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A problem of theoretical interest in suspension rheology is the calculation of bulk 
rheological properties for a dilute suspension of spherical dipolar particles in 
the presence of weak Brownian rotation, when the applied field is perpendicular 
to  the local vorticity of the bulk flow. In  the present note, we determine the 
asymptotic form for the orientation distribution of the dipole axis in the limit of 
weak Brownian motion and use this distribution to determine the corresponding 
rheological properties of the suspension. The bulk stress is then discussed in terms 
of an effective viscosity for shear flow. 

1. Introduction 
In  a recent paper, Brenner & Weissman (1972) have considered the effects 

of rotary Brownian motion on the rheology of a dilute suspension of rigid dipolar 
spheres in the presence of an applied external field. Using both numerical and 
analytical approximation schemes, these authors were able to consider a variety 
of combinations of field direction and strength, and effective strength of the rotary 
Brownian motion. Among the cases which were either partially or totally un- 
resolved, the most interesting is that in which the applied field is perpendicular 
to the local vorticity of the bulk flow, and the field strength is moderately weak 
(y  = in-, h < 1 in Brenner & Weissman’s notation). In  the present note, we 
investigate this case in the limit of weak Brownian motion. 

2. The basic equations 
We consider a dilute suspension of rigid, spherical dipolar particles which is 

undergoing a steady bulk flow in the presence of an applied external field g. 
Since the suspension is dilute, attention can be focused upon the behaviour of a 
single isolated particle. We denote the magnitude of the particle’s permanent 
dipole moment by m and its orientation by the unit vector e .  Neglecting inertia 
effects on the small scale of the suspended particles, the motion of an isolated 
particle in the absence of rotary Brownian motion is then determined by the 
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FIGURE 1. Typical orbit paths for h 0,  $, 1. 

condition that the hydrodynamic and external field couples exactly balance one 
another. This yields the rate of rotation of the dipole axis: 

m 
e = w x e + -  rg - 8n,ua3 

in which w is the local vorticity of the bulk flow, a the radius of the sphere and p 
the solvent viscosity. The dimensionless measure of the field strength is A = mg/ 
87r,ua3w. The solution of (1) depends on h and on the angle y between w and g. 

When y =+ in, or when y = Qn and A > 1, the dipole axis of the sphere tends in 
time to a certain fixed orientation which is independent of its initial orientation. 
The particle then simply rotates about this axis with an angular velocity e ( o  . e). 
We refer the reader to the works of Hall & Busenberg (1969) and Brenner 
(1970a, b )  for a more complete description of this situation. 

The special case when y = in and h < 1 exhibits a considerably different 
behaviour. The particle dipole axis does not tend to any fixed orientation, but 
rather traverses one of an infinite family of periodic closed orbits. In each orbit, 
the dipole axis describes a circular cone about a fixed central axis of rotation. 
Brenner (1970a) has shown that both the direction of the rotation axis and 
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magnitude of the cone angle may be related to the value of h and to a constant 
which labels the particular orbit. Typical orbits for values of h near 0, + and 1 
are sketched in figure 1. The particular closed orbit selected by a particle is deter- 
mined entirely by its orientation a t  some initial instant and the given value of A. 
Thus, in the absence of rotary Brownian motion (or other non-reversible dis- 
turbances), any bulk properties which depend on the orientation distribution of 
e would depend for all time on the initial orientation state of the suspension. I n  
this paper we use the basic techniques developed in an earlier investigation (Leal 
& Hinch 1971., hereafter denoted by LH) to find the orientation distribution 
which results from the accumulative effects of weak rotary Brownian motions 
acting over a very long time. As suggested by Brenner & Weissman (1972), 
the steady-state distribution is independent of the initial orientation state. 

I n  the presence of rotary Brownian motion, the orientation of the dipole axis 
of any particular particle is determinate only in the statistical sense. We quantify 
the statistics of the particle orientation by means of the differential probability 
density function N(e) ,  defined such that the probability of finding a particle 
with its dipole axis in the solid angle de about e is simply N ( e )  de. Temporal 
changes in N are governed by a conservation principle 

aN/at + div {NG - DVN} = 0 (2) 

in which the flux of orientational probability is seen to include advection about 
the closed orbits and rotary Brownian diffusion. Here D = kT/8npa3is the Stokes- 
Einstein diffusion coefficient for rotary Brownian motion. The probability den- 
sity function which is found from (2) is subject to the normalization condition 

lN(e)de  = 1. 

The particle contribution to the bulk stress in this suspension consists of the 
familiar Einstein term plus an antisymmetric part due to the net external couple 
applied to the suspension. Following Brenner & Weissman (1972), we note the 
expression for the bulk stress 

(3) 
3m@ 
87ra3 

Q = 2p[ l+~0]E- - [ (e )g -g (e ) ] ,  

in which ( e )  is the mean of the unit dipole vector, 

while @ is the volume fraction of the spheres and E is the rate-of-strain tensor for 
the bulk flow. Hence the calculation of bulk stress for this suspension reduces to  
finding the mean of the dipole vector. 

In  the following we consider the case y = in, h < 1, in the limit of weak 
rotary Brownian motion, D/w < ( 1  -A)%. Brenner & Weissman (1972) have 
studied the nearly isotropic limiting cases h < 1, D/w = O( 1);'Dlw % I,  h = O( 1); 
and y = in, D/w < 1, h = O(D/w),  as well as various combinations of y ,  h and 
D / o  for non-orbiting cases. 
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FIGURE 2. Geometry of the orbits; the intrinsic (8, q5) oo-ordinate system. 

3. Geometry of the closed orbits 
For the purposes of the subsequent discussion it is useful to describe the 

undisturbed particle orbits in greater detail. We use the co-ordinate system 
shown in figure 2, in which the vorticity and the external field are parallel to the 
x and x axes, respectively. Following Brenner (1970a) we note that the fixed 
axis of the particle rotation lies in the x, y plane and that the dipole axis sweeps 
out a circular cone about this axis, with a cone angle which depends on the 
particular orbit. We specify the orientation of the rotation axis by the polar angle 
6' as shown in figure 2. In our formulation, 8 will play the role of the orbit constant. 
For a given value of A, it is easily determined that 0 can vary from 0 to sin-lh 
while the corresponding cone angle varies from +T t o  0. The orbits of the dipole 
axis are non-intersecting circles on the unit sphere, which is the domain of the 
orientation space. Those orbits corresponding to a value of 8 in the range 
0 < sin 8 < h cover the half-sphere above the y, z plane. A set of mirror-image 
orbits is found in the lower half-sphere. The relative positioning of the orbits 
changes markedly when h varies from 0 to I as we have indicated in figure 1. 
When his small the maximum permitted 8 is similarly small, so that the rotation 
axes for all the orbits are clustered close to the vorticity axis. The orbits are 
therefore all circles centred very near to the x axis. On the other hand, as h 
approaches I, the maximum permitted 6' tends t o  &r, so that all the orbits must 
pass close to the - y axis. 

The phase around a particular orbit will be specified by the angle of rotation 
95 measured counterclockwise about the rotation axis, as shown in figure 2 .  
Let the projection of e onto the rotation axis be (1 - r2)*, so that the semi-vertex 
angle of the circular cone swept out by the dipole vector is sin-l r .  In  these terms, 
the unit dipole vector may be expressed in component form as 

e = {( i - r2)a cos 8 + r cos 95 sin 8, - (1  - r2)t sin 8 + r cos 95 cos 8, rsin #} (4) 
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and equation (1) describing the axis orbits reduces to 

r = constant, sin 8 = A ( i  - r2)9, 4 = w(cos 8 + rA cos $1. (5a ,  b,  c) 

Equation (5 b )  provides the necessary relationship between the orbit constant 
and the cone angle. 

Equation (4) is now viewed as the definition of a co-ordinate transformation 
from (ex, e,, e,) on the unit sphere to the more convenient non-orthogonal co- 
ordinates (8, $). Using ( 5 b )  to eliminate r,  the transformation is 

he, = sin 0 cos 8 + ( A 2  - sin2 0)B sin 0 cos $, 
he, = - sin2 8 + (A2 - sin2 0)t cos 0 cos $, 
he, = (A2 - sin2 8)j sin $ 

(Gal 

( 6 b )  

(6c) 

( 7 )  

and the orbit equation (1) reduces to 

4 = ~ [ C O S  0 + (A2 - sin2 6)* cos 91 
with 0 constant. According to ( 7 )  the rate of rotation of the dipole axis varies, 
for a given orbit, from a maximum when 9 = 0 to a minimum when $ = 7 ~ ;  

and between the different orbits, from a constant rate (1 - A2)9 for the trivial 
orbit (sin 8 = A )  to a maximum oscillation I + A cos 9 for the orbit in the plane 
perpendicular to the vorticity (sin8 = 0). Hence there is little variation in 4 
for small A ,  whereas the variation between the orbits and around each orbit 
becomes very large as h tends up to unity. In  the latter case we note that any 
particle would spend most of its time nearly aligned with the - y axis, in fact, 
within a small angle of 0[( 1 - A)*] of full alignment. 

Equation (7) may be integrated to yield the phase angle $ as a function of 
time : 

tan- = cos8+ (A2-sin28)*):tan((1 --,)*wt) 

As was previously noted, the particle dipole axis describes a periodic orbit. 
The orbit period 2n/( 1 - A2)6 is the same for all orbits, with a given value of A. 

We finally turn to the metric of the non-orthogonal 8,$ co-ordinates. In  
addition to the familiar measures of length he and h, along the curves of constant 
9 and 8 respectively, it is necessary to specify the angle a of the skewness between 
these curves. The three quantities are found from the square of the element of arc 
length on the unit sphere: 

Using (6) we find 

v 2 cos 8 - (A2 - sin2 8): 

as2 = h; ae2 + 2h,, h4 cos a a8 a+ + h; C E ~ .  

- + (A2 - sin2 8) cos2 $ A2 - sin4 0 2h cos 8 cos 9 - [  ~2 - sin2 8 + ( ~ 2  - sin2 014 0 - 

A cot 8 A cot $6 
t a n a  = +- (h2-sin28)+sin$ sin0 . J 

Hence the important measure of an element of area in the 8, 9 co-ordinates is 

h, h4 sin a d0d# = [cos 8 + (A2 - sin2 8)4 cos $1 A-l d0 d$. 
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4. The orientation distribution function with weak Brownian motion 
I n  this section, we calculate the orientation distribution for the limiting case 

of weak Brownian motion. The problem is very similar to one discussed in our 
ea.rlier paper LH, and as we proceed we shall rely heavily on the ideas as pre- 
sented in that paper. In  particular, for this limiting case the calculation of the 
orientation distribution will be seen to split into two parts: a straightforward 
determination of the distribution of phase angles for a given orbit, followed by 
a less obvious calculation of the relative distribution of the different orbits. The 
effect of the weak Brownian motions over a long time is to damp out the tem- 
poral oscillations of the phase distribution and to control the orbit distribution. 

We start by transforming ( 2 )  into the non-orthogonal 8, q5 co-ordinates. No 
large gradients develop in this problem as D/w + 0,  so that, as we are only inter- 
ested in the lowest approximation to the distribution function, we omit the 
Laplacian term. Thence the equation for the steady distribution is simply 

(h,h, sin a)-l a(h,hg sin a dN)/aq5 = 0. (9) 

This equation expresses the undetered motion of the particles around the orbits 
in the presence of vanishing Brownian effects. It is solved simply and yields 

The advantage of the natural 8, q5 co-ordinate system is that the orientation dis- 
tribution function resolves itself into two separate components : the denominator 
of (10) represents the distribution of phase angles about a particular orbit, and 
the numerator represents the relative distribution between the different orbits. 

At the level of approximation represented by (9), the orbit distribution f(0) 
remains undetermined- this reflects the lack of intrinsic preference for any par- 
ticular orbit which is inherent in ( 5 )  when Brownian rotation is completely neglec- 
ted. The cumulative effect on the orbit distribution of weak Brownian motions 
over a sufficiently long time is found from a more careful examination of ( 2 ) .  
In  our earlier paper L H  we showed in some detail that the steady orientation 
distribution satisfies an integral constraint 

This equation says that in the steady state there is no net diffusion of probability 
out of each closed orbit. Substituting for N from (10) and performing the indica- 
ted integrations yields a first-order ordinary differential equation for f (0) : 

[ 2  + h2 - 3 sin2 81 df/dS - 6 sin 8 cos 8 f = 0 

with solution f ( 8 )  =constant/(:!+h2- 3sin28). (11)  

The unspecified constant is to be determined from the normalization. This dis- 
tribution shows a maximum population for the orbit taking the largest permitted 
value of B(sin -l A )  and a minimum for the orbit with 8 = 0. The degree of skew- 
ness in the orbit distribution becomes more marked as h approaches unity. The 
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nearly flat distribution for small h is expected because the orbits are themselves 
almost uniformly distributed through the orientation space when labelled by the 
variable 8. On the other hand, as h + 1, all the orbits crowd through a narrow 
region near to the y axis. There is consequently a inore substantial redistribution 
towards orbits with larger values of 0 in order to reduce the gradient in N near 
the y axis. 

The normalization off is found from the normalization of N. Considering only 
the upper half-sphere of the orientation space, 

or in terms off 

The weighting for each orbit is the same because their periods are equal. By 
performing the integration of (1 I), we obtain the normalization constant: 

constant = (1 - h2) (2 + h2): 

Pinally, combining ( lo ) ,  (1  1) and (12) the orientation distribution function 
may be written as 

This completes our calculation of the lowest approximation to the distribution 
function N .  Higher approximations could be obtained via a perturbation ex- 
pansion in the small parameter D/w as expounded by us in Hinch & Leal (1972). 
However, for our present purposes it is sufficient to limit considerations to the 
approximation (13). 

5. The particle contribution to the bulk stress 
We have given in (3) the expression for the bulk stress and noted that its evalua- 

tion in the present circumstances essentially involves a calculation of the mean of 
the dipolar vector e .  Only the component (e,) is significant for calculation of the 
bulk stress. The component (e,) is identically zero since the y ,  x plane is a plane 
of symmetry for the distribution, and the component (e,) is irrelevant since it is 
parallel to the vector g. Thus, our task reverts to a calculation of (e , ) :  

sin-lh 

h(e,) = 2J0 dO/;*d# [ - sin2 8 + (A2 - sin2 0); cos 6 cos $1 Nh,h+ sina. 

Substitu.ting for N and h, h, sin a from (10) and (8) and integrating with respect to 
r$ we find 

sin-lh 
h(e,) = [ - 1 + 4nJ0 cOs ej(e) do] . 
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FIGTJRE 3. The average of the y component of the dipole axis unit vectors. -, equation 
(14); ---- , equation (15); --- , equation (1 6). Calculated values from Brenner & Weiss- 
man (1972): 0, o /D = 20; 17, w/D = 40. 

Finally, inserting the expression for f from (1 1) and the normalization constant 
( 12) and performing the B integration we have 

This expression is the main result of our paper. 
It is useful to look a t  the asymptotic evaluation of (14) in the two limits 

h -+ 0 and h --f 1. Although these asymptotic forms do not match in the commonly 
accepted sense, between them they do give a remarkably good numerical estimate 
of (14) throughout the entire range 0 < h < 1. For small A, 

( e  1/ ) = -$A-&h2-+&h3+O(A4). 

The first pair of terms can be found in Brenner & Weissman’s (1972) limiting 
study for D/w --f 0 with h = O(D/w) .  I n  the opposite limit, h --f 1, we find 

-1]+0(€210g~), (16) 
[ log ( l /e)  +log 3 
B3410g [(3&+ 1)/(34- I)] {e,)  = - 1 + E 

in which E = 1 - h 4 1. We have plotted our main result as well as these asymp- 
totic forms in figure 3. We also give two relevant points from Brenner & Weiss- 
man’s numerical calculations and a portion of the curve (e , )  = -kl, which is 
applicable for weak Brownian motions when h > 1. It can be seen that the 
numerical results for w/D = 20 and o /D = 40 are satisfactorily tending to our 
result (14), which is strictly valid only in the limit w/D -+ co. 
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The results may be understood as follows. When h -+ 0, we have already noted 
that all the orbits tend to circle about the vorticity axis with a nearly uniform 
rate of rotation. So (e,)  approaches zero. The slightly negative value is due t o  the 
slight skewness of the orbit paths towards negative y and the slightly non-uniform 
rotation rate, which is slowest as the dipole axis crosses the negative-y axis. At 
a higher approximation these two effects are partially reduced by the slight drift 
to orbits with larger values of 0. As h increases the orbit paths become increasingly 
skewed towards the negative-y axis, and in the limit as h -+ 1, they all pass 
essentially through this point. In addition, especially for small 0, the rate of rota- 
tion also becomes skewed and particles eventually spend a very long portion of 
every orbit with the dipole axis virtually aligned in the direction of negative y. 
The combination of these two effects then leads to a very large peak in the orienta- 
tion distribution function near to the negative-y axis. Because of the resulting 
large gradients in N ,  rotary Brownian motion acts to produce a net flux away 
from this position and this leads to a somewhat skewed distribution which favours 
orbits with sin 0 N A. From our result (e,)  -+ - 1 as h -+ 1, it is obvious that the 
diffusion is not too effective in smoothing N .  The reason lies in the nature of the 
orbits themselves. In  diffusing away from the population peak, the partides first 
encounter orbits of larger 8, but these are themselves nestled relatively near to 
the y axis. Further outward diffusion puts the particle back onto orbits of small 
8. The steady-state distribution then represents a balance between diffusion 
outwards away from the axis, and advection back, with advection winning 
because of the assumed smallness of D. The above discussion of the limit h -+ 1 
indicates that our solution is valid only for fixed h < 1 as D/w + 0. As the gradi- 
ents become larger and the particle’s motion slower within the small region near 
to the negative-y axis, the diffusion coefficient has to be made progressively 
smaller in order that the poor advection should win, as we have basically assumed. 
To correctly estimate the required smallness of the diffusion coefficient we 
follow our earlier paper LH and ask that the appropriate PBclet number be large, 

D/w (1 -A)$.  i.e. 

This is the condition quoted without justification earlier in the paper. For a 
small value of D/w which does not satisfy this additional restriction, a matched 
asymptotic expansion must be used which incorporates a singular region near the 
- yaxis (cf. the intermediate regime of Hinch & Leal 1972). 

Finally, we consider a simple shear flow 

w = (O,O,wy). 

We chose this particular form for convenience : any simple shear of this magni- 
tude in the y, x plane would do for the present purposes. With this shear flow, 
the equation for the bulk stress (3) yields 

gY2 = p w [ l  +$@--$@h(ev)] ,  
v2, = pw[1 +#@+#@h(e,)], 

all other components of the deviatoric bulk stress vanishing. It has become 
customary to call the tangential shear stress vV2 divided by the shear rate w 
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FIGURE 4. The intrinsic viscosity in simple shear flow. 

the effective viscosity of the suspension. For a non-Newtonian material this 
terminology can be misleading; for a discussion of this point in the context of 
dipolar suspensions see Leal (1971). The intrinsic viscosity is then defined as 

and in the present case is given by 

[u] = 3 - #h(e,), 

We have plotted this quantity (for h < 1) in figure 4 with (e,) evaluated from 
(14). Also plotted is a portion of the weak Brownian motion result for the non- 
orbiting case 

rpi = 4 > 11, 

which follows from e2/ = -h-l. It can be seen that the slope of [p] versus h 
is discontinuous at  h = 1. For all h > 1, the particle dipole axis lies in the y,z 
plane, the particle does not rotate, and since the disturbance flow caused by 
the particle is thus independent of A, the intrinsic viscosity is constant. For h < 1, 
however, the rotation axis lies in the x, y plane and the particle rotates a t  a rate 
depending on the degree of alignment of this axis with the vorticity vector. Since 
the average degree of alignment increases as h decreases, the intrinsic viscosity 
approaches the Einstein value ofs .  The discontinuity in the slope of [u] is ulti- 
mately smoothed out in a small region h = 1 + O(D/w)%, which could be examined 
using the matched asymptotic expansion mentioned earlier. 

It is interesting to compare our results with those for the weak Brownian 
motion for y $. ti.. Brenner (1970b) has given the intrinsic viscosity for the limit- 
ing case Dlo = 0 as 

5+${1 +h2- [(I -h2)2+4h2cos2y]B]. 
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This takes a well-defined limit for fixed h as y -+ Q, which is 

?-+-A2 for h < 1, 

4 for h > 1. 
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It is clear that this limiting result for y + Qn differs from our results for weak 
Brownian motion a t  y = in. The apparent disagreement is resolved by carefully 
considering the double limit, D/w + 0 and y + Qn. For y near but not equal to 
Qn, the particle tends to its fixed orientation via a spiral path which differs little 
from the closed orbits for y = Bn. It is useful to describe the spiralling as a com- 
bination of motion about the orbits with a cross-orbit drift. When Brownian rota- 
tion is negligible, the cross-orbit drift eventually yields the preferred particle 
orientation and Brenner’s limiting expression for [p] is valid. On the other hand, 
when y is very near to in, the cross-orbit drift is very slow and is easily dominated 
by Brownian rotations, so that the particle effectively follows the closed orbits 
for y = in. I n  those circumstances, our present analysis would be applicable. 
An estimate of the magnitude of D/w separating these two regimes is obtained by 
noting that the rate of convergence of the spiral ‘orbit’ to its fixed point is of 
O(wA[y-QnIII-hl-*) solongas Iy-inI < Il-hl andA=O(l).Thusforfixed 
A, as y + in, the particle will ultimately attain an equilibrium orientation pro- 
vided that 

D/w < Iy-&r]II--Al--~, 1. 

As y becomes sufficiently close to in- for this restriction to be violated, then 
our regime takes over, and the expression (17), with (14), becomes valid for 
the intrinsic viscosity. Thus for any fixed y $I $n, there exists a D/w sufficiently 
small for Brenner’s regime to be applicable. However, as y -+ in for D / o  fixed 
and small, there will always be a smooth transition from Brenner’s regime to 
the regime of our present analysis. 
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