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Axisymmetric particles in zero Reynolds number shear flow execute closed 
orbits. In  this paper we consider the role of small Brownian couples in establishing 
a steady-state probability distribution for a particle being on any particular 
orbit. After presenting the basic equations, we derive an expression for the equili- 
brium distribution. This result is then used to calculate some bulk properties 
for a suspension of such particles, and these predicted properties are compared 
with available experimental observation. 

1. Introduction 
The motion of a single, small particle suspended in a Newtonian fluid which is 

undergoing a simple shear flow has been the subject of a considerable number of 
theoretical and experimental investigations which have spanned approximately 
fifty years. Interest in this problem stems mainly from its central role in the 
determination of the bulk properties of a dilute suspension composed of a large 
number of such particles in an ambient fluid. In a simple imposed shearing motion 
of the ambient fluid, the increased rate of dissipation which occurs due to the 
presence of a non-spherical particle is highly dependent upon its orientation, so 
that the rate of working for a given bulk motion of a dilute suspension will depend 
on the probability distribution of orientations among all the suspension par- 
ticles. 

The starting point for most of the recent work on the problem has been Jef- 
fery’s (1922) solution for the Stokes motion of a small rigid spheroid in a uni- 
form shear flow of a Newtonian fluid. Jeffery showed that, in the absence of 
particle body forces or couples, a spheroid will translate with the velocity of the 
undisturbed fluid at the position of its centre, while its axis of revolution rotates 
in one of an infinite one-parameter family of possible periodic orbits. Hence, in 
order to determine the distribution of orientations among the particles of a dilute 
suspension we must first calculate the time-average distribution of orientations 
for each particular orbit, and second specify the statistical distribution of orbits 
amongst the particles. The first computation can be accomplished in a straight- 
forward manner by employing the appropriate orbit equations (Anczurowski 
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& Mason 1967) and hence, at least in principle, presents no theoretical difficulties. 
The distribution of orbits is more difficult to ascertain. According to Jeffery’s 
analysis, a particle will remain indefinitely in any given orbit. Hence one might 
conclude that the distribution of particle orbits is completely determined by the 
initial distribution of orientations in the suspension. Of course, Jeffery’s solution 
completely neglects such effects as fluid and particle inertia, Brownian motion 
and particle-particle interactions, all of which will be present in a suspension. 
Hence, an alternative view might be that these (presumably) small departures 
from undisturbed creeping flow will lead to a slow change in the orbit of a particle 
so that eventually a steady-state distribution of orbits may be established which 
is independent of the initial orientations of the particles. 

If one adopts the former point of view, then the most plausible equilibrium 
distribution of orbits would seem to be that proposed by Eisenschitz (1932) based 
on the supposition that the particles are initially oriented over all possible 
directions with equal probability. Eisenschitz’s distribution of orbits leads to a 
number of interesting results, among which is an effective viscosity (for steady 
shear flow) which is periodic in time. However, to the best of our knowledge, 
no experimental evidence either from direct measurement of particle orientations 
or from measurements of such bulk properties as the suspension viscosity has 
ever been reported in support of the Eisenschitz hypothesis. On the contrary, 
a number of investigators (Taylor 1923, Binder 1939, Mason & Manley 1956, 
Anczurowski & Mason 1967) have observed a slow drift through orbitsfor particles 
in a suspension, and one suspects that, given sufficient time, even isolated par- 
ticles would show variations in orbit due to the influence of relevant effects 
which are neglected in Jeffery’s analysis. Inertial effects, Brownian rotations, 
particle-particle interactions and non-Newtonian properties of the suspending 
fluid have all been proposed, a t  one time or another, as the primary cause of the 
observed drift through orbits for particles in suspension. Indeed, we believe that 
under appropriate conditions (i.e. particle size, particle concentration, shear rate, 
etc.) each of these effects could be of primary importance. 

JeRery himself suggested that a proper account of inertial effects would show 
that the particles ultimately assume the particular orientation corresponding to 
the minimum rate of energy dissipation. Taylor’s (1923) early experiments 
seem to verify the minimum dissipation hypothesis for the case of spheroids. 
Subsequently, however, Saffman (1956) suggested that Taylor’s results might 
have been due to some effect other than inertia, such as possible non-Newtonian 
character of the suspending fluid. Recently, Harper & Chang (1968) have re- 
considered Jeffery’s hypothesis for the case of small dumb-bell shaped particles, 
and have shown that the inertial drifC across orbits eventually causes these par- 
ticles to adopt an orientation corresponding to the maximum rate of energy 
dissipation. Hence it is clear that, at best, the minimum dissipation hypothesis 
has limited applicability. In  any event, for many cases of interest, the particle 
Reynolds number is not sufficiently large for the influence of inertia on the par- 
ticle orbit to dominate the effects of Brownian motion, particle-particle inter- 
actions or non-Newtonian properties of the suspending fluid. 

Recently, Mason and coworkers (Manley & Mason 1956, Anczurowski & 
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Mason 1967) have measured the equilibrium distributions of orbits for suspensions 
of rods and disks with volume concentrations of order and particle aspect 
ratios ranging from 0.26 to 20.8. Invariably, the measured distribution differed 
significantly from that predicted by either Eisenschitz or Jeffery, in fact lying 
somewhere between these two predictions. In  addition, an apparent limiting 
distribution of orbits was obtained corresponding to very small volume concen- 
trations of suspended particles. It was suggested, on the basis of observations of 
individual particles within the suspension, that particle-particle interactions 
were primarily responsible for the shift in the distribution of orbits from that 
corresponding to the Eisenschitz hypothesis. By inference, it  could seemingly 
be concluded that the particle-particle interactions continue to be dominant 
even for vanishingly small concentrations of suspended particles. 

Nevertheless, when the particles are sufficiently small, random rotations by 
Brownian motion clearly play a role in determining the orientation of the par- 
ticles, and one would expect, intuitively, that this effect ultimately becomes more 
important than particle-particle interactions as the suspension is made more 
dilute. This intuitive motion might seem to be in substantial disagreement with 
two of Mason’s experimental observations; fist that an orbit distribution is 
found which appears to be asymptotically valid for small concentrations but is 
nevertheless apparently determined by particle-particle interactions, and 
second that single suspended particles appear to rotate with fixed orbits. With 
regard to the first of these points, it is unfortunately not entirely clear how to 
estimate the relative importance of the two competing disturbance mechanisms, 
since the details of the interaction problem have not yet been satisfactorily 
resolved. Nevertheless, as will be evident later, it seems likely that for the rela- 
tively large particles employed by Mason, the volume concentration was never 
sufficiently small for the Brownian motion effect to become noticeable. As to the 
constant orbit result for single particles, we note that when a particle is suffi- 
ciently large to be readily observable, the time scale for the drift across orbits 
due to Brownian motion would be exceedingly large and hence possibly not 
detectable even in experiments of long duration. 

The case of strong Brownian motion acting on axisymmetric particles has 
been treated in detail by Burgers (1938). In  this paper we derive an expression 
for the equilibrium distribution of orbit constants when the effect of Brownian 
motion is everywhere suitably small, but nevertheless dominant over inertial 
and particle-particle interaction effects. 

2. The basic equations 

fluid which is undergoing a uniform shearing motion defined by 
We begin by considering a single spheroidal particle suspended in an ambient 

u = y y ;  v = w = o .  (1) 

The origin of the x, y, z co-ordinate axis system is assumed to be fixed at the 
centre of the particle. The orientation of the particle axis of revolution is described 
by the polar angles 6, and shown in figure 1. Jeffery has shown that if inertial 
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and Brownian motion affects are completely neglected, then the motion of the 
axis of revolution of the particle is described (apart from a simple translation 
which we have neglected by defining our shear flow relative to axes fixed at the 
centre of the particle) by 

Pa)  4 1  = r2+1 Y (r2 cos2 q51 + sin2 91), 

s - sin z+l sin 28,. - 4(++ 1)  

Here r is the axis ratio of the particles, alb, where a and b are the semi-diameters 
measured parallel and perpendicular, respectively, to the axis of revolution. 
Bretherton (1962) has shown that, with the exception of certain very long par- 
ticles, the creeping motion of any rigid body of revolution in a simple shear flow 

J? 

FIGURE 1. The co-ordinate system. 

is identical, so far as rotation is concerned, to that of a spheroid with an effective 
axis ratio re which depends on the precise particle shape. This means that the 
results for spheroids which we shall present in subsequent sections can be adapted 
immediately to apply to any such body of revolution by simply substituting 
the effective axis ratio re for the spheroid axis ratio r .  

The motion equations (2) can be integrated, with the result 

Cr 
(r2 C O S ~  q51 + sin2 q5&4 ' 

tan8, = 

According to these equations, the axis of revolution of a particle rotates about 
the z (vorticity) axis with a period 

T = Y ( r+: )  (4) 
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and its ends describe a symmetric ellipse on the spherical surface 

($+$+$) = 1. 

The constant of integration C is known as the orbit constant. As indicated in 
figure 2, it  essentially defines the eccentricity of this orbit ellipse. We have 
already noted that the analysis leading to the orbit equations cannot be used to 
determine the orbit constant C for a single particle, there being no inherent 
preference for one orbit over any other within the framework of Jeffery’s theory. 
The various proposals ifor dealing with this indeterminancy of C have been 

i 

z 

FIGURE 2. Typical orbits for slightly prolate spheroids (v > 1) 
in a shear flow. 

described in detail in the previous section. Here, we consider the suggestion 
(Burgers 1938) that Brownian motion which is weak, though nevertheless 
dominant over inertial and particle-interaction effects, may produce a stationary 
distribution of orbits after a sufficiently long time. 

We begin with the differential probability distribution function N(Bl, dl, t ) ,  
defined such that the probability of finding any particular spheroid with its axis 
of revolution in the interval [el, 8, + do1] x [$1, $1 + d$l] on the unit sphere is 

P(@l, $19 8 )  = N(@l, $1, t f  sin @, d#,d@,. ( 5 )  

Burgers (1938) has derived the general equation governing the time variations 
of the distribution function N ,  in the presence of Brownian motion, which is 

aN/at = - div (wN) + div (D grad N ) ,  (6) 

D = kT/R,,, (7)  

where D is the Brownian orientation ‘diffusion ’ coefficient 

and 
44 
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is the relative velocity (on the unit sphere) of the axis of revolution for a particle 
with instantaneous orientation, (el, #1) ignoring all Brownian effects. In  the ex- 
pression for D, k: is the Boltzmann constant (1.374 x 10-16erg/degK), T is the 
absolute temperature in degrees Kelvin and R, the resistance coefficient for rota- 
tion of the particle about a transverse axis through its centre, which for a spheroid 
is given by 

where 

The first term on the right-hand side of (6) represents the effect on N of motion 
around the Jeffery orbits. The second term represents the effect of random 
Brownian rotations , which introduce occasional small departures from the 
Orientation distribution a particle would have if it were to rigorously follow 
a single Jeffery orbit. Because the sense of these Brownian motion orientation 
changes is random, they give rise to a diffusion-like process down gradients in the 
orientation probability space. 

Solutions for equation (6) have previously been derived by a number of authors. 
Burgers himself considered the case of strong Brownian motion effects and com- 
puted the first few terms of an asymptotic series for N valid in the limit D 1. 
Peterlin (1 938) obtained a solution for N in terms of a slowly convergent series of 
spherical harmonics. Later, this series solution was numerically evaluated by 
Scheraga (1955) for values of D ranging from y / D  of zero to y / D  = 60, the latter 
representing the limit of storage capacity for the computer. I n  this paper we 
consider the solution to (6) in the limit of very weak Brownian diffusion. 

3. Weak Brownian motion and its consequences 

distribution of orientations is governed by 
When the effect of Brownian diffusion is everywhere small, the steady-state 

div(wN) = 0. (9) 

This equation is simply a statement that the particles are following the Jeffery 
orbits and yields no information about the relative populations of different 
orbits. Thus, without resort to an additional hypothesis regarding the initial 
state of the suspension (cf. Eisenschitz 1932), the completeneglect of all Brownian 
diffusion leaves an indeterminate problem for the probability distribution of 
orientations. The problem then is to deduce some condition in addition to the 
advection approximation (9) which will allow a determination of the distribution 
of orbit constants. Experience with the closely analogous problem of the steady 
distribution of vorticity for a closed streamline velocity field when the kinematic 
viscosity is very small (Batchelor 1956) indicates that the action of a small rate 
of Brownian diffusion over a sufficiently long time may eventually yield a, de- 
terminate equilibrium distribution, N .  Mathematically, this corresponds to the 
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fact that the double limiting process involved in deriving equation (9) from eque- 
tion (6) is not commutative and must be taken strictly in the order t + KJ and then 
D -+ 0. Hence, we re-examine the original equation (6) end consider the conse- 
quences of the act,ion of a small amount of Brownian diffusion in the limit as 
t-+KJ. 

We begin by integrating (6) over a singly connected domain A of the unit 
sphere on which we have defined the function N ,  

/ / A  
d A  = - / IA  div (wN)  dA + D div (gradN) dA. / IA  

Applying the divergence theorem, we obtain 

/ I A  dA = - (wN)  . n d l  + D 4 
where n is the outward normal of the bounding curve. Now choosing the bound- 
ing curve of the domain A to be a single Jeffery orbit, we find 

; / I A N d A  = D $  (g-radN).mil, 
C 

since w.n = 0. Hence, in a steady-state distribution, the net flux of particles 
across a'n orbit is zero, 

D f C $ d l  = 0. 

It is perhaps worth emphasizing that the condition (10) is independent of the 
value of D. In particular, it  is applicable for arbitrarily small, though non-zero, 
values of the Brownian diffusion coefficient, provided only that as D becomes 
small other effects such as fluid inertia, and particle-particle interactions do not 
become of equal importance (in which case the original equation (6) would have 
to be modified). I n  the following section, we will employ (10) together with the 
advection equation (9) to determine the equilibrium distribution of orbit con- 
stants for situations in which the rate of Brownian diffusion across orbits is 
everywhere small compared to the advection around Jeffery orbits. Subsequent 
to  obtaining this solution we will return to  consider in detail the conditions neces- 
sary for equations (9) and (10) to be valid. 

4. The equilibrium distribution of particle orientations in the limit of 
small Brownian diffusion 
For convenience, we transform from the ( ~ 9 ~ ,  q51) co-ordinates on the unit sphere 

to the more natural orbit co-ordinates (C,  T ) .  This transformation is essentially 
defined by the Jeffery orbit equations 

O1 = tan-1 [C(COS% + r2 sin2 T) ' : ] ,  

= tan-l ( r  tan T ) ,  

where 7 E ryt / ( r2 + l).Theco-ordinate linesf2 = const.and 7 = const., thoughstill 
on the unit sphere, are not orthogonal. We show typical co-ordinate lines in 

44-2 
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figure 3, together with the metrics of the system which we denote as h, k ,  and the 
angle a specifying the skewness of the co-ordinate lines. Hence, 

ds2 = d8; + sin2 Old$; = 8;&C2 + 28,,8,,dCdr + [Ba, + sin2 8, $t7] dr2, (12) 

where 

C 

TI-A T 

FIGURE 3. Typical co-ordinate lines for the orbit co-ordinates (C, 7) .  

Thus k = [@, + sin2 el@,]*, (13a) 

h = OlC (13b) 
sin a = $,, sin 6,[8:, + sin2 19,$;~]+. (13c) and 

Now, a first approximation to the probability distribution function N is given 
by the solution of equation (9) subject to the condition (10). (We will later see 
that this first approximation is uniformly valid provided that certain inequalities 
are satisfied.) In  terms of the (C, r )  co-ordinates the equation (9) becomes 

(14) 
a 
a7 
-[N(C,r)h(C,r)k(C,r)s ina] = 0 

Here, for convenience, we have denoted the group 

[h(C, r )  k(C,  7) sinal-l = g(C, 7). 

Thus, to a first a.pproximation, the differential probability distribution function 
N(C,  r )  is the product of a distribution around each of the various orbits, repre- 
sented by g(C, 7), and a distribution across the orbits represented by the, as yet, 
unknown function f(C). Employing (15) together with indicated co-ordinate 
transformation, the condition (10) for a stationary distribution of orientations 
can be expressed as 

f(C) g(C, r )  dr = 0, 
k a  

h sin a aC 
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or equivalently 

Evaluating the integrals in ( l s b ) ,  we obtain the variable coefficient, ordinary 
differential equation for f ,  
0 E [H(r) C4+ K ( r )  C2+ M(r) ]  df  + jj 1 [2H(r)  C4 + ( 6  -K(r))  C z - M ( r ) ] f ,  ( 1 6 ~ )  

where 
H ( r )  r2+ 1 ; K ( r )  E t r 2 + $ +  1/4r2 and M ( r )  3 (r2+ l ) / r2 .  

This equation yields the general solution 

f (C, r )  = const. C[(HC4 + KC2 + M )  F(C, ?)I-#, 
in which 

F ( C , r )  = exp 

The constant of integration is found by normalizing the probability density func- 
tion 

or 

The orient.ation distribution function N(C,  7) follows directly from ( 1 7 ) ,  (1 8) 
and (15). Although we have not been able to analytically integrate the function 
f to obtain the integration constant for arbitrary values of the particle aspect 
ratio r ,  the three limiting cases r = 1 ,  r --f co and r -+ 0 all allow analytical nor- 
malization. The resulting expressions are 

and 

respectively. In  the general case, we have performed the normalization numeric- 
ally. The resulting solution has been plotted in figure 4 for various values of r 
in the range (001  < r < 1000). Although we have not separately plotted the 
asymptotic results (19), we note that for r < 20, and r -= 0.05 the numerical and 
asymptotic results are nearly identical. For comparison, we have also plotted 
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the function ,f evaluated using the Eisenschitz hypothesis. Looking first at  our 
numerically normalized solution, we note that as r is increased from 1, there are 
proportionally more particles in orbits with low values of C whereas when r 
is decreased from 1, the opposite effect is observed. Indeed, according to (19b), 
the distribution function f has a maximum value 1 1 3 3 ~  at a value of C equal to 
1/24 when r 3 1. On the other hand, the maximum for r << 1 occurs for C equal to  
112% and only hams a magnitude of r/38n. Both of these asymptotic characteristics 
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. I  \ 

1 2 3 4 5 

c 
FIGURE 4. The orbit distribution function for various particle axis ratios : 

-, our theory; - - - - , Eisenschitz hypothesis. 

are evident in the numerically normalized solutions of figure 4. Comparing these 
normalized solutions with the equilibrium distribution which is calculated from 
the Eisenschitz hypothesis, it is striking that the two are very similar except 
near C = 0 where the latter are generally somewhat larger. 

The distribution functionf(C) for r = 1 is of particular interest since it allows a 
limited test of the internal consistency of our theory. A spherical particle simply 
rotates about the vorticity vector with a rate of rotation i y .  Hence any arbitrary 
axis passing through the centre of the particle traces out a circle about the vor- 
ticity axis. Furthermore, in this degenerate case, any axis can be chosen as the 
axis of revolution, Thus the probability distribution function for the orientation 
of this axis will be uniform in Qll, and vary with 8, as sine,. It may be simply 
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shown that the distribution function f (C)  (equation (19a)) produces this expected 
result. 

Before turning to considerations of the range of validity of the equations ( 9 )  
and (10) and hence of our solution (17),  it  is instructive to consider the q d i t a t i v e  
implication of our solution with regard to the actual orientation of the particles. 
In  order to do so, however, it  is convenient to consider first the nature of the 
possible orbits. Since the transformation 

r + l / r ;  0, + 0,; -+ $, in 

leaves the orbit equations invariant, we shall primarily consider prolate spheroids. 
For simplicity we shall further focus our discussion on the case r 1, correspond- 
ing to slender rods. We have illustrated a set of typical orbits for a moderate 
value of r( > 1) in figure 2. We note that the limiting orbits C = 0 and 00 are in- 
dependent of the particle aspect ratio r,  corresponding, respectively, to the axis 
of revolution being exactly aligned with the vorticity vector of the basic shear 
flow (C = 0) and the particle rotating completely in the plane of the shear flow 
(C = co). The shape of all the remaining orbits (0 < C < 00) depends on r .  In the 
limit as r --f co, the orbit equations (3a ,  b)  can be approximated by 

tan$, N yt ;  
- in1 > O( l /r) .  Employing the angle transformation 

tan0,cos$, N C, 

provided only that 
tan 0, cos $, = tan $3, the latter becomes 

tan $3 N C or $3 N tan-, C = const. 

The angle $3 is defined in figure 1. Hence, in the limit as r + 00, all of the possible 
orbits follow a path $3 N const., thus eventually approaching the plane of zero 
flow ( Z X )  and hence passing into the region 19,- $n-1 < O( l / r ) .  Within thisregion, 
the rate of change of $, becomes very small compared to its value elsewhere in 
the orbit, i.e. 

and the orbit itself deviates from $3 N const. to a path which becomes normal to 
the Z X  plane as 

0: = tan-l(Cr). 

Provided C 2 O(l/r) this angle 0: N Qn, and hence, a particle spends a great 
deal of its period essentially aligned with the flow. Now according to our asymp- 
totic evaluation of the distributionf(C, r ) ,  equation (19b), when r > 1 this de- 
scription is valid for the majority of particles since most end up in orbits for which 
C is O( 1). The exceptional orbits where this description is not accurate are those 
for which C Q O( l / r )  and is hence very small. I n  these cases, the particle crosses 
the Z X  plane a t  an angle 0: which is not near Qn and the angle $3 < O ( l / r )  
everywhere on the orbit. 

A physical explanation for the calculated distribution of orbits is as follows. 
When the suspension is initially subjected to the shear flow, the majority of 
particles are presumably in orbits with C > O( l /r)  and hence, according to our 
previous discussion, they spend most of their time nearly lined up with the 
flow. Thus, initially the orientation distribution function has a sharp maximum 
for 4, N 0, - in- and is nearly zero everywhere else. The rotational Brownian 

dl 0 ( y / r 2 )  

+ Qn and crosses it a t  an angle 0: which, from ( 3 b ) ,  is 
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diffusion tends to spread this initial concentration distribution more evenly over 
the unit sphere, and since all orbits cause the particles to spend most of their 
time very near the ZX plane this initial diffusion would, in the absence of com- 
peting effects, tend primarily to produce a more uniform distribution over e,* 
in the range 0 to in-. However, orbits yielding intermediate values of 0: cor- 
respond to C < O(l/r) and we have already seen that q53 < O(l/r) everywhere 
for these orbits. Hence 6he tendency to establish a uniform distribution over 
8: is counteracted by Brownian diffusion resulting from increased gradients of 
N in the q53 direction. It is clear, upon examining the asymptotic distribution, 
equation (19b), that the effect of diffusion in the q53 direction largely dominates 
the tendency toward a uniform distribution over 0:. The resulting equilibrium 
distribution of orientations is still very much concentrated near S,* = &r. 
This apparent dominance of the effect of diffusion across q33 is certainly not 
surprising since very small fluctuations of orientation over q53 (outward from the 
ZX plane) will tend to result in large changes in the angle 8: back toward the 
value 4n-. The transfer of particles into the orientation region q& < O(l/r),  which 
would have the opposite effect on O,*, will be muchless effective since the residence 
time over the portions of the orbit away from the ZX plane is a very small frac- 
tion of the total orbit period. Due to symmetry considerations, a mirror image 
distribution is established for 

Considering the transformation from rods to disks cited earlier, we would 
expect the distribution for disks to show an initially strong concentration of 
orientations near q5, = 0 (and n-) 8, = in- with the tendency toward a redistribu- 
tion over =,, largely dominated by the tendency of diffusion to diminish the 
resulting large gradients in N with respect to q52. 

- - &T. 

5. The conditions for validity for our theory 
Before calculating various bulk properties for a dilute suspension of spheroids 

in the presence of the weak Brownian motion effects discussed in this paper, it is 
of some interest to examine more carefully the conditions necessary for the equa- 
tions (9) and (10) to be valid. First of all, we consider the condition for Brownian 
diffusion to be dominated everywhere in orientation space by the advection of 
particles around Jeffery orbits. That is, we wish to determine the conditions such 
that 

everywhere on the unit sphere, so that (9) is uniformly valid, and hence the 
resulting solution (1 5) can be considered as the first term of a regular perturbation 
expansion for N .  We define a suitable local PBclet number for Brownian diffusion 
of N as P = UL/D, 

where U ,  L are characteristic length, IV log NI-l, and velocity Iw 1, scales in the 
orientation space and D is the Brownian diffusion coefficient. We require that the 
local PBclet number be everywhere large compared to one, i.e. 

P A <  1, 
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where Pmi, denotes the smallest value of the local PQclet number on the unit 
sphere.? The minimum local values of velocity and length scale for an orbit 
occur at = Ofor disks, and can be estimated from equations 
(2), (15) and (19) for these limiting cases as 

= 4nforrodsand 

Umin - y/r2 and L,,, - 1/r ( r  -+ co). 

Umin N yr2 and Lmin N r (r -+ 0). 

Hence, to ensure the validity of (9), we require 

Dr3/y 6 1 (r+co)  and D/yr3 < 1 ( r +  0) (20a) 
respectively. 
Expanding D (equation (7)) asymptotically for large and small T, these become 

For a given value of r, these conditions can be satisfied by making the product 
of the particle volume, the suspending fluid viscosity (p), and the rate of shear 
( y )  sufficiently large, or by making the temperature sufficiently small. 

In addition to these conditions, we must also require that in spite of Brownian 
diffusion being small, it still remains dominant over the effects of inertia and 
particle-particle interactions so far as the change in orbit constant is concerned. 
Unfortunately, neither the inertia nor the interaction problem has yet been 
totally resolved for spheroidal particles so that it is not entirely obvious what the 
appropriate parameters for their neglect in our work should be. The physical 
requirement is that the average rate of change in C for a particle be small com- 
pared to that caused by Brownian rotations. We believe that requiring the overall 
particle Reynolds number (based on the maximum linear dimension (i.e. a or b)  
of the particle and the bulk shear rate y )  to be sufficiently small is equivalent to 
this physical requirement in the inertia case, so that one condition is simply 

Intuitively, one expects the effect of particle interaction (on the average change 
in C) to be small compared to the Brownian motion effect for some sufficiently 
small volume concentration @ of suspended particles. To obtain a quantitative 
estimate of the importance of particle interactions, we conjecture that the effect 
of interactions on the rate of change in C is sensibly measured by the ratio of the 
effective volume occupied by a particle ($nu3 for rods, +7b3 for disks) to the aver- 
age volume available to each particle of the suspension (i.e. total volume/number 
of particles). This assumption is at least consistent with the intuitive motion that 
the magnitude of the interaction effect will be estimated by the average proba- 
bility of finding any one partiole in the disturbed velocity field of another. On 

t Although it is not possible to use the heuristic arguments employed here to rigorously 
justify the exponent (- 1) in this inequality, we note that the resulting conditions (equa- 
tions (20a, 6 ) )  are precisely the same as those obtained from very recent work based on 
calculating higher-order corrections to the orientation distribution function. 
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this basis, an order of magnitude of the condition for neglect of particle interac- 

Clearly this requirement implies that the volume concentration @ of suspended 
particles must be very small indeed, especially in respective limits as 1' -+ 00 

or r --t 0. 

6. The probability distributions of ($2)max and ($3)max 

Although we have already discussed qualitatively the equilibrium distribution 
of particle orientations in the limits r -+ 00 and r -t 0, we shall, nevertheless, 
derive here some quantitative results for the distribution over the maximum 
values (attained during an  orbit) of the angles $2 and $3. The primary reason 
for interest in these maximum angle distributions is that they are, in principle, 
conveniently measured quantities which have been purported to provide a 
reasonably sensitive determination of the probability distribution of orbits. 

We have defined the angles y52 and q53 in figure 1. When projected on the ( Z X )  
plane the motion of a particle appears as a rocking of the axis of revolution back 
and forth between maximum angles f ($2)max. Now it can be shown from Jeffery's 
equations that tan $2 = Cr sin (27rtlT) 

in which T is the orbital period defined in ( 4 ) .  Thus, the amplitude of the rocking 
motion, projected on the ( Z X )  plane, is directly related to  the orbit constant G 
of the particle, and, in fact, the maximum value of $2 is given by 

(42frnax = tan-' (Cr). (23 )  

Hence the measurement of (q52)max for particles of known axis ratio is equivalent 
to  a determination of t,he orbit constant C. We define P(q52,n) as $he probability 
of a particle having ($Jmax between zero and $2m. Clearly, in view of ( 2 3 ) ,  an 
equivalent definition of P($2,) is the probability of a particle having an orbit 
constant C between 0 and ( l / r )  tan y52m. In thela,tter form, P($2m) ca,n be calculated 
simply from the distribution function f(G), equations (17)-( 18), by the relation 

We have evaluated this expression for various values of r in the range 10-2-103 
using the numerically normalized distribution function f ( C ) ,  and the results are 
shown in figure 5 .  For comparison, we have also calculated the probability func- 
tion, P($2m), first using theasymptotic evaluations off(C) (equations ( 1 9 b , c ) ) ,  and 
second, the Eisenschitz distribution of orbit constants. The latter are shown 
plotted in figure 5 .  The former give 
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and these expressions agree well with the ‘numerical ’ values plotted in figure 5 
for r < 20 and r > 0.05, respectively. Also shown in figure 5 are some measured 
distributions of P(&J due to Anczurowski & Mason (1967). Clearly, there is a 
considerable similarity between our predicted distribution and the Eisenschitz 
distribution. On the other hand, a considerable difference is evident between 
both of these, and the experimentally measured distributions of Anczurowski & 
Mason (1967). We will return to consider the possible implications of this dif- 
ference. 

::I 0.7 

0.6 

h 

E g 0.5 - 
c 

0.4 - 

0.3 - 

0.2 - 

0 

FIGURE 5. The probability function P($z?n) for various particle axis ratios : -, our theory; 
_ _ _ -  , Eisenschitz hypothesis; . .., experiment (Anzcurowski & Mason 1967), @ is volume 
concentration of particles. 

In  order to determine the probability function for ($3)max, we note the follow- 
ing relationship between the distribution functions P($2m) and P(&,J, 

P($%m) IT  = R  = P($~wL)  I T  = I IR .  (26) 

This is, of course, simply a reflexion df the symmetries in the equilibrium dis- 
tribution of orientations which we discussed in the previous section. Clearly, the 
distribution functions P($3m) predicted by our theory can be read directly from 
figure 5. We note that an experimental determination of P($3m) is rather difficult 
since, in order to measure it is necessary to view the particle along lines 
parallel to the flow. Hence, so far as we are aware, no measurements of P($3m) 
have yet been reported. 

In  principle, neither P($2,,) nor P(q&) is an entirely satisfactory means of 
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determining the distribution of orbit constants, since each is insensitive to a 
portion of this distribution in the limiting cases of small and large r .  For examples 
the distribution P($2m) fails to distinguish between orbits with C > l / r  when 
r 9 1. The explanation for this insensitivity is that all orbits with C > l / r  pass 
very near the point = = in, this corresponding to ($l)max = in. A similar 
insensitivity of P($3m) to C arises when r < 1. Hence, if we could ensure that the 
majority of particles in a suspension had orbit constants of O( 1) and O(r),  re- 
spectively, then a reasonable plan would be to measure P($3m) for r > 1 and 
P(q52m) for r < 1. Unfortunately, however, if C = O(l/r) as r - f m  or O(1) as 
r -+ 0 (as is clearly possible), then the optimum distribution function for deter- 
mining C would be just the opposite of those for the ‘general’ case. Thus P(&J 
would be most satisfactory for r > 1 whereas P(q53m) would work best for r < 1. 
Clearly then, when r is extreme, there can be serious difficulties inherent in 
attempting to deduce the orbit constant distribution’ from experimental measure- 
ments of either P(q5zm) or P($3m). We do not believe, however, that the poor 
comparison (figure 5) between our predicted distributions and the measured ones 
of Anczurowski & Mason (1967) can be attributed, to any significant extent, 
to these possible difficulties since, for the most part, the particle aspect ratio in 
the experiments was neither very large nor very small. Rather, we believe that 
the discrepancy is due to real differences in the orbit distribution functions for the 
two cases. Now the measured distributions were indicated by Anczurowski & 
Mason (1967) as being determined primarily by particle-particle interactions. 
On this basis, we can conclude that even in the rather dilute suspensions employed 
by these authors (a - it is not possible to model the effect of particle inter- 
actions as small random changes in orientation. Otherwise the theoretical 
distribution functions determined here should have been the same as the ex- 
perimental ones, in spite of the obvious differences in the underlying mechanism. 
Intuitively one might have supposed that distant interactions would be dominant 
over the much less frequent but strong close-particle interactions, and further, 
that these distant interactions could be modelled by small random changes of 
orientation. Since our present results seemingly exclude such a model, it must be 
concluded that either distant interactions are not adequately represented by 
weak random rotations or else that the effect of near interactions simply cannot 
be neglected in any circumstances where particle-particle interactions are im- 
portant (or perhaps both). 

7. The effective viscosity 
The suspensions which we have considered are anisotropic, and so in 

general the bulk stress-bulk rate of strain relation will not be Newtonian in form 
(Batchelor 1970). However, the non-Newtonian nature of the stress in a simple 
shear flow (normal stress differences) will be small relative to the Newtonian type 
contributions in the limiting situation which we have considered. Hence in the 
interest of simplicity we have elected to consider only the ratio of the tangential 
stress to the rate of shear y and we designate this as an effective viscosity, p*. 

Jeffery (1932) derived an expression for the effective viscosity of a dilute 
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suspension of spheroids which is accurate in the limit of weak Brownian rotational 
diffusion and is given by 

*-  
’A = (sin4e1sin22+,) (27) ’a 

The underlying assumption inherent in this expression is that the contribution of 
Brownian motion is, at least to first-order accuracy, entirely manifested in its 
effect on the orientation distribution of the suspension particles. Here I, ,  I,, J,, J,, 
are non-dimensional forms of Jeffery ’s particle shape functions and are defined, 
for the general ellipsoid, by Batchelor (1970.) The notation ( )indicates an average 
over all the particles of the supension. Jeffery also gave expressions for the angle 
averages over a given orbit, C ,  which are 

Hence in the case of a given (or known) distribution function over all possible 
orbits,f(C), the averages over all the particles in the suspension are simply 

and 

(sin4 61 sin2 24,) = (sin4 6, sin2 24,)c 47rf(C) dC s,” 
(COS’ 6,) = /om ( C O S ~ ~ , ) C C ~ ~ ( C )  dC. 

The factor 47r arises because of our choice of normalization for f ( C ,  r).  
We have evaluated the expressions (29) and thence the effective viscosity (27), 

using the definitions (28) and our numerically normalized distribution function 
f(C, r ) .  The results are shown in table 1. We note the expected symmetric charac- 
ter of the angle averages with respect to the transformation r -+ l/r. 

The expressions (29) can also be determined from the asymptotic forms of 
f( C), equations ( 19 b)  and ( 19 c )  . The angle averages become 

The symmetry noted previously (for r + l/r) in the numerically evaluated re- 
sults is clearly evident here. Asymptotic evaluation of the quantities I,, I,, J,, J3 
for spheroids symmetric about their 3 axis gives 

and 
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Hence, the corresponding asymptotic expressions for the effective viscosity are 

703 

and N 3.183- 1.79% (r -+ 0). 
P@ 

Table 1 shows a comparison between the numerically evaluated angle averages 
and effective viscosity and the asymptotic evaluations using equations (30) and 
(31). For r > 20 and < 0-05 respectively, the two sets of values a,gree well. The 
effective viscosity increases rapidly as T increases from the spherical value (r = 1). 
On the other hand, the effective viscosity for a suspension of disks decreases as 
r is decreased, the expression (p* -p)/p@ asymptotically approaching the value 
3.183 as r + co. 

Although a number of mea,surements of suspension viscosities for rods and 
disks have been reported they have all involved volume concentrations which are 
too large €or our theory to be valid. This is primarily due to the large size of 
particles employed. With smaller particles, a relatively large number density 
could be allowed without violating any of our conditions (20), (21), or (22). 
It would be particularly interesting to determine whether measured viscosities 
of such a suspension would agree with those of table 1, since, especially in the 
limiting case as r + co, the effective viscosity is very sensitive to small changes 
in the distribution of the orientations, and would thus offer a sensitive initial 
check on the validity of our theory. 

This work was partially completed while L. G. Leal was a visitor to University 
of Cambridge under sponsorship of a National Science Foundation Postdoctoral 
Fellowship. The authors wish to express their gratitude to Professor G.K. 
Batchelor and Professor A. Acrivos for their comments on earlier versions of this 
work. 
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