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A dilute suspension of rigid axisymmetric particles in a time-dependent shear 
flow is considered in circumstances where the shear flow alignment of the particles 
dominates small but not unimportant Brownian disorientations. Three cases 
are studied: stress relaxation on the cessation of a steady shear, the sudden 
application of a steady shear from a state of rest and the sudden change from one 
steady shear rate to another. The rheology exhibits effects on two basic time 
scales provided that the particle aspect ratio r is not extreme: oscillatory fea- 
tures with a frequency proportional to the shear rate y which are due to the rota- 
tion of the particles about their Jeffery orbits, and an exponentially fading 
memory due to Brownian diffusion with a characteristic time praportional to the 
inverse diffusion rate D-l. When the particle aspect ratio r becomes large, the 
oscillation frequency is reduced to y/r  while the diffusion rate is enhanced to 
Dr2 for some features and to Dr4 for others. 

1. Introduction 
In  this paper we continue our investigation of a suspension of particles whose 

orientation is affected by Brownian rotations. Attention is restricted to a dilute 
suspension of rigid spheroidal particles which are free af external forces or couples 
and which also are sufficiently small that inertia is negligible in the microscale 
mechanics. The constitutive relation for this suspension consists of three equa- 
tions as we shall now recall. 

When placed in a linear bulk flow composed of a symmetric strain rate E 
and an antisymmetric vorticity Q, 

u(x,~) = [E(t)+Q(t)].x, 

an isolated particle will rotate in the absence of Brownian couples such that the 
unit vector p(t) in the direction of its symmetry axis changes according to 

rj = a. p + (r2- 1) [ E.  p - p(p. E. p)], (1) 

where r is the particle aspect ratio. The random Brownian motions require the 
introduction of a differential probability density function N(p, t )  to describe the 
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particle’s orientation. The evolution of N(p, t)  with time is governed by a simple 
Fokker-Planck equation 

(aN/at) + div (Nfi - DVN) = 0. ( 2 )  

The f i s t  contribution to the probability flux is an undisturbed advection given 
by (1). The Brownian motions contribute an additional flux which is modelled 
as a diffusion process with a Stokes-Einstein diffusion coefficient D. The bulk 
stress consists of a Newtonian term 2p E for the pure solvent, plus a contribution 

Q = 2p@{A(PPPP): E + B[(PP). E + E. (PP)I + CE + WPP) D}. (3) 

Here p is the viscosity of the suspending fluid, CD the volume fraction of the par- 
ticles and A ,  B, C and P material coefficients which depend only on the particle 
aspect ratio and shape and are given for spheroids in Hinch & Leal (1972). 
The angled brackets denote averages of the included quantities weighted with 
the distribution function N .  The last term in (3) is known as the diffusion stress, 
about whose inclusion there is some debate, and the rest as the strain stress. 

It is apparent that the constitutive relations, equations (1)-(3), are mathe- 
matically complex despite the simplicity of the physical model. Except for the 
immediate observation of nonlinearity and a fading memory, little can be said 
about the rheological behaviour in a, general time-dependent linear flow. An 
understanding of the suspension must be obtained by piecing together numerous 
approximate solutions. This study is addressed to the time-dependent effects 
for shear flows in the limiting case of weak Brownian rotations (flows with 
strong shear). 

We have previously tackled steady shear flows with weak Brownian motions, 
see Hinch & Leal (1972). Coupled with the earlier work for dominant Brownian 
rotations, that approximate solution allowed a complete picture (i.e. for all shear 
rates) of the shear-dependent intrinsic viscosity and normal stress differences. 
The asymptotic expansion which we developed in that paper will be extended 
here to deal with time variations of the bulk flow. 

The constitutive equations (I)-( 3) usefully simplify for nearly spherical 
particles. In an application of the simplified form to a variety of time-dependent 
problems (Leal & Hinch 1972) we identified two temporal characteristics of the 
suspension’s rheology. First w0 noted that the near-sphere suspension acts as a 
natural oscillator with a frequency equal to, or half, the magnitude 2Q of the 
vorticity. These oscillations originate inthe oscillating flow seen by the effectively 
spherical particles as they spin with the vorticity. The other characteristic was an 
exponentially fading memory which is caused by the Brownian diffusion, and 
has a single time constant 6D. In  an oscillating flow with an imposed frequency 
w, these two effects would typically combine to produce a linear impedance 
containing factors like (w 5 Q + i6D)-l. 

The present study attempts to determine how these two temporal character- 
istics become modified for strictly non-spherical particles. If Brownian motions 
dominate, the exponential decay swamps the oscillation. The suspension further 
remains nearly isotropic, so that the single decay rate is the same as that for the 
near-sphere limit, 6 0 .  When the Brownian motions are weak the situation is 
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quite different. The oscillations have a much shorter time scale than the decay 
and hence can be seen before they decay a way. We shall find that the anisotropy 
of the suspension associated with the particles' non-spherical shape can lead to 
quantitative changes in both the oscillation and its decay compared with the 
near-sphere model in the same limit, D/y 4 1. 

2. Stress relaxation 
Before proceeding to the analysis of general time-dependent shear flows with 

weak Brownian effects, we consider the trivial case of stress relaxation from a 
strong steady shearing flow 

u(x, t )  = (y( t )  x2,0, 01, 

The generalization of our near-sphere solution for this standard experiment can 
be given for arbitrary aspect ratias. 

When the strain rate vanishes, evaluation of the bulk stress (3) only requires 
the calculation of the second moment of p with respect to N .  In  the absence of 
any flow the second moment can be obtained directsly without recourse to the full 
distribution function. Multiplying (2) by pp and integrating over the orientation 
space produces 

((a/at)+6D)(pp-+I) = 0. 

Substituting the solution of this equation into the expression (3) for the bulk 
stress yields 

o(t) = 2c@DH(pp-~l)lt=O-.e-6Dt (t  > 0). (5) 

The three initial values of (pp-BI) associated with the shear stress and the 
two normal stress differences can be found as functions of the aspect ratio in 
table 3 of Hinch & Leal (1972) for the relaxation from a steady strong shear. 

The main features of the rheological response in the present case of non- 
spherical particles are little changed from the results found in our previous 
investigation of the near-sphere suspension for this same flow. In  that instance 
we found that the particle contribution to the bulk stress relaxed exponentially 
with a decay rate 6 0  after fkst suffering a discontinuous reduction in magni- 
tude at the initial instant due to the vanishing of the strain-stress contribution 
for E = 0.  According to (5), the relaxation rate 6 0  and the initial drop in the par- 
ticle contribution to the bulk stress are maintained in the present case. The main 
difference is the increase in the magnitude of the discontinuity in the normal 
stress for extreme aspect ratios, e.g. for rods, r B 1, 
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This is a consequence of the slow part of the orbit, which amplifies the strain 
stress relative to the diffusion stress. 

The suspension is anisotropic for non-spherical particles in strong shear flow, 
with large gradients in the orientation distribution. These enhance the diffusional 
relaxation of the orientation distribution. The reason why the decay rate of the 
stresses does not similarly increase is that the diffusion stress (the only non-zero 
contribution when the  strain rate vanishes) depends only on the second harmonic 
of the distribution. We shall see that the decay rate is modified when the bulk flow 
does not vanish. 

3. The expansion for strong shear flows 
We now set up the general asymptotic expansion which is required for time- 

dependent shear flows with weak Brownian effects. It will be necessary to restrict 
the varying shear flow to  be strong at all times, i.e. Iy(t)/Dl > 1. This unfortu- 
nately excludes oscillating flows which momentarily vanish. 

The full equations (2) with (1) are -first expressed in terms of the natural non- 
orthogonal C,T co-ordinates defined in Leal & Hinch (1971): 

with g = (hksina)-1. Here the metric functions h, k and a are respectively the 
measures of length along the curves of constant 7 and C and the angle of skewness 
between these curves. They are known functions of C and 7. Undisturbed by 
Brownian rotations the particles traverse one of a singly infinite family of closed 
periodic Jeffery orbits. The variable C specifies the particular orbit for a given 
particle, and 7 the phase about that orbit. The combination g of the metric 
functions represents the concentration of probability due to the local slowing of 
the orbit speed and the crowding with nearby orbits. 

Without a change in notation it is useful to declare the problem (6) non- 
dimensionalized with respect to some typical shear rate. Henceforth t will be a 
dimensionless variable, y(t) an O(1) non-dimensional function and D a small 
dimensionless parameter . 

As we have already noted, there exist two intrinsic time scales for changes in 
the orientation distribution. From the left-hand side of (6) there is one corre- 
sponding to the instantaneous orbit period 2n(r + rl)/y(t). From the right there 
is the diffusional time scale D-l. In  the limit of strong shear being considered here 
these two scales become very different: the orientation distribution shows rapid 
oscillations with a slow diffusion-induced drift. I n  order to obtain an asymptotic 
expansion in the small parameter D which is uniformly valid in time, we therefore 
employ the familiar method of 'two-timing'. Formally we introduce the long 
second time T = Dt, which is treated as a new independent variable. Thus the 
time derivative in (6) is replaced by 

plat) + o(a/aq. 
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Substituting the expansion for N ,  

N(C,T;  t , T )  = N0+DN1+DzN2+...,  

into (6) and collecting together terms of like order in D produces the set of equa- 
tions 

and so on to higher orders. 

transform variables from (t,  r )  to ( T ~ ,  T ) ,  defining 
To simplify the advection operator on the left-hand side of equations (7) we 

We note that the previously sta,ted restriction that y(t) should be single-signed 
ensures that this transformation has a well-defined unique inverse t(TO, r) .  In  
the new variables equations ( 7 )  become 

cota -+- No 
a k: a~~ 

= - ac [- h s l n o s z -  (: ah)  ] 
+("+A) a7 ar, [A k:sina ( . + ~ ) N o - c o t a ~ ] .  a7 ar, ac ( 8 b )  

The solution of the expansion now proceeds as follows. Equation (8a) is hs t  

(9) 
integrated to obtain 

3 0  = f&C, 7 0 ,  T) g(C, 7 ) .  

This simply describes the undisturbed advection of the particles about fixed 
Jeffery orbits C. Depending on its initial phase T ~ ,  each particle changes its phase 
around the orbit according to 

The distribution function is compressed by the geometry and speed of rotation 
about the orbits according to the factor g. The slow drift in the orientation dis- 
tribution represented by the dependence offo on T is undetermined at this stage 
because diffusion has not; yet entered the calculation. 

With fo temporarily unknown we proceed to the next approximation (sb), 
which now may be expressed as 
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This equation splits into two parts: a fluctuating part for the forcing of short- 
time variations in N, and a secular part which provides a constraint on f o .  The 
split comes from noting that N, must be single-valued in the periodic phase vari- 
able r .  Thus 

and 

Equation (1 1) determines the way the first approximation to the distribution 
drifts under the action of the cumulative effects of weak Brownian couples. In  
the second approximation (10) the undeterminedf, will be similarly constrained 
by an integral condition found from the N, problem. Our expansion procedure is 
again seen to be inapplicable to shear flows which momentarily vanish. 

Although in principle any time-dependent strong shear flow can be tackled 
by (II), for most flows this would not be easy. The essential trouble lies in 
obtaining explicitly the inverse of the 70(t, 7 )  transformation. This is required 
when performing the 7 integrations in (10) and (1 I )  at fixed 70. Associated with 
this mathematical complexity is the difficulty of physically comprehending the 
material response when the time variations of the imposed shear are not com- 
mensurate with the orbit’s natural nonlinear oscillations. We have therefore only 
applied the general expansion to the transients of two steady strong shear flow 
problems: the start from the rest state and the step increase or decrease in shear 
rate. These flows are of special interest in view of their common application in 
experimental rheology . 

4. An eigenvalue problem for steady shear flows 
The eigenvalue problem associated with ( I  1) can be usefully studied in isola- 

tion. The results will be employed in both the specific examples. When y(t)  is a 
constant, the 70 transformation and the required integrals greatly simplify. 
Equation (1 1) becomes 

This equation has to be solved with an appropriate initial condition, subject to 
regularity at C = 0 and oc). 

As time T advances the solution must approach the steady-state distribution 
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plus the obvious analytic continuation when K2 does not exceed 411N (Hinch & 
Leal 1972). The constant in ( 1 3 )  is determined from the normalization of 11', 
which reduces to the integral condition 

As we shall see, ( 1 2 )  is also applicable to  the function fi in tho solution ( 1 0 )  for 
the step-up problem, although a different h a 1  steady solution will be attained in 
that instance. 

To discuss the decay of the difference betwmn the initial conditions and the 
final state, we must look a t  the cigenvalue problcmassociated with ( 1 2 ) .  For an 
eigensolution 

the eigenfunction is governed by 

+ (2h - n 2 [ 3 K  - 5 + 1V!C-*]} f = 0 ( 1 4 )  

subject to  regularity conditions at C = 0 and 00. Except for the trivial case of 
spheres ( r  = 1) and zero eigenvalue which corresponds to the steady solution (1  3), 
no closed-form analytic solutions havc been found for (14). We shall concentratc 
our attontion on tho limiting case r 9 1 ,  where ccrtain general properties of tho 
eigenfunctions and cigenvalues may be determincd which will onablc the qunli- 
tative features of the rheological behavour to be deduced. The eigonvalucs for the 
other limit r < 1 can bc obtained by intcrchanging r and r 

A uniformly valid approximation to ( 1 4 )  for large r is 

In  order to ascertain the nature of the eigenfunctionswe consider three ranges of 
C. First, a t  one end of the domain whore 0 Q C < r-l, equation ( 1 5 )  reduces to 

To ensure regularity for C -+ 0, we select the solution proportional to Gfl-tTL, 
rather than C In C, for n = 0 and C1-n for n 1, 
equation ( 1 5 )  takes the form 

1. At the other end, where C 

- c4-+2c3f = o ,  
dC 2 ] 

withsolutions CP2 ar~dC-~.Theregularityconditionat C = co comes from thenwd 
to construct an eigcnsolution on the wholo orientation space. The eigonfunction 
must be either symmetric or antisymmetric about the xl, x2  plane (C = co). This 
implies that the oigcnfunction f ( C )  should bo cither C-2 + O(C-4) or C-3 + O(C-j) 
as C --f co. Finally, in tho important intermediate region r-l < C < 1, equation 
(15) becomes 
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f = cos [( (8h/r2) - 1 - 3n2)) In C + constant]. (16) 

Now the mth eigenfunction must have m zeros within the domain of definition. 
Since the present eigenfunction is single-signed in the two end regions, the rn 
crossings of zero must occur in the intermediate region r - l s  C 5 1 where expres- 
sion (16) approximately applies. This gives an asymptotic estimate of the eigen- 
values of 

in which the end effects are confined to the function 6, which depends on n and 
weakly on m as in the group mllnr. The preceding arguments can be formally 
justified by employing the method of matched asymptotic expansions. An inner 
region of O(r-l) is required at C = 0, while the expansion is made in the two small 
parameters r-l and (In r)-1. The inner functions are related to Legendre functions. 

The estimate (17) is the primary result of this section, but it is clearly based on 
a number of assumptions about the structure of the eigenfunctions. A numerical 
verification of the asymptotic form of the eigenfunctions is not easy: by the time 
r is large enough for lnr  to be large, the small region 0 < C < r-l cannot be re- 
solved well by a finite difference scheme. A numericel integration of ( i4)  for the 
lower modes (n, m = 0, 1,2) has, however, found the eigenvalue estimate (17) 
to be about 10 yo inaccurate at r = 4 and within 5 % by r = 8, using 6 = l v i ,  1.5 
and 1.9 for the even modes a t  C = co and 6 = 1.6, 2.0 and 2-4 for the odd modes 
with n = 0, 1 and 2 respectively. No substantial increase in accuracy was found 
up to r = 128, perhaps owing to the slow decay of the logarithmic factors. 

5. Start of a steady shear 
The results of the previous section are now applied to the rheological response 

of a suspension of rod-like particles (r  B 1) when a steady strong shear flow starts 
from a state of rest, i.e. 

y = constant 

0 

(t > 0) ,  

with D/y  < 1. We assume that the orientation distribution is initially uniform so 
that the initial conditions on the drift functions fm(C, 70, T) which occur in the 
homogeneous solution at each level of the expansion are simply 

f O P ,  To, 0 )  = C47V(C, 7)1-11 ,=To> (19a) 

~ , ( C , T ~ ,  0) = 0 (n 2 1). (19b) 

We confine our attention to  the first approximation to N .  In  spite of the fact 
that the necessary eigenfunctions are not explicitly available, a reasonably com- 
plete qualitative description of No, and hence the bulk stress, can be pieced 
together from the estimate (17) of the eigenvalues plus a consideration of the short 
time scale T < 1 on which there is no diffusion. Okagawa (1972, private com- 
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FIGURE 1. The intrinsic viscosity after the start of a steady shear. 

munication) has independently investigated a portion of the non-diffusive regime 
using both theoretical calculations and very interesting experimental observa- 
tions. 

The effective viscosity 

We begin our discussion of the rheological behaviour by considering the time 
variations of the  intrinsic viscosity. It is convenient to separate the development 
into three stages, t 5 (Dr4)-l, (Dr4)-l 5 t 5 (Dr2)-I and t 2 (Dr2)-l, as shown in 
figure 1. 

The first is the short time scale T < 1 on which fo is essentially unchanged from 
(19a). Combining this distribution with (3), the intrinsic viscosity during this 
stage can be expressed as 

C5 sin2r cos2 r 1 
b] = 2+- ~ n T n r ~ ~  d~.lO"'dr[1 +cZ+c2r2sin2r12 +Cz+C2+sin2 (7--t)l+' 

(20) 
where the ro transformation is simply T~ = T - wt with w = yr/(r2 + 1). This func- 
tion is periodic with sharp peaks a t  wt = nn. Between the peaks it can be evalu- 
ated analytically to yield 

The nature of the peaks is found by noting they occur for wt within O(r-1) of 
nn, i.e. for ro = r - nrr - S/r, where 6 is of order unity. Then 

j-p] = 2+(cot2wt/lnr). (21a) 

For 6 = 0 t3he integration can be carried out analytically, yielding the initial value 
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[p] = r2/151nr. For other values of 6 the integration is most conveniently done 
numerically. A maximum value of [p] equal t o  0-085r2/ln r is found at  

y t - n m  = 8 = 5 1.4. 

This is the split peak shown in figure 1 at each wt = nr. 
The strong oscillation of [p] is a consequence of the nature of the Jeffery orbits 

for large r together with the initial uniform state. For large reach particle spends 
most of its orbit with its axis oi  rotation virtually aligned with the flow. In  this 
position the disturbance caused by the particle is minimized and hence also its 
contribution to the intrinsic viscosity. When not aligned a particle causes a 
much stronger O(r2)  disturbance. A t  the initial instant the particle orientation is 
random. Thus, most of the particles are in the little frequented non-aligned posi- 
t>ions and the intrinsic viscosity is large. The peak quickly diminishes and the 
intrinsic viscosity takes on the value 2 as the particles align with the flow for an 
extensive period.. The further peaks occur when the particles flip through 180" 
to the opposite alignment at  each half orbit period. The double peak is a result of 
the maximum dissipation that occurs when the average particle orientation 
coincides with the two directions of the principal extension in the undisturbed 
shear. We note that the value of [,u] averaged over an orbit period must be the 
Einsenschitz value r /n  In r in this first stage. 

The effects of Brownian diffusion are confined to the second and third stages 
and consist of two ssparate effects : a redistribution of the relative population of 
the various orbits and a phase mixing about eachorbit. We have already given an 
estimate, equation (17), of the eigenvalues associated with the drift of No on the 
long time scale T .  Since the initial form of ( 19 a )  offo has a period 7 = 7r the excited 
eigenmodes are those with even values of n. Without an explicit resolution of the 
initial distribution into the eigenfunctions it is not possible to be precise as to the 
weight of any particular mode. However, in view of the O(r-l) 70 breadth of the 
peak in the initial No (and hence the variation of [p] in time), it is clear that all the 
even modes up to n = O(r)  must be included with essentially the same weight. 
The weights of the higher modes n > O ( r )  fall off rapidly. The longest relaxation 
time of the distribution is thus 8/Dr2, and corresponds to  a redistribution of the 
relative population of the various orbits. On the other hand, the important long 
tail of the harmonics out to n = O ( r )  is affected on the much shorter time scale 
O(Dr4)-l. This quicker diffusion process is dominated by the phase mixing about 
the orbits. The intrinsic viscosity in these two diffusion stages is sketched in 
figure 1. The phase mixing in the middle stage at t = O(Dr*)-l causes the peaks to 
decrease in magnitude, broaden and lose their double humped character. In 
the final stage at t = O(Dr2)-l the last (lowest) harmonics of the oscillation decay 
away, and owing to the adjustment in the relative orbit distribution the averaged 
viscosity decreases slightly from Eisenschitz value to the steady-state value 
0.315153r/lnr (Hinch & Leal 1972). It is ironic that these values are within 1 yo. 

The normal stress differences 

In  the steady state the normal stress differences are of O(D)  for D < I. We find 
in this section that the transients which arise from No are cf the same magnitude 
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FIGURE 2.  The normal stress differences after the start of a steady shear. 
The curve with the lower peaks refers to the second normal stress. 

as the particle contribution to the shear stress. We have sketched the principal 
and secondary normal stress differences as functions of time in figure 2. Again 
there are three stages of development corresponding to pure advection and 
diffusion through phase mixing of the high and low harmonics. 

The principal and secondary stress differences in the initial advection stage 
(T < 1) can be expressed as 

( 2 2 b )  
C3r2 sin r cos r (Cz cos2 r - 1) 

(1 + ~ 2 + ~ 2 r 2 s i n 2 ~ ) 2 [ 1 + ~ 2 + ~ 2 r 2 s i n 2 ( r - o t ) l % '  
X 

As was the case with the intrinsic viscosity, the functions A, and A, both show 
sharp periodic peaks, separated by t = m / y ,  which are associated with the 
concerted flip of the particles from one aligned state to another. Unlike the 
intrinsic viscosity, which oscillates about a non-zero mean, the average values of 
A, and A2 are zero to O(1) in D << 1. The change in sign occurs when the particles 
pass from being on average in the quadrants of compressional strain to the exten- 
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sional quadrants. The expressions for A1 and A, can be evaluated analytically 
between the peaks: 

A, = (r/2lnr) cotut, (234 

A2 = O(l/lnr), ( 2 4 4  

i.e. the secondary difference is smaller by O(r-l). The nature of the peaks is a-gain 
ascertained by putting T~ = i- - nm - 6/r: 

i.e. A, and A, are of the same order of magnitude. In  addition we note that because 
A, and A, are both odd in 6 the split positive maxima in [p] become peaks 

A, = & 0-27r2/lnr and A2 = & 0-061r2/lnr 

yt-nm = 6 = -t 3.4 and k 1.0, at  
respectively. 

The effects of Brownian diffusion in the remaining two stages are quali- 
tatively similar t o  those described in the previous section for b], although only 
phase mixing is relevant to the normal stresses. The peaks begin to decrease 
and broaden at t = O(Dr4)-l. The last few harmonics decay away at t = 0(Dr2)-l, 
leaving the steady normal stresses which are O(Dr3) smaller than the steady shear 
stress. 

6. Step change in shear rate 

in the previous section for the step up from one steady strong shear to another: 
As a second example we have carried out similar calculations to those described 

We again confine our attention to the limit of large r. Although this problem 
differs only from the start up in the initial condition, the rheological response is 
considerably different. 

The key to the present example is the observation that except for the multi- 
plicative factor y-n in Nn the form of the steady solutions N, is independent of 
the shear rate. A step change in the shear rate will therefore not alter the orienta- 
tion distribution at all to first order, the transients being confined to ATl and higher 
orders; thus 

for all times, where f*(C) is given by (13). The equation governing N.. is ( S b ) ,  
which is solved in equation (10). In  an earlier paper (Hinch & Leal 1972) we found 
the integral contribution to (10) with afo/aT = 0. For large r it  is 

N.0 = f*@) dC,  7) 

1 Nf 1 15r3 C5 
Y g Y (4C2+1)% 

sin 27 (1 -COB 27). -- = -- 
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The drift of f ,  is governed by the secularity condition which occurs at the O(D2) 
approximation. This equation is identical to equation (9) for fo because the 
steady forced component N: is odd in 7 and so makes no contribution, i.e. 

The homogeneous solution f, may therefore be expanded in the eigenmodes 
discussed in Q 4. 

Since No is not changed, the intrinsic viscosity is constant a t  its steady-state 
value to first order in D. A transient oscillation does appear a t  O(D),  dominating 
the O(D2) corrections to the steady value. The normal stresses, which are of O(D) 
in the steady state, show transient oscillations at the same order owing to the 
oscillations in N,. We have sketched the behaviour of the intrinsic viscosity and 
the normal stress functions A, and A, in f i p e s  3 and 4. 

1, the relatively simple form of (26) in (27) allows ana- 
lytic evaluation of the rheological quantities: 

In  the first stage, 21 
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FIGURE 4. The primary normal stress difference after a step decrease in steady shear. 

All the rheological quantities oscillate at frequencies equal to or twice the inverse 
orbit period, with magnitudes proportional to the fractional change in the shear 
rate. The secondary normal stress difference is asymptotically smaller than the 
primary difference. 

The effects of Brownian diffusion are simpler in the present case than in the 
start-up problem. Because of the special form of the initial state, the only excited 
eigenmodes for the drift of fl have n = 2 and n = 4. Thus, the time scales for the 
diffusive decay of the oscillations are estimated from (17) as 8/13Dr2 and 8/17Dr2, 
corresponding to phase mixing. 

7. Conclusions 
It is useful to compare the results of the present investigation for particles 

with Y 1 with those obtained in our previous study of nearly spherical particles. 
[Except for some resealing, the results for r < 1 are obtained from the large r 
limit by substituting r-1 for Y.] Two intrinsic time scales were observed for a 
suspension of near spheres: C2-l due to rotation about the Jeffery orbits, and 
(6D)-l due to Brownian diffusion. These features are unchanged for stress relaxa- 
tion as is shown in 0 2. However, in the presence of a non-zero shear, the anisotropy 
of the suspension associated with the non-spherical particles leads to quantitative 
changes in both the oscillations and their decay. 

The frequency of the oscillation due to the orbit rotation decreases with the 
increasing Jeffery orbit period 2n(r + r1)/y. As the rotation rate becomes non- 
uniform, i.e. as the particle spends a long period of quiescent alignment followed 
by a rapid disturbing flip-over, the oscillations can become spiked with long 
intermediate periods of a nearly constant bulk stress. 
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The decay rate of the transients is enhanced by the presence of large gradients 
in the distribution. Because the particles spend most of their orbit period within 
O(r-l)  of alignment with the flow, the typical gradients must be at  least of O(r) .  
Thus the diffusion rate increased to O(Dr2) .  Larger gradients of O(r2) result from 
the uniform initial condition as the particle rotation rate reduces during the 
orbit from the initial y to the long period of y r 2 .  

Although we have confined ourselves to a particularly simple class of time- 
dependent behaviour, namely the transients in a constant strong shear flow, we 
believe that the results are indicative of the response of the anisotropic suspension 
in more general circumstances. 

This work was carried out while E. J. H. was a visitor in Applied Mathematics 
a t  the California Institute of Technology. L. G. L. was partially supported by 
grant 6489-AC 7 from the Petroleum Research Fund, administered by the Ameri- 
can Chemical Society. 
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