is unequivocal
whenever thermodynamics applies. But any projection down to a lower-dimensional
subspace (e.g. averaging over internal degrees of freedom) becomes muddled by the
question of the order of operations: should one project before or after minimizing G?

8.1. Orientational preaveraging

In modelling polymer migration as the result of a shear-dependent entropic potential
Υ (Γ ), one implicitly preaverages over the conformational (and rotational) degrees of
freedom, which are assumed to be in local equilibrium. A typical functional form
based upon the elastic dumbbell model is as follows (Tirrell & Malone 1977; Cohen
& Metzner 1982):

Υ (Γ ) = τ2Γ 2 − 1
2

ln
(
1 + 2τ2Γ 2

)
, (8.7)

where τ represents a characteristic (dimensionless) macromolecular relaxation time.
Marrucci (1972) gives a more complicated expression.

If we define the concentration c(y) as the orientationally integrated probability

c(y) =

∫
Q
P (y, q) dnq, (8.8)
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Figure 10. Entropic potential Υ (Γ ) for τ = 0.05, ————, compared with the orientational
pseudo-potentials Ψ (Γ ), , and Ψ̃ (Γ )/5, , for constrained rotation (§6). For
the latter two functions, the respective reference energies (arbitrary additive constants) have been
chosen to make the curves pass through the origin.

and the orientational structure function g(y, q) as

g(y, q) = P (y, q)/c(y), (8.9)

then in the absence of any potentials, the orientationally integrated free energy density
is

Ḡ(y) = −kT
∫
Q
P lnP dnq = −kTc ln c − cψ (8.10)

where the effect of orientation g appears as a pseudo-potential energy,

ψ(y) = kT

∫
Q
g(y, q) ln g(y, q) dnq (8.11)

with

g(y, q) = ge[q;Γ (y)], (8.12)

as given in §§6 and 7 for the respective cases of constrained vs. free rotation. Thus ψ
depends indirectly upon y through the local shear rate Γ : ψ(y) = Ψ [Γ (y)]. Figure 10
compares Ψ (Γ ) for constrained rotation with the entropic potential Υ (Γ ) from (8.7),
using the dimensionless relaxation time τ = 0.05 for the latter.

Having first integrated over the rotational degree(s) of freedom to define a (pro-
jected) free energy density Ḡ that depends only upon position y, we now minimize
the total free energy

G =

∫ 1

0

Ḡ(y) dy (8.13)

as a special one-dimensional case of the general equilibrium criterion (8.5), subject to
a given constant number of particles:∫ 1

0

c(y) dy = 1. (8.14)

Thus one obtains the pseudo-Maxwell–Boltzmann distribution

c(y) = e−ψ(y)/kT

/∫ 1

0

e−ψ(y)/kT dy. (8.15)
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This distribution has the greatest concentration on the centreline, where ψ is minimum.
We wish to make several criticisms of the above argument; but first we must point
out another possible answer which arises when the minimization of G is carried out
before the orientational integration.

8.2. Orientational postaveraging

If we use the uniformity of chemical potential as the starting point for the integration
over orientational degrees of freedom (having first minimized G),

µ̄(y) = kT

∫
Q

lnP (y, q) dnq = kT ln c(y) + Ψ̃ [Γ (y)] = constant, (8.16)

then the resulting Maxwell–Boltzmann distribution – analogous to (8.15) – has a
different orientational pseudo-potential,

Ψ̃ (Γ ) =

∫
Q

ln ge(q;Γ ) dnq, (8.17)

that actually decreases with increasing shear (figure 10). Accumulation at the walls
would then be explained by asserting that confinement in orientation space must be
compensated for by increased physical-space number density. This reasoning happens
(only fortuitously) to be in qualitative agreement with the results from §§2, 6 and 7.

8.3. Orientational potentials

Suppose for this subsection that the orientation is not caused by the shear flow but by
conservative couples, e.g. from a magnetic field, which are derivable from a potential
energy Φ(q). Then

q̇ = −∇QΦ (8.18)

(with rotational mobility normalized to unity). In thermodynamic equilibrium, these
couples create an orientation structure

ĝe(q) = e−Φ(q)/kT

/∫
Q

e−Φ(q)/kT dnq. (8.19)

If the strength of the conservative couples also varies in position, e.g. a non-uniform
magnetic field, then the potential energy would also depend on position and orienta-
tion Φ(y, q). In thermodynamic equilibrium the probability distribution (8.6) would
then take the form

P (y, q) = e−Φ(y,q)/kT

/∫
Q

∫ 1

0

e−Φ(y,q)/kT dydnq, (8.20)

and so the concentration profile would be

c(y) =

∫
Q

e−Φ(y,q)/kT dnq

/∫
Q

∫ 1

0

e−Φ(y,q)/kT dydnq. (8.21)

Note that this distribution is different from that given by the classical thermodynamic
argument for migration, (8.15), in which we substitute ĝe(q) from (8.19) into the
orientational potential formula (8.11). The error in the latter is that integration and
exponentiation do not commute so that the exponential of the integrated energy

e
−
∫
Φ

differs from the correct integral of the exponential of the energy
∫

e−Φ. Hence
we must view the classical thermodynamic argument with suspicion.
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Now in the preceding paragraph, the variation with position of the strength of the
couples led to a potential energy varying with position Φ(y, q), and this in turn led to
the non-uniform concentration c(y). Once the potential energy varies with position,
there must be potential forces −∂Φ/∂y in addition to the potential couples −∇QΦ.
Thus we can view the non-uniform concentration as a result of the non-zero forces
acting directly in physical space on the particles. The shear flow is however different.
It produces viscous couples whose strength varies with position but produces no
viscous force. This is a further aspect of the non-conservative nature of the shear
flow. Thus the shear flow lacks an important driving force for the migration of the
particles. Further, it is clear that the classical argument uses ideas of thermodynamic
equilibrium that are inapplicable when non-conservative forces and couples act.

8.4. The driving force for lateral migration

One problem with the classical thermodynamic argument summarized in §8.2 is that
the orientationally integrated driving force

− dµ̄

dy
= − d

dy
kT ln c − d

dy

∫
Q
kT ln g dnq (8.22)

does not generate the net migration flux. For each orientation, the force ∂(kT ln g)/∂y
must be multiplied by the probability P and the mobility Dyy – both of which depend
on the orientation. The factor P would enter if the driving force were defined as the
gradient of the orientationally integrated free energy dḠ/dy, which is equivalent to
the approach of §8.1. But the factor Dyy cannot find its way into any thermodynamic
approach. The net flux is

− kT
[∫
Q
Dyy(q)g(y, q) dnq

]
dc

dy
− kT

[∫
Q
Dyy(q)

∂g

∂y
dnq

]
c(y); (8.23)

cf. (4.5). Thus again we see that the classical argument is in error by multiplying
several averages, rather than first forming the product and then averaging.

Finally we recall our earlier remark that if the diffusivity is independent of the
orientation, i.e. Dyy(q) is constant, then the second integral vanishes in view of (4.10).

9. Concluding remarks
In this paper we have neglected both the steric and hydrodynamic hindrances

which occur when the rods rotate near to the walls. Thus we cannot apply our
results within a few rod lengths of the wall, as Brownian diffusion over such a length
will be comparable to Brownian rotation. Schiek & Shaqfeh (1997) have studied
the steric hindrance in a channel which is only a few rod lengths wide, making an
expansion in small Péclet number Pe. They find a migration towards the wall, by
the same mechanism. Their figure 5 shows that the shear-induced migration becomes
independent of the gap width once the channel width H is wider than 15 rod lengths
`. In their figure 6 they compare their predictions for the shear-induced migration for
Pe = 0.5, 2.0 and 5.0, H/` = 35 and n`3 = 0 with our predictions in figure 8(b). They
find reasonable agreement in the concentration profiles for Pe = 0.5 and Pe = 2.0.
At Pe = 5.0 their O(Pe2) theory overpredicts our results, which is understandable
because we find that the migration velocity has a maximum at Pe ≈ 3.

For rigid Brownian rods, lateral migration hinges on the anisotropic mobility; oth-
erwise spatial variations in the local degree of alignment cannot produce the crucial
variations in orientation-average diffusivity by which the rods diffuse toward the walls
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more vigorously than they are thrown back toward the centreline. When the char-
acteristic timescales of translational vs. rotational diffusion are widely separated, the
orientation structure at leading order is determined entirely by rotational equilibrium
at the local shear rate, which leads to our prescription for computing the effective
diffusivity and migration velocity. For rods of axis ratio 100, the end-on/broadside
mobility ratio is approximately 1.66, whereby accumulation at the walls was limited
to about 5% of the average concentration – this in the more conducive case of
constrained rotations. When the axis ratio is taken to infinity, the mobility ratio
is still only 2. Thus, substantially stronger migration will not be seen within the
realm of purely rotational ‘internal’ degrees of freedom. These results for rigid rods
are, however, sufficient to establish the basic mechanism of cross-stream migration –
and to point out its inherent inaccessibility to entropic arguments – while avoiding
the assumptions and approximations that would muddle or perhaps even obscure
the analogous theory for more complicated bodies with conformational degrees of
freedom. With reference to the shear-dependent diffusivity of elastic-dumbbell models
of polymers (Brunn & Kaloni 1985; Brunn 1987; Öttinger 1987, 1989a, b; Prakash
& Mashelkar 1991, 1992) it would be interesting to consider the effect of the in-
creased ‘frictional grip’ of the fluid upon a polymer as the latter becomes extended
(Hinch 1977; Rallison & Hinch 1988) – in order to determine to what extent gradi-
ents in shear can produce more pronounced variations in the conformation-average
diffusivity, thereby leading to stronger migration effects.
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