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The motion induced in a layer of Boussinesq fluid by a moving thermal wave is 
studied in the case where the mean velocity could exceed the wave speed. A non- 
linear boundary-layer theory shows that strong streaming is possible for small 
viscosity. Velocity fluctuations are limited in magnitude by their short time 
scale, while viscosity alone, assumed to be relatively weak, limits the mean flow. 

1. Introduction 
Following a recent suggestion by Schubert & Whitehead (1969) that the 4-day 

Venus circulation was produced by periodic thermal forcing there has been con- 
siderable interest in understanding the mechanisms by which a moving source 
of heat imparts an average streaming motion to a fluid. The literature on the 
phenomenon dates back to Halley (1686) who proposed that periodic heating of 
the earth's atmosphere by solar radiation might impart a net angular momentum 
to the atmosphere. The first experimental investigation of the phenomenon was 
reported by Fultz et ul. (1959) who rotated a bunsen flame beneath a cylindrical 
pan of water and generated a weak mean flow in a sense opposite to the rotation 
of the flame. Stern (1959) performed a similar series of experiments in a cylindrical 
annulus whose width-to-depth ratio was sufficiently small to reduce the radial 
convection present in the experiments of Fultz et ul. By observing paper markers 
placed on the surface and permanganate tracers in the interior, Stern concluded 
that a mean rotation was induced in the fluid in a direction opposite to that of 
the flame. The mean rate of rotation of the water was 0.1 to 1 yo of the rotation 
rate of the source. Stern (1959) also constructed a linear theory to explain his 
observations and concluded that the shear of the mean motion was supported by 
the Reynolds stresses of the fluctuating velocity field. The linear theory of the 
fluid motions induced by a moving thermal wave was extended by Davey (1967) 
who included the effects of a non-zero thermal diffusivity and a free upper surface 
boundary condition. More recently, Kelly & Vreeman (1970) have considered the 
excitation of waves and mean currents in a stratified fluid and have also extended 
the analysis of Davey for a homogeneous fluid with a free upper surface to the 
situation in which the thermal wave and surface gravity wave are in resonance. 
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The moving-flame experiments with water and the theoretical analyses 
described so far are limited to cases in which the mean velocity of the fluid is much 
smaller than the source speed. However, large mean currents can be produced 
by a moving heat source and this is of course the geophysically more interesting 
case. Schubert & Whitehead (1969) performed a moving-flame experiment with 
liquid mercury and observed rotation rates at the mercury surface four times as 
large as the source rotation rate. In  experiments performed with periodic internal 
heating (to be briefly described later) mean velocities comparable to and larger 
than the phase speed of the internal heating have been observed. The experiments 
with boundary heating of liquid mercury and internal heating of a salt solution 
have in common the fact that thermal fluctuations exist within the body of the 
fluid. In  the earlier moving-flame experiments with water the thermal fluctuations 
were confined to relatively thin boundary regions and as a result only weak mean 
motions were produced. The generation of large mean flows by periodic thermal 
forcing is thus a phenomenon of equal a priori  importance with other modes of 
circulation in planetary atmospheres. In  particular Schubert & Whitehead 
(1969) have proposed that the retrograde 4-day circulation in the Venus atmo- 
sphere can be explained by this phenomenon. The discussion of this proposal at 
the Fourth Arizona Conference on Planetary Atmospheres, Tucson, Arizona 
(March 1970) resulted in papers by Schubert & Young (1970) and Malkus (1970). 

In  this paper we are mainly interested in the phenomenon of strong streaming. 
After discussing the basic equations and approximations in 0 2 we present a non- 
linear boundary-layer analysis (in Q 3) and numerical computations (in 3 4) for 
large induced mean flows. The analysis shows that weak fluctuating motions can 
indeed produce strong streaming when the viscosity is small. The results of the 
boundary heating experiments with liquid mercury and the internal heating 
experiments are briefly discussed in § 5. 

2. Basic equations 
Consider the two-dimensional motion of a fluid between two rigid horizontal 

boundaries z = f h. The motion is induced by a given periodic travelling thermal 
wave moving horizontally with speed U in the negative x direction. The tempera- 
ture is independent of vertical position z and is characterized by a wavelength 
2nlk. Such a thermal wave could be produced by boundary heating of a fluid of 
sufficiently small effective PBclet number 

I?Y+uI kh2/K < 1, 

where u = (u, w) is the velocity of the fluid and K is the thermal diffusivity. 
We introduce an average, denoted by an overbar, with respect to the periodi- 

city of the thermal wave and consider only the case of time-independent means. 
Fluctuating components are denoted by a prime. We assume that the density 
variations driven by the periodic thermal forcing are sufficiently small for the 
Boussinesq approximation to be applied (further conditions for the validity of 
the Boussinesq approximation are given in 3 3). The equations expressing con- 
servation of mass for the Boussinesq fluid are 

V.U’ = 0, aiEp.2 = 0. (2.1) 
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Thus since u = 0 on z = 5 h the mean vertical velocity W = 0. The equation 
describing the variation of the mean horizontal velocity U is obtained by 
averaging the horizontal momentum equation 

v d25/dz2 = d(UIWl)/dZ, (2.2) 

where v is the kinematic viscosity, a constant in the Boussinesq approximation. 
This equation expresses the balance of the mean flow viscous stress with a 
Reynolds stress (the vertical divergence of the average vertical transport of 
horizontal momentum). 

We introduce a stream function for the fluctuating velocities according to 

UI = a p l a z ,  WI = -ap/ax. (2.3) 

By eliminating the pressure between the horizontal and vertical momentum 
equations we arrive at a vorticity equation for the stream function 

where g is the acceleration of gravity, p' is the thermally induced density fluctua- 
tion and the density p is constant. 

It is convenient to introduce non-dimensional variables by using a time scale 
(Uk)-l ,  a horizontal length scale k-l, a vertical length scale h, and a density 
fluctuation scale Ap. Thus the horizontal velocity scale is U ,  the vertical velocity 
scale is Ukh and the stream-function scale is Uh. The dimensionless forms of 
(2.2) and (2.4) are 

where 

We now take the mean field approximation in which the fluctuating part of 
terms quadratic in the fluctuations is neglected, i.e. the last term on the left-hand 
side of (2.6) is assumed to be negligible. Clearly a necessary condition for the 
validity of this approximation is 

In  the limiting cases of dominant viscosity S 4 1 and of weak viscosity S % 1, 
both of which will be studied in some detail, we find that the mean field approxi- 
mation is a valid simplification of (2.6) if, in addition to (2.9), we require that any 
asymmetry in the thermal forcing be smaller than either the expansion para- 
meter S or 8-4. The mean field equation for the stream function is 

I*'\ < 1. (2.9) 

(2.10) 
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a@-llax = a p l a z  = o on x = 5 1. (2.11) 

The non-linear problem for ii and $' can be Fourier analyzed in (x , t ) .  At 
present we study only one Fourier component, i.e. 

p-l, @' = Re (p, $(z) exp i(x + t ) ) ,  

where Re denotes the real part of a complex quantity. Equations (2.5) and (2.10) 
written in terms of the Fourier amplitudes are 

(2.12) 

(2.13) 

where Im denotes the imaginary part of a complex quantity and the asterisk 
denotes a complex conjugate. The boundary conditions are 

U = $ = d$/dz = 0 on z = * 1. (2.14) 

For algebraic simplicity we will consider the limit P2-+ 0. This is a non-singular 
limit and consequently will not alter the structure of the solutions. 

3. Theoretical solutions 
In this section we reproduce the results obtained by Stern (1959)t for weak 

streaming U < 1 in two limiting cases, that of dominant viscosity S < 1 and 
weak viscosity 8 > 1. For the case of weak viscosity and within the conditions 
for the validity of equation (2.13), Stern's result (3.18) indicates the possibility 
of strong streaming. We solve the non-linear problem in the case of weak viscosity 
and find that the mean velocity profile is the same as in the linearized analysis 
(to first order). 

Without any loss of generality we take j3 to be unity, i.e. the density variations 
are 

Following Stern we consider the linearized weak streaming problem 

p' = cos (x + t).  

(3.3) 

Since $ is the solution of a linear constant-coefficient ordinary differential 
equation it can be written in terms of simple functions. Then through equation 
(3.1) it is possible, although quite tedious, to write down a closed-form solution 

t Except for a minor algebraic correction. 

- 
u = $ = d$/dx = o on z = 2 1. 
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for Ti at arbitrary S.  In view of our later extension to the non-linear problem, we 
elect only to consider two limiting cases of extreme S where it is possible to 
expand the solution in powers of a small parameter (X or S-i) and solve simpler 
approximate equations. 

For the dominant viscosity case S < 1, we write formally 

$ = X$,+X2$,+ .... 
The problem for the first approximation is 

(3.4) 

(3.5) 

1 d4$,/dz4 = - iF ,  

$, = d$,/dz = 0 on z = k 1, 

with the solution $, = - (iF/4!) (1 - 9 ) 2 .  

Substituting this into (3.1) yields no Reynolds stress because to a first approxi- 
mation u' and w' are in quadrature. It is therefore necessary to consider the 
problem for $2 

d4$,/dz4 = i d2$,/dz2 = - (F/3!) (1 - 3z2), 

G2 = d$,/dz = 0 on z = k 1, 
(3.6) 

(3.7) 

U = (F2S4/2.5! 6 ! ) [ 1 - ~ ~ ] ~ + 0 ( P ~ S ~ ) .  (3.8) 

1 
with the solution g2 = (F/6!) (1 - z ~ ) ~  (z2 - 3). 

Prom (3.1), (3.5) and (3.7) we find that the first approximation to the mean 
flow is 

The O(F2XS) contribution to ii is identically zero since $, is pure imaginary. 

P X < 1  Condition (2.9) becomes 

and thus the form of (3.8) implies that strong streaming is not possible while the 
mean field equations model the Navier-Stokes equation in the limit of dominant 
viscosity. 

For weak viscosity the expansion in powers of S-4 is not regular; there are 
boundary layers of thickness S-4 at z = k 1. It is therefore necessary to proceed 
by the method of matched asymptotic expansions. The boundary-layer equation 
at z = - 1 is, in the stretched variable c = X*(z + l),  exactly 

(3.9) 

subject to the boundary conditions 

$ = d$/dc  = 0 at c = 0, (3.10) 

and matching conditions with the as yet undetermined outer solution as c+ 00. 

The general solution of (3.9) and (3.10) which is well behaved as c+co is 

(3.11) 

If we expand the interior solution formally as 

$ = $o+s-ql+ ..., 
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then (3.11) and a similar expression for the boundary layer at  x = + 1 yield via 
the matching a series of constraints on the interior solution 

l-i&po 
$0 = 0, $1 = on z =  + 1 .  (3.12) 

The small (first-order) boundary-layer efflux is driven by the oscillating zeroth- 
order tangential flow just outside the boundary layer. 

The problem for the first approximation to the interior solution is thus 

d2$,1dz2 = F ,  

$ o = ~  at % = * I ,  (33.13) 

with the solution go = $F(z'- 1). (3.14) 

To lowest order in the interior the upward vertical velocity of the travelling con- 
vection cell lags the lightest density by in. As in the viscosity-dominated case, 
to the first approximation there is no Reynolds stress in the interior. Thus it is 
necessary to consider the problem for $l 

d2$1/dz2 = 0, 

l - i d &  1 - i  
= *--- - -FT at x = + l .  

24 dx 
(3.15) 

The solution is g1 = F(  1 - i)/24. (s.16) 

This secondary interior flow is out of phase with the primary flow. 
Substituting both (3.14) and (3.16) into (3.1) yields the Reynolds stress 

d2;iioldx2 = - ~ 2 ~ + 9 .  (3.17) 

An integration of (3.1) through the boundary layers using the appropriate forms 
of the stream function yields a matching condition on the interior expansion for 

Z =  O(F2) at z =  + 1 .  

Thus the mean velocity for the first approximation Go vanishes at  the matching 
point. Accordingly the mean velocity profile is 

u = (P284/29 (1 - 2 2 )  + O(P2). (3.18) 

Condition (2.9) reduces to F 4  1, 

and so, with P fixed and small, and as X - t  00, it seems possible that the mean flow 
could become greater than the thermal wave speed, although the preceding 
analysis would then not be applicable. The reason that the quadratic terms in the 
fluctuations can give rise to large mean effects, but negligible fluctuating correc- 
tions, lies in the different structure of the equations they satisfy. In  the small 
diffusion limit the fluctuating part is balanced by a time rate of change of a 
correction. The mean part, being independent of time, is balanced only by dif- 
fusion of the mean response. As the diffusion coefficient is assumed small, the 
magnitude of the mean quantity has to be compensatingly large. 
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We are therefore led to a study in which (3.2) is replaced by (2.13) in which 
terms involving U are retained, 

(3.19) 

Since we are interested only in the limit of weak viscosity, in order to produce 
strong streaming, we can again employ the method of matched asymptotic 
expansions. First we examine the boundary layers. Guided by the previous 
analysis we can estimate the relative importance within the boundary layers of 
the terms in (3.19). With U = O(F2),  $ = O(PS-i), the length scale O(S-*) and 
assuming P < 1, the boundary layers are linear to the first approximation, satis- 
fying (3.9) as before. Formally expanding the interior as 

$ = $o+S-~$l+..., 

we find the same matching conditions (3.12). 
When the streaming is strong it is no longer possible to obtain individual 

equations for go and $l since they are coupled by the non-linearity. Thus as the 
fmt approximation for the streaming we must consider the problem 

(3.20) 

(3.21) 

(3.22) 

subject to the matching conditions 

go = 0, U, = 0, = [(I -i)/24] a$,/& at z = 1. (3.23) 

To avoid cumbersome non-linear layers in the interior we have chosen to restrict 
the magnitude of G, and therefore F2St,  to be O( 1) and not O(S4) in the limiting 
process S -f 00. 

Equation (3.21) can be integrated twice to yield 

$1 = C(1 +ZO), 

where Cis one of the constants of integration, the other vanishing from the sym- 
metry of the problem. The constant C can be determined by integrating (3.20) 
once. I n  (3.22) it is possible to eliminate Go using (3.20) and (3.21), 

(1 + z0) d2E0/dz2 = Im g1. 
The constant C is such that (3.17) is again the governing equation of the mean 
flow and it is a simple matter to obtain 

go = $P(ZZ- l ) ,  (3.24) 

(3.25) 

(3.26) 

= F[(l -i)/24] [I + (PW*/2') (1 -22)], 

Eo = (F2#4/24) (1 - 22). 
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We note that the first approximations to the mean flow and the fluctuating 
stream function are unchanged from their values in the linear analysis. This is 
fortuitous, however, and would not be so if the top surface were stress free, for 
example. 

When the streaming is strong, S-9 5 F2, it is not clear that condition (2.9) is 
sufficient to ensure that the mean field approximation is a valid representation 
of the Navier-Stokes equations. This is because a possible correction to $ of 
O(F2)  from the non-linear terms could a priori produce a streaming of O(P3S) ,  
which is more important than that produced by the boundary-layer eaux of 
O(F2S4).  For a thermal wave of the form 

N 

n=l 
p' = Re pnein(x+t), (3.27) 

the interior solution 
K, M ,  N' 

k,m,n=l,O, 1 
@' = Re Fkfi-tm$,,,, n ( ~ )  ein(x+t), ( 3 . 2 8 )  

U = f l  Fkfl-tmzk,m (4, (: 3.29) 

is consistent with the Navier-Stokes equations (2.5) and ( 2 . 6 )  (the limit /T2+0 
will be taken for convenience). A more detailed study of the boundary layers 
yields the matching conditions 

$k, 0, 12. = u 2 , o  = ~ 2 , 1 =  0, G1, 1, = f [( 1 - i)/2+n$] dG1, o, ,/ax at x = 3: 1. 

K ,  M' 

k,m=2,0 

- 

If the are real, i.e. if the thermal wave is symmetric about some phase, then 
$,, o, are real. If the $k, o, were real, i.e. cosinusoidal, then the quadratic non- 
linear term will excite sum and difference harmonics which are also cosinusoidal. 
Hence by induction over the k ,  all the gk, o, are real and it is impossible for them 
to contribute to U as their velocity fields u' and w' are in quadrature. Thus the 
first approximation to U is indeed E2, from the contributions of the g1, o, (z and 
Gl, 1, n. The mean flow is found to be 

We conclude this section by considering the conditions for the validity of the 
Boussinesq approximation. These conditions follow from the fact that for the 
Boussinesq approximation to be valid 

p Dt ku' 

where D/Dt is the convective derivative. For S < 

while for SJ 
(gh/U2) s 9 1, 

1 the condition becomes simply 

gh/U2 9 1. 

When the streaming is strong the condition must 

(gh/U2) (1 + U)-2 9 1 

and the requirement of symmetry of p'. 

1 the condition is 

be strengthened to 
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4. Numerical solutions 
Por intermediate values of viscosity the asymptotic techniques of the previous 

section must be replaced by numerical ones. In  this section we present numerical 
solutions of the non-linear two-point boundary-value problem represented by 
equations (2.12) and (2.13) (in thelimitP2+ 0). These equations can be integrated 
to give 

The constants of integration are zero since U and $ are even functions of z. 
A forward numerical integration of (4.1) and (4.2) from z = - 1 to x = 0 

requires that we know the values of U, $, d$/dx and d2$Idz2 at x = - 1. At the 
lower wall x = - I, U = $ = d$/dz = 0, and d2$/dz2 is adjusted in an iterative 
manner until the forward integration gives the result d$/dz = 0 at x = 0. Equa- 
tion (4.1) ensures that the slope of the mean velocity profile is zero at  the channel 
centre-line. 

The solution of the linearized version of (4.2) provides a starting-point for the 
entire procedure. For values of F and S consistent with the linear approximation, 
the analytic solution of the linearized form of equation (4.2) gives the value of 
d2$/dz2 at x = - 1. Either or both of the parameters can then be changed and the 
value of the second derivative appropriate to the prior set of parameters can be 
used to start the numerical procedure for the new set. The process is continued 
by using the result for the second derivative in a given case to start the iterative 
scheme for the next set of parameters. In  this manner we proceed from the linear 
into the non-linear rt5gime. 

To illustrate the character of the solutions at  intermediate values of S we 
discuss in detail the case F = 0.2. The dimensionless mean velocity U is shown as 
a function of S in figure 1 together with the results of the two asymptotic 
theories. There is no difKculty in extending the numerical solutions to sufficiently 
low values of S that essentially exact agreement with the asymptotic solution is 
obtained. As we have previously discussed, and as can be seen in figure 1, large 
mean flows correspond to large values of AS'. An essential difficulty is encountered 
in extending the numerical solutions to larger values of S as a result of the fact 
that the flow tends toward a boundary-layer structure as S becomes large. At 
S = 250, for example, a value of d2$/dz2 at z = - 1 which is inaccurate by as 
much as 0.05 yo will, upon forward integration from z = - 1, lead to an unbounded 
result. At S = 500 a discrepancy in d2$/dx2 ( x  = - 1) in the fifth significant figure 
leads to a singular result. Thus it was necessary to use double precision accuracy 
on the IBM360/91 to obtain the numerical solutions at the relatively larger 
values of S. This numerical difficulty is a result not of the nonlinear terms in 
the equations but of the boundary-layer character of the solution. 

To give a clear illustration of the nature of the boundary-layer solutions we 
have chosen the case of F = 0.2 and S = 250. For these values the thickness of 
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FIGURE 1. Comparison of the numerically determined mean flow with 
asymptotic results, for P = 0.2. 
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FIGURE 2. Mean velocity profile for P = 0.2 and S = 260. 
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the boundary layers, arbitrarily defined by when exp [ - ( z  + 1) (S/Z)S] has 
dropped to the 5 %  level, is 0.3 (e.g. see figure 2 ) .  The mean velocity 5 is shown 
as a function of z with the asymptotic result for the interior, equation (3.26), also 

0 0.21 0 . 4 ~  0 . 6 ~  0 . 8 ~  I 1.21 1 . 4 ~  1 . 6 ~  1 . 8 ~  2 n  

Phase 

FIQURE 3. The perturbation stream curves for F = 0.2 and X = 250, 
showing the tilt in the convection cell. 

14 
0 0.04 0.08 0.12 0.16 0.20 

- 0.2 

- 0.4 

a 

- 0.6 

-0-8 

-1-0 
0 0.2 0.4 0.6 1 .o 

Phase t2 

FIGURE 4. The amplitude and phase of the horizontal velocity fluctuations at 
F = 0.2 and S = 250. 

shown for comparison. While the imposed thermal fluctuation moves to the left, 
the mean motion of the fluid is everywhere to the right. The slope of ii is zero both 
at the channel centre and a t  the walls and an inflexion point in the mean velocity 

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 24 Aug 2009 IP address: 131.111.16.227

302 

profile occurs at  about z = 0.7. In  the steady state there is no shear stress a t  
the walls. 

The perturbation stream curves for 8 = 250 are shown in figure 3. It is impor- 
tant to note the tilting of the convection cells which is most readily apparent near 
the walls where viscosity is relatively more significant. The tilting of the cells is 
a result of the correlation of positive (negative) vertical velocity fluctuations with 

E. J .  Hinch and G. Schubert 

14 

Phase & 

FIGURE 5. The amplitude and phase of the vertical velocity fluctuations 
at P = 0.2 and X = 250. 

positive (negative) horizontal velocity fluctuations. This leads to a transport of 
positive horizontal momentum toward the channel centre-line which is necessary 
to support the shear of the mean flow. Finally, for S = 250, figures 4 and 5 show 
the magnitude and phase of the horizontal and vertical velocity fluctuations, 
respectively. While the horizontal velocities 9 and ZL are independent of ,4, the 
magnitude of the vertical velocity 8 is directly proportional to p (the value 
,4 = 10-2 has been used in figure 5). As indicated by the asymptotic theory for 
large 8, over most of the channel interior 9 is approximately in phase with the 
thermal forcing while 8 is almost in radians out of phase with the thermal wave. 

5. Strong streaming experiments 
In the moving flame experiment with boundary heating of liquid mercury 

Schubert & Whitehead (1969) have reported mean velocities four times as large 
as the flame speed and in the opposite direction. Whitehead (1970) has described 
these experiments in detail, so that our only concern here is with the dependence 
of the mean dimensionless speed at the upper surface of the mercury on the 
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parameters F and S. His data is summarized in figure 6. It is clear, for the experi- 
ments reported in this figure, that the magnitude of the mean flow in the mercury 
is proportional to P2S4, i.e. the flow is viscosity dominated. The values of S in 
these experiments ranged from 0.53 to 8.8 and F was generally in the range 

X 
X &  

X x x  

XA 
0 

0 

0 

0 

0 

00 

0.01 
I0 25 50 10‘ 250 5 

FS2 

3 

FIGURE 6. The experimentally observed surface speed versus FS2, for 
different 8:  0, 8.8; 0 ,  4.8; 0,  3.17; X ,  1.6; A, 1.1; 0, 0.53. 

10-100. Although FS2 is rather large in the experiments and the theory of the 
viscosity-dominated flows discussed here is strictly valid only for P < 1, S < 1, 
the applicability of the analysis extends beyond these strict limits as a result of 
the factorials in the denominator of (3.8) arising from the character of the 
biharmonic operator. 

Some simple preliminary ‘moving flame ’ experiments with internal heating, 
conceived and designed by P. J. Mason and H. A. Douglas, have been performed 
at  the British Meteorological Offioe, Bracknell. Water in an annular gap (radii 
30 mm, 85 mm and depth 110 mm) was heated internally by the ohmic dissipation 
(up to 1 kVA) of a current passed across the gap. The conductor on the outer 
cylinder was segmented. By the use of a cam-operated switch, it was possible 
to make the thermal wave propagate around the annulus at speeds between 
1 mmls and 1 m/s resulting in a variation in S from 1 to lo3. Mean surface flows, 
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visualized by floating aluminium flakes, of up to twice the thermal wave speed 
and in the opposite direction were noted. It is hoped that in some future com- 
munication more detailed experimental results will be available. 

We should like to thank Dr J. A. Whitehead for the use of his data and Dr R. 
Hide for his interest and encouragement. Support from Trinity College and the 
S.R.C. (E. J. H.), and NSF Grant GA 10167 (G. S.) is acknowledged. 
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