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Very viscous horizontal convection
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‘Horizontal convection’ arises when a temperature variation is imposed along a
horizontal boundary of a finite fluid volume. Here we study the infinite-Prandtl-
number limit relevant to very viscous fluids, motivated by the study of convection in
glass furnaces. We consider a rectangular domain with insulating conditions on the
sides and bottom, and a linear temperature gradient on the top. We describe steady
states for a large range of aspect ratio A and Rayleigh number Ra , and find universal
scalings for the transition from small to large Rayleigh numbers. At large Rayleigh
number, the top boundary-layer thickness scales as Ra−1/5, with the circulation and
heat flux scaling as Ra1/5. These scalings hold for both rigid and shear-free boundary
conditions on the top or on the other boundaries, which is initially surprising, but is
because the return flow is dominated by a horizontal intrusion immediately beneath
the top boundary layer. A downwelling plume also forms on one side, but because
of strong stratification in the interior, the volume flux it carries is much smaller than
that of the horizontal intrusion, decaying as the inverse of the depth below the top
boundary. The fluid in the plume detrains into the interior and then returns to the
top boundary, thus forming a ‘filling box’. We find analytic solutions for the interior
temperature and streamfunction and match them to a similarity solution for the
plume. At depths comparable to the length of the top boundary the streamfunction
has O(1) values and the temperature variations scale as 1/Ra . Transient calculations
with a large, but finite, Prandtl number, show how the steady state is reached from
hot and cold initial conditions.

1. Introduction
The temperature of the upper surface of the molten glass in glass furnaces varies

from one end to the other due to the addition of cold floating raw materials at one
end and heating by gas flames from above. The resulting convection in the furnace is
an example of horizontal convection, which is the general term for convection driven
by varying the temperature along a horizontal surface. The glass furnace motivates
an investigation of horizontal convection in the very viscous limit of infinite Prandtl
number, and poses a simple theoretical problem in the study of convective motions
of fluids, in the same canonical vein as the problems of Bénard and vertical-slot
convection. Horizontal convection differs in several ways from these systems. In
particular, as we shall show, at large Rayleigh number only a weak heat flux and flow
penetrate the depth of the fluid.

Previous studies of horizontal convection have been motivated by the consideration
of transport of warm fluid in the oceans from the tropics to high latitudes, where
it cools and sinks, before an upwelling flow across the ocean basin completes the
flow (see Huang 1999; Wunsch & Ferrari 2004; Hughes & Griffiths 2006, and
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references therein). The sinking regions and upwelling are important for establishing
the stratification of the ocean.

A number of authors have considered idealized horizontal convection, using
laboratory experiments, two-dimensional numerical simulations, and theoretical
analyses valid for Prandtl number Pr � O(1). Two of the questions that recur in
the literature are the correct scaling dependences at large Rayleigh number, and the
depth and strength of the return flow. We shall resolve these issues for the very viscous
limit, giving a detailed analysis supported by numerical simulation.

In a foundational paper, Rossby (1965) described laboratory experiments for Prandtl
numbers between 10 and 104 and Rayleigh numbers between 107 and 1010, and
presented a scaling argument that predicts that both the circulation and heat flux
scale as Ra1/5. These scalings are often referred to as the Rossby scalings. Rossby
(1998) presented numerical simulations with shear-free boundary conditions, Rayleigh
numbers up to 108, and Prandtl numbers between 1 and 100. It was suggested, without
detailed justification, that the same Ra1/5 scalings remain valid despite the change
to shear-free boundary conditions. There was good numerical evidence that the heat
flux scales as Ra1/5, but the evidence that the streamfunction scales as Ra1/5 was less
clear.

Further laboratory experiments were conducted, for a rigid top and Pr � 8, by
Wang & Huang (2005) and Mullarney, Griffiths & Hughes (2004), with Rayleigh
numbers in the ranges 107–1010 and 1011–1013 respectively. Wang & Huang (2005)
found a transition to unsteady behaviour at Ra = 4 × 108, whereas Mullarney et al.
(2004) observed that the flow was always unsteady for their very large Rayleigh
numbers and apparently turbulent. Another difference between the two sets of
experiments was the ‘partial penetration’ observed by Wang & Huang (2005), with
most of the return flow restricted to a shallow layer near the heated boundary, which
contrasts with the more significant interior flow found by Mullarney et al. (2004) using
larger Rayleigh numbers. Both groups presented good evidence for the Ra1/5 scalings
in the unsteady regime, and Mullarney et al. (2004) showed that the Ra1/5 scalings
were consistent with four numerical experiments conducted at Rayleigh numbers
around 1012. Paparella & Young (2002) described numerical simulations with stress-
free conditions and Prandtl numbers between 0.1 and 10, and found the stability
boundary in the parameter space (Ra , Pr) for Pr � 4.

Theoretical analyses, valid for Pr � O(1), have also been undertaken. Killworth &
Manins (1980) conducted a boundary-layer analysis, and derived a similarity solution
for the main boundary layer by imposing a quadratic temperature profile. Hughes
et al. (2007) studied a filling-box model of horizontal convection at large Rayleigh
number. In their model the return flow comprises a turbulent plume, which evolves
by buoyancy and entrainment near a surface heat sink, and solely by entrainment
further below the surface. The plume reaches the bottom of the tank, and then
spreads across the width before returning as a uniform upwelling through the
interior.

The question of the correct asymptotic scaling has also been taken up by Siggers,
Kerswell & Balmforth (2004), who derived a bound for the heat flux of Ra1/3 and also
presented numerical results for Rayleigh numbers up to 108 and Prandtl numbers
between 0.2 and 4, with stress-free conditions. Daniels & Punpocha (2004, 2005)
presented a theoretical analysis of horizontal convection in a porous medium, which
gives different scalings, but is in much the same spirit as the analysis herein. For
infinite-Prandtl-number horizontal convection, some numerical results were described
in McKenzie, Roberts & Weiss (1974).
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Recently, Gramberg, Howell & Ockendon (2007) looked at the problem of very
viscous horizontal convection addressed in this paper, but with different conclusions.
For large Rayleigh numbers, they constructed an asymptotic theory treating the hot
boundary layer like the spreading of a thin layer of light liquid over a shallow layer
of heavy fluid, as in Lister & Kerr (1989). The condition of no tangential stress on
the upper free surface and the assumption that the return flow is distributed over the
depth of the shallow layer makes the thin light layer move at a uniform velocity to the
leading approximation. Considering additionally the thermal balance in the thin top
boundary layer leads to a prediction that the thickness of the thin layer scales with
Ra−1/4. Gramberg et al. (2007) did not test this prediction or associated predictions
against their numerical solutions, conducted for Rayleigh numbers up to 7 × 108. We
do not find this behaviour because the return flow is not actually distributed over the
depth of the layer for reasons that are explained in § 4. In fact, the velocity profiles
in figures 11, 12 and 13 of Gramberg et al. (2007) do not show the uniform velocity
across the top layer which is the basis of their analysis.

In this paper we largely neglect inertia and consider the infinite-Prandtl-number
limit of horizontal convection, as appropriate for the very viscous fluids found in a
glass furnace and the Earth’s mantle. We focus on steady states, and briefly consider
evolution toward steady state. We are able to examine and explain the structure of the
steady solutions at large Rayleigh number, and derive the key scalings for the different
regions. The theoretical analysis is guided and supported by numerical simulations
for Rayleigh numbers up to 1010. We present conclusive numerical evidence that, for
both rigid and shear-free conditions, at large Rayleigh number the boundary-layer
thickness scales as Ra−1/5, with circulation strength and heat flux scaling as Ra1/5.

The independence of the scalings of the boundary condition is at first surprising,
since standard assumptions about viscous boundary layers typically yield different
answers depending on whether the boundaries are rigid or stress-free (e.g. Roberts
1977; Huppert 1982; Lister & Kerr 1989). The results are understood by examining
the return flow from the top boundary layer, and showing that it is dominated
by a horizontal intrusion immediately below the boundary layer, with only a weak
downwelling plume that returns through the interior at depth. The presence of the
intrusion implies strong shear within the boundary layer even for a shear-free surface
condition. It is therefore valid to assume that the characteristic vertical length scale
of velocity gradients is the same as that of the temperature gradients, which gives rise
to the Ra1/5 scalings. We also show that the streamfunction decays as the inverse of
the depth for large depths, because of strong stratification beneath the top boundary
layer. The streamfunction at depth is O(1) with temperature variations scaling as
1/Ra . We find analytic solutions for the interior, and match them to a similarity
solution of the lubrication and thermal boundary-layer equations for the plume. The
predictions are in excellent agreement with numerical simulations.

We also study the effect of aspect ratio A (height over width) and the transition
from small to large Rayleigh numbers, and find universal scalings for the circulation
strength and heat flux. The parameter governing the transition is A5Ra if A � 1 and
Ra if A> 1, where Ra is as defined in (2.3).

The paper is organized as follows. In § 2 we present the non-dimensional governing
equations and explain the numerical method used to solve them. In § 3 we describe
the transition from small to large Rayleigh numbers, and derive universal scalings
that collapse the results for different aspect ratios. In § 4 we study the structure of the
large-Ra regime. We first explain how the return flow comprises a horizontal intrusion
and a side plume, and transients of numerical simulations are described to support
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Figure 1. Geometry and boundary conditions of the idealized dimensional problem.

these ideas. We then examine the different regions of the flow: the top boundary
layer, the intrusion, the side plume, and the return flow through the interior. In § 5
we discuss our results.

2. Governing equations and numerical method
Consider a two-dimensional rectangular box of length L and height H , and define

coordinates (x, z) with the origin at the top left corner and z taken as positive
downwards (figure 1). Flow is driven by a linear temperature profile T = �T x/L

imposed along the top boundary z = 0; all other walls are insulating so that the effect
of horizontal convection can be considered in isolation. (Mild singularities in the
corners due to the jump in dT/dx do not have a significant effect on the flow.) One
advantage of a linear temperature profile is that it is easy to realize experimentally.
A different temperature profile is expected to give similar results, provided it is
monotonic and smooth.

We consider rigid and shear-free conditions for the top boundary, and concentrate
on a rigid condition for the sides and bottom. As discussed in § 5, the results for
shear-free side and bottom boundaries are very similar. We adopt the Boussinesq
approximation, and, for simplicity, the material properties of kinematic viscosity ν,
thermal diffusivity κ and thermal expansivity α are assumed to be constant. We
consider the limit of infinite Prandtl number, so that fluid inertia is neglected.

We non-dimensionalize both x and z with the box length L, rather than the
height H , because L is more appropriate for the boundary-layer scalings in § 3.2.
The streamfunction ψ is non-dimensionalized with κ (so that the velocity u is
non-dimensionalized with κ/L) and the temperature T with �T . Then the steady
non-dimensional governing equations for vorticity and heat conservation are

∇4ψ = Ra
∂T

∂x
, (2.1)

−∂ψ

∂z

∂T

∂x
+

∂ψ

∂x

∂T

∂z
= ∇2T , (2.2)

where

Ra =
gα�T L3

νκ
. (2.3)
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The only dimensionless parameters are the Rayleigh number Ra , and the aspect ratio

A = H/L. (2.4)

Of particular interest are global measures of the strength of the flow and the heat
transfer in steady state. For the strength of the flow, we use the Péclet number defined
by

Pe ≡ ψmax. (2.5)

For the global heat transfer, we use the unsigned Nusselt number

Nu ≡
∫ 1

0

∣∣∣∣∂T

∂z
(z = 0)

∣∣∣∣ dx (2.6)

because the net heat transfer through the top boundary is zero in steady state, as the
other boundaries are insulating.

2.1. Numerical method

To find solutions of (2.1) and (2.2) numerically, we evolved the equations

∂u
∂t

= −∇p + ∇2u − Ra T ẑ, (2.7)

∇ · u = 0, (2.8)

∂T

∂t
+ ∇ · (u T ) = ∇2T (2.9)

for the primitive variables u, p and T until they reached a steady state. Equation (2.7)
is a form of artificial time-evolution, which reduces to (2.1) in steady state. The
numerical evolution scheme employs a finite-volume method with a staggered grid,
and it conserves mass, momentum and heat exactly. With Crank–Nicolson time-
stepping, the method is O(�x2) in space and O(�t2) in time. The pressure is obtained
at each integration step with a pressure update method. The Poisson problems for
the pressure, velocity and temperature are solved with a multigrid method.

At each time step, the greatest numerical cost results from the Poisson solver, which
is O(N2) per time step using a multigrid method, where N is the number of grid points
in each direction. At each time-step the multigrid solver was iterated either once or
twice. An O(1) time in (2.7)–(2.9) was required to reach steady state, and hence the
required number of time-steps ∼ 1/�t ∼ 1/�x ∼ N , where the link between �t

and �x is a Courant condition. Combining the cost of the multigrid solver and the
required number of iterations, the total cost of the numerical algorithm was O(N3).
The dependence of the cost on Rayleigh number is asymptotically O(Ra7/15), which
as we shall see follows from the Courant condition for the vertical flow in the corner
region.

In order to resolve the thin boundary layers at large Rayleigh number, we used a
smoothly varying coordinate transformation that stretches the grid in the vicinity of
the boundaries without losing the accuracy of central-differencing. Since the numerical
errors in a boundary layer of width δ are O(�x2/δ2) and in the interior are O(�x2),
it is a considerable advantage to use a stretched grid that makes these errors similar
so that the boundary layer is not under-resolved or the interior over-resolved. For
Ra = 108 and A= 1, for example, a stretched grid required approximately five times
fewer points to achieve the same degree of accuracy as a uniform grid. This reduction
in N by a factor 5 decreased the computational cost by a factor of about 100. For still
larger values of Ra , and therefore thinner boundary layers, the use of a stretched grid
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Figure 2. Example of �x2 convergence and Richardson extrapolation. Nusselt number Nu
against different grid spacings �x for Bénard convection at Ra = 104 and A =1. The dashed
line extrapolates the two data points with the smallest values of �x2, giving the value 4.884
as �x2 → 0.

is even more important to achieve practical inexpensive results. We used stretched
grids of size up to 200 × 200, in which the smallest and largest grid spacings differed
by a factor of up to 20 in the horizontal direction, and up to 40 in the vertical
direction.

Benchmark tests were carried out to validate the numerical code, and the results
compared to the literature. Figure 2 shows the Nusselt number computed at different
spatial resolutions for steady-state Bénard convection at Ra = 104 and A= 1 (with
Pr = ∞), and all walls rigid. This figure, and similar results, confirms the code
to be O(�x2). Richardson extrapolation of the two data points with the smallest
values of �x2 gives a grid-independent value Nu =4.884. This Nusselt number, and
similarly obtained root-mean-square velocity and corner heat fluxes, all agreed with
the benchmark results reported in Blankenbach et al. (1989) to at least four significant
figures.

In the numerical results reported below for horizontal convection, second-order
convergence was again verified, and Richardson extrapolation was used on the finest
grids to obtain highly accurate numerical data for all the scalar quantities. Following
this procedure usually ensured accuracy to at least three significant figures, so that
error bars are insignificant on the scale of the graphs presented.

We note that for the range of Rayleigh numbers considered (up to 1010), the
numerical scheme using artificial time-evolution did evolve to a steady state, and that
the final steady state was independent of different initial conditions (as in § 4.1). In
separate calculations with the left-hand side of (2.7) replaced by Pr−1Du/Dt , it was
found that the solutions for a shear-free top also became steady for a sufficiently large
but finite Prandtl number (Pr = 102 was sufficient for Ra = 109). This suggests that
these numerical steady states are also likely to be physically stable. Simulations for a
rigid top at finite Prandtl number did not evolve to a steady state for Ra � 3 × 108,
even for Pr = 105, which suggests that the infinite-Prandtl-number steady states with
a rigid top may not be stable at sufficiently large Rayleigh number. Most of the
results presented are for a shear-free top.
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Figure 3. Streamlines (dotted) and isotherms (solid) for a shear-free top boundary, with A = 1
and (a) Ra = 1, (b) Ra = 3 × 103, (c) Ra = 106. The isotherms are plotted at intervals of 0.05.
The intervals between streamlines are (a) 5 × 10−5, (b) 0.2, and (c) 2. The temperature in the
lower half of the box in (c) lies in the range 0.2 < T < 0.25, which is much less than the average
temperature of 0.5 on the top surface.

3. Linear and boundary-layer regimes
It is clear from (2.1) that the strength of the flow and hence the importance of the

advection terms in (2.2) increase with Ra . This gives rise to at least two regimes: at
sufficiently small Rayleigh number, advection is negligible, which we term the ‘linear’
regime; at sufficiently large Rayleigh number, advection is large enough to confine
the main thermal variations to a thin boundary layer at the top, which we term the
‘boundary-layer’ regime. For A � 1 there is a third regime at intermediate Rayleigh
numbers, in which advection is the dominant mechanism of heat transport along
the box, but is not strong enough to produce a thermal boundary layer. In § 3.1
we illustrate the two main regimes with numerical results for different aspect ratios.
In § 3.2 we derive scalings for the different regimes and the dimensionless parameters
that govern the transitions between them. Throughout this section we restrict our
attention to a shear-free top boundary. A rigid top gives results that are qualitatively
very similar.

3.1. Qualitative description

Figure 3 displays examples of the linear and boundary-layer regimes as well as
an intermediate stage for a square box A= 1. For tall boxes (H 
 L) the bottom
boundary has only a small effect, and the solutions for A> 1 are almost the same in
the unit square at the top of the box, with a much weaker circulation beneath.

In figure 3(a) the value of Ra is sufficiently small that the nonlinear advection terms
in (2.2) are unimportant, so the solution is symmetric about the centreline x =0.5.
The isotherms bend round from the top boundary to satisfy the insulating conditions
on the side and bottom walls, and the temperature gradients induce an anticlockwise
circulation cell. (A horizontal temperature gradient always produces a circulation,
however small the Rayleigh number, in contrast to the existence of a critical Rayleigh
number in Bénard convection.)

As Ra is increased, the isotherms are deformed by the velocity field, as evident
in figure 3(b), and the centre of circulation migrates slightly to the left. As Ra
is increased further, the boundary-layer regime of figure 3(c) develops: the main
variations in temperature are confined to a near-surface boundary layer, with only
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Figure 4. Streamlines (dotted) and isotherms (solid) for a shear-free top boundary, with
A =1/6 and (a) Ra = 10, (b) Ra = 3 × 105, (c) Ra = 3 × 106, and (d) Ra = 108. The isotherms
are plotted at intervals of 0.05. The intervals between streamlines are (a) 5 × 10−6, (b) 0.2,
(c) 1 and (d) 5.

small variations in the interior. The interior temperature is significantly colder than
the average temperature on the top surface.

Figure 4 shows a transition from the linear to boundary-layer regime typical of
a shallow box (H � L). For small values of Ra , the isotherms are nearly vertical
(figure 4a), but for larger values of Ra the isotherms are deformed by the circulation
and the vertical gradient increases (figure 4b, c). Initially, the isotherms in the lower
half of the box are advected further sideways than they are in the upper half,
where they are pinned by the thermal boundary condition. The resulting bunching of
isotherms in the right half of the box produces a larger vorticity than in the left half,
so that, in contrast to the square box, the centre of circulation first moves slightly
to the right (figure 4b). As Ra is increased further, a near-surface boundary layer
begins to form and the centre of circulation moves back to the left (figure 4c). In
figure 4(d ) the top boundary layer is well-developed, the centre of circulation is close
to the left-hand boundary, and, as in the case A � 1, the temperature variation in the
cool interior is much smaller than that in the boundary layer.

3.2. Scalings in each regime

Linear regime

For sufficiently small values of Ra , leading-order approximations for T and ψ can
be found by solving Laplace’s equation for T and the inhomogeneous biharmonic
equation (2.1) for ψ . This leading-order solution can be found, for example, by
separation of variables, and clearly T is independent of Ra and ψ varyies linearly
with Ra . Hence Nu is independent of Ra and Pe varies linearly with Ra , in each case
with a possible dependence on A.
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For A � 1, the bottom boundary has only a small effect on both the near-surface
temperatures and the flow, owing to the stronger influence of the sides. Hence

Pe ∼ Ra, Nu ∼ 1, (3.1)

independent of A.
For A � 1, Laplace’s equation and lubrication theory for a shear-free top boundary

yield

T = x, ψ =
A4Ra

48

(
z

A

)(
2z

A
+ 1

)(
z

A
− 1

)2

, (3.2a, b)

outside an O(A) distance from the ends. To leading order the temperature in this
central region is independent of z, the vertical heat flux is zero, and the streamfunction
is independent of x.

The simplest way to evaluate the Nusselt number is to note that the conductive
heat flux along the box due to the gradient in (3.2a) is A. Owing to the insulating
boundary conditions on the sides and bottom, this flux must enter and leave near the
ends so that the unsigned Nusselt number (2.6) is given by

Nu = 2A. (3.3)

In more detail, the asymptotic temperature near the ends for A � 1 can be found by
solving Laplace’s equation in a semi-infinite strip with boundary conditions Tx =0
at x =0, T → x as x → ∞, T = x at z = 0 and Tz =0 at z =A. The solution has
∂T /∂z ∼ ∂T /∂x ∼ 1 in x =O(A) and the surface heat flux integrates to give (3.3) as
expected.

A nonlinear thermal boundary condition T = T0(x) on the top surface produces a
temperature field of the form T = T0(x) + A2T1(x, z) + O(A4) in the central region,
where T1 = (z/A)(1 − z/2A)T0xx . The correction T1 provides an O(A) vertical heat flux
in the central region which must be added to the contribution from the ends to obtain

Nu = A

(
|T0x(0)| +

∫ 1

0

|T0xx | dx + |T0x(1)|
)

. (3.4)

Intermediate regime, A � 1

We turn our attention back to the case of a linear surface condition T0 = x. The
argument leading to (3.3) assumed that conduction is the dominant mode of heat
transfer. For A � 1 it is possible for vertical conduction to maintain (3.2a) as the
leading-order temperature distribution, but for advection by the induced flow (3.2b)
to give the leading-order heat flux from one end to the other rather than horizontal
conduction.

Since there is no net horizontal mass flux, advection of the leading-order
temperature field T = x produces no net transport of heat. It does, however, advect
the isotherms at the bottom to the right, producing a perturbation

δT = − A5Ra

48 × 20

z2

A2

(
10 − 15

z2

A2
+ 8

z3

A3

)
. (3.5)

(The isotherms at the top are pinned to the surface condition.) Because δT is more
negative at the bottom than the top, advection of δT does give a net heat flux along
the box, and leads to the result

Nu ∼ 2

∫ A

0

ψzδT dz =
19A9Ra2

315 × 482
. (3.6)
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The advected flux enters and leaves the box near the ends. In this regime the
velocities are sufficiently large that the adjustment to the end boundary conditions
occurs not over the O(A) length scale of the linear conductive regime but over the
O(A5Ra) length scale of the thermal entry length of the O(A3Ra) velocity in a
channel of height A. This thermal entry length lies between the height and length
of the box if A � A5Ra � 1. The advected flux (3.6) dominates the linear conductive
flux (3.3) if A � A9Ra2. The perturbation (3.5) is smaller than the background linear
gradient T = x if A5Ra � 1. Under the same condition, the end adjustment regions
are short enough for (3.5) to hold over most of the box. These considerations all
suggest that this intermediate regime is valid for A � A5Ra � 1.

Boundary-layer regime

For sufficiently large values of Ra , temperature variations will be confined by a
strong flow to a top thermal boundary layer of some thickness δ � 1. For a rigid
boundary it is natural to assume that the characteristic vertical scale of the velocity
variation below the boundary is also δ. For a shear-free boundary this assumption of
equal vertical scales is less obvious, but nevertheless still valid. Using this assumption,
and noting that T ∼ x ∼ 1, (2.1) and (2.2) yield ψ/δ4 ∼ Ra and ψ ∼ 1/δ respectively.
Solving these two balances gives

ψ ∼ Ra1/5, δ ∼ Ra−1/5, (3.7a, b)

as suggested by Rossby (1965). From (3.7b) and (2.6), we also obtain

Nu ∼ Ra1/5. (3.8)

For A � 1 the requirement that δ � A implies that A5Ra � 1.
We shall return to the assumption of equal vertical scales in § 4.2. For now, we note

that it is consistent with the numerical results of figures 3(c) and 4(d ), which show
the centre of circulation lying within the thermal boundary layer.

3.3. Numerical transitions between regimes

Case A � 1

For A � 1, the bottom boundary has only a small effect on both the region of
strongest flow and the near-surface temperatures, and hence it is simply Ra that
governs the transition between the linear and boundary-layer regimes. Hence, a
universal dependence of Pe and Nu on Ra is expected for different values A � 1.
This universal dependence is shown by the collapse of the curves for A= 1 and A= 2
in figures 5 and 6; the ‘large-A’ behaviour extends remarkably well down to A= 1.
The curves confirm the scalings (3.1) in the linear regime, and move towards the
1/5-power laws of (3.7a) and (3.8) in the boundary-layer regime. In § 4.2 we consider
larger Rayleigh numbers for better evidence of the 1/5-power law for A � 1. The
transition between linear and boundary-layer regimes occurs over roughly a decade
on either side of Ra = 103.

Case A � 1

In § 3.2 we saw that for A � 1, A5Ra � 1 is required for the leading-order flow and
temperature to be given by (3.2), and A5Ra 
 1 for the boundary-layer thickness δ

to be much less than A. Hence A5Ra governs the transition between the intermediate
and boundary-layer regimes. The strength Pe =ψmax of the flow has the same scalings
in the linear and intermediate regimes. Hence, from (3.2b) and (3.7a), we expect
a universal curve of APe against A5Ra for A � 1 that moves from a linear to a
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Figure 5. Strength of circulation Pe against Ra for A � 1 and APe against A5Ra for A < 1,
for a shear-free top boundary. The linear and intermediate regimes both give slope 1, and the
boundary-layer regime gives slope 1/5.
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Figure 6. Heat transfer Nu against Ra for A � 1 and ANu against A5Ra for A < 1, for
a shear-free top boundary. The boundary-layer regime gives slope 1/5, and the linear and
intermediate regimes are distinct for A � 1.

1/5-power law as A5Ra increases. This is confirmed in figure 5, with the results for
A= 1/2 not quite collapsing onto those for the smaller values of A.

In figure 6 we plot ANu against A5Ra to illustrate the transition to the boundary-
layer regime. The 1/5-power-law scaling of (3.8) is confirmed for large values of
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Figure 7. Heat transfer Nu/A against A4Ra for A � 1, for a shear-free top boundary. In
the linear regime the heat flux asymptotes to Nu/A = 2 (dashed line), and in the intermediate
regime it asymptotes to Nu/A = 19(A4Ra)2/(315 × 482) (dotted). See text for details.

(a) (b)

0.1370

0.1371

Figure 8. (a) Streamlines for Ra = 1010, A = 1 and a shear-free top boundary. The interval
between contours is 5. (b) Corresponding isotherms with maximum level, minimum level,
increment as follows: 0.95, 0.15, 0.05 (solid); 0.142, 0.138, 0.002 (long dashed); 0.1372, 0.1370,
10−4 (dotted); 0.13698 (dashed). The temperature in the bottom right corner is 0.136989.

A5Ra . In figure 7 we plot Nu/A against A4Ra for very small values of A to illustrate
the transition between the linear and intermediate regimes. This plot also confirms
the numerical coefficients in (3.3) and (3.6).

4. Asymptotic structure in the large-Ra regime
As an introduction to the asymptotic structure, the steady solution for Ra = 1010,

A= 1 and a shear-free top, is shown in figure 8. At such a large value of Ra , the top
boundary layer is extremely thin, and a stretched grid is employed in the numerical
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Figure 9. Vertical profiles at different horizontal positions x of (a) the upwards velocity −w
and (b) the temperature difference from the bottom temperature θ = T − Tb , with Ra = 1010

and A = 2. The straight lines are respectively −w = 8/(z + z0) and θ = c/Ra (z + z0)
7, with

z0 = 4.38/Ra1/7 and c = 6610 (see § 4.3).

calculations to give full resolution of the boundary layer and the flow in the top left
corner. The streamlines (figure 8a) show that most of the return flow comes back
near the top surface, and only a small part descends the left-hand wall to feed a much
weaker flow through the interior. It is also noticeable that this interior flow oscillates
from side to side as it rejoins the top boundary layer.

The isotherms (figure 8b) are plotted using a variable spacing to show some of
those running through the interior. The main temperature variations are strongly
concentrated in the top boundary layer, with only small temperature variations in
the interior. One can see from the near-horizontal isotherms in the interior that
stratification dominates the flow there, i.e. the interior is strongly stratified in the
sense of having a strong dynamical effect. However, as can be seen by the isotherm
values, the magnitude of the stratification decreases very rapidly with depth, with the
variations in the bottom half of the box less than about 10−6. The almost uniform
temperature Tb at depth, say at the bottom right corner, is about 0.137, which is much
less than the mean temperature 0.5 of the top boundary.

The structure of the interior is revealed more clearly by logarithmic profiles of the
vertical velocity w and temperature difference, θ = T − Tb, where Tb is the bottom
temperature. Figure 9 shows vertical profiles at different horizontal positions x in
a tall box with A= 2 and Ra = 1010. The origin of the vertical axis is offset by
z0 = 4.38/Ra1/7 for reasons explained in § 4.3. Figure 9(a) shows that the upwelling
−w is not quite uniform, but is nevertheless approximately given by 8/(z + z0). The
deviations of −w from 8/(z + z0) are of three types. Deviations in z + z0 < 0.25 are
associated with the structure of entrainment into the top boundary layer; those in
z + z0 > 0.8 are mainly associated with the descending plume on the left-hand wall,
which occupies a noticeable width of the box at this depth; in 0.25 <z + z0 < 0.8
there is a stack of weak counter-rotating cells superposed on the uniform upwelling,
with the profiles for different x crossing each other at the boundaries between cells.
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Strongly stratified cool interior

Figure 10. Separation of the return flow into a warm shallow intrusion and a much weaker
cold wall plume. The plume detrains into the cool interior and maintains its stratification.
Although the temperature variations in the cool interior are small in magnitude, the
stratification is strong in its dynamical effect and confines most of the return flow to the
shallow intrusion.

Figure 9(b) shows that the temperature is indeed strongly stratified in the interior,
with very small horizontal variations in temperature and a vertical decay of θ through
the interior proportional to (z + z0)

−7. In z + z0 > 1.2, the temperature difference θ

decays a little more rapidly owing to the choice of reference temperature Tb.
In the rest of this section we explain the structure of the flow, and the scalings and

interaction of the different regions. In § 4.1 we explain how the return flow exiting the
top left corner splits into a warm horizontal intrusion and a cold downwelling plume,
and consider transients of numerical simulations to support these ideas. In § 4.2 we
consider the top boundary layer, and explain that the Ra1/5 scalings of (3.7) are
independent of boundary condition because of the strong shear in the boundary layer
from the shallow intrusion. In § 4.3 we find a similarity solution for the downwelling
plume, and derive the solutions for the interior flow and temperature that were
plotted above. We also examine the cellular structure and corner region, and discuss
the matching between these regions and the plume and interior. In § 4.4 we examine
the dependence of the interior temperature on the imposed boundary conditions, and
consider the effect of aspect ratio.

4.1. Evolution to stratification and a shallow intrusion

Figure 8 suggests that the stratified cool interior forces most of the return flow back
in a shallow intrusion, in which the fluid is warmer than the interior underneath, but
cooler than the top boundary layer. A small portion of the return flow, which has
been strongly cooled by the left-most part of the top boundary, descends into the
box as a cold downwelling plume on the left-hand wall, and then detrains into the
cool interior before returning slowly up into the top boundary layer. The side plume
and interior therefore constitute a viscous ‘filling box’, in which the plume maintains
the interior stratification. This structure of the return flow is shown schematically in
figure 10.

These dynamical ideas were explored further by studying the transients in the
numerical evolution to a steady state. For this purpose, rather than use the artificial
time-stepping of (2.7), we included inertial terms so that the left-hand side of (2.7)
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(a) (b) (c)

Figure 11. Streamlines at stages in the evolution to steady state for a rigid top boundary
with Ra = 108 and A =1, and Pr = 103, and an initial temperature of 0. The time elapsed (see
figure 13a) is: (a) 0.1, (b) 1, (c) 2.5. The interval between contours is 2.

(a) (b) (c)

Figure 12. Parameters as for figure 11, but with an initial temperature of 0.5. The time elapsed
(see figure 13b) is: (a) 0.03, (b) 0.3, (c) 1.2. The interval between contours is 5 for (a), and 2
for (b) and (c).

is replaced by Pr−1Du/Dt (where the time scale is non-dimensionalized with L2/κ).
For illustration we used Ra = 108, A= 1 and Pr = 103.

In figure 11 we show transients from a calculation with a rigid top boundary in
which the initial temperature of the fluid was set to 0, the minimum temperature on
the top boundary. Initially the flow is characterized solely by a top boundary layer
and shallow intrusion (figure 11a), as the return flow is all warmer than the cold
interior and cannot sink. Diffusion of heat through the depth of the fluid slowly
warms the interior and a plume begins to develop on the left-hand wall (figure 11b).
The steady state (figure 11c) is reached when the interior has warmed sufficiently and
the plume developed sufficiently that the downwards diffusion of heat from the top
boundary layer is balanced by the supply of cold fluid in the plume.

In figure 12 we show transients from a calculation in which the initial temperature
of the fluid was set to 0.5, the average temperature imposed on the top boundary.
Here the evolution to steady state is significantly more complex, but as in the previous
calculation we also observe a competition between the plume and intrusion for the
return flow. In figure 12(a) the flow is characterized by a strong downwelling plume
on the left-hand wall, due to the colder part of the top boundary. The plume carries
cold fluid into the interior, thus cooling it. Consequently the temperature difference
between the plume and interior decreases, which weakens the plume. Some of the
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Figure 13. Temperature profile at x =0.5 in the evolution to steady state for (a) an initial
temperature of 0, and (from left to right) t = 0.01, 0.03, 0.1, 0.3, 1 and 2.5; (b) an initial
temperature of 0.5, and (from right to left) t = 0.003, 0.01, 0.03, 0.1, 0.3 and 1.2. In both cases,
Ra = 108, A =1 and Pr =103.

warmer fluid starts to return in a shallow intrusion and the top boundary layer
develops (figure 12b). The steady state (figure 12c) is the same as before, and is
reached when the interior has cooled sufficiently and the plume weakened sufficiently
that downwards diffusion of heat from the top boundary is able to balance the further
supply of cold fluid in the plume. Most of the return flow then occurs in the intrusion.

Figure 13 shows the evolution of the vertical temperature profile at the mid-section
x = 1/2 for each of the two calculations whose streamlines are shown in figures 11
and 12. For the initial temperature of 0, the profiles in figure 13(a) illustrate the slow
diffusion from the top boundary layer, which leads to an O(1) time scale for the
evolution to steady state in these calculations with A= 1. (Presumably, it would be
O(A2) if A � 1.) For the initial temperature of 0.5, figure 13(b) shows that the time
taken to reach steady state is significantly less than the O(1) diffusive time scale. It
is also much greater than the very short overturning time scale for the strong flow in
figure 12(a). The temperature below the top boundary layer is nearly uniform with
depth, consistent with more rapid overturning than evolution to steady state, and is
also (though not visible in the figure) nearly uniform across the box away from the
plume.

The evolution described above for a cold initial temperature (figure 11) was observed
experimentally by Mullarney et al. (2004), who argued for a similar mechanism in the
approach to the final state. Evolution from both cold and hot initial temperatures
was investigated experimentally by Wang & Huang (2005).

4.2. Horizontal boundary layer and return flow of the shallow intrusion

For a rigid boundary, the boundary-layer flow is driven along the top boundary like a
viscous gravity current (Huppert 1982) by the horizontal gradient of the hydrostatic
pressure. Owing to the no-slip boundary condition, the dominant shear occurs within
the boundary layer and hence the characteristic scales for the velocity and temperature
gradients are the same. This was the assumption used to derive the Ra1/5 scalings of
(3.7).
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Figure 14. (a) Pe and (b) Nu against Ra for A = 1 in the boundary-layer regime. The
asymptotes (dotted) in both plots have slope 1/5.

For a shear-free boundary, it is less obvious that the scalings (3.7) still hold, and
indeed these scalings have been called into question (e.g. Mullarney et al. 2004; Siggers
et al. 2004; Gramberg et al. 2007).

A standard assumption with free-surface boundary layers is that the velocity in the
boundary layer is to leading-order uniform, and given by matching to a larger-scale
flow further from the boundary. In the absence of a no-slip condition, any horizontal
pressure gradient in the boundary layer must be supported by the shear stress in
the interior, rather than the shear stress against the boundary (Roberts cf. 1977;
Lister & Kerr 1989; Davis, Schonberg & Rallison 1989). For a boundary-layer
thickness of δ, this shear stress ψzz ∼ Ra δ2 from (2.1), since Tx ∼ 1. If we were to
assume that the return flow is spread over the depth of the box (with A= 1 for
simplicity), then z ∼ 1 in ψzz and hence the interior streamfunction ψi ∼ Ra δ2. Then
in the boundary layer ψ ∼ Ra δ3 and from (2.2) ψ ∼ 1/δ. Assuming a boundary layer
with a return flow over the depth of the box would therefore lead to the scalings
ψ ∼ Ra1/4, δ ∼ Ra−1/4, and Pe ∼ Nu ∼ Ra1/4 rather than Ra1/5. Gramberg et al. (2007)
developed an asymptotic theory based on these scalings with A � 1, to obtain an
ordinary differential equation for the boundary-layer velocity.

The problem with this scaling argument is the assumption that the return flow
occurs over the depth of the box, which leads to an incorrect scaling for the velocity
in the boundary layer. As discussed in § 4.1, the interior stratification confines most of
the return flow to a shallow intrusion of comparable thickness to the top boundary
layer, and hence ψi ∼ Ra δ4 not Ra δ2. The intrusion means that there is strong shear
in the boundary layer even for a shear-free boundary condition, invalidating the
assumption of a uniform-velocity boundary layer. As in the case of a rigid boundary
condition, the characteristic scales for velocity and temperature gradients are the same
for shear-free conditions, and hence we again obtain (3.7).

The numerical results confirm that the Péclet and Nusselt numbers indeed scale
as Ra1/5 for both rigid and shear-free conditions (figure 14), though in the case of
Péclet number and the shear-free condition, very large Rayleigh numbers (>108) are
required to reach the asymptotic slope. Even more clearly, the numerics refute any
suggestion of Ra1/4 scalings from the usual free-surface boundary-layer assumptions,
and show that the Ra1/3 estimate of Siggers et al. (2004) is only a weak bound.
(Also, the Ra1/4 scalings will not apply in an intermediate regime, as hypothesized
by Gramberg et al.; the discussion of the transition between the linear and
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Figure 15. Collapse of isotherms in the boundary layer for a shear-free top with A = 2, and
Ra = 108 (dot-dash), 3 × 108 (long dashed), 109 (dashed), 3 × 109 (dotted) and 1010 (solid). The
isotherms are plotted in 0.05 increments, and the lowest horizontal isotherm has value 0.2.
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Figure 16. Collapse of scaled streamlines ψ/Ra1/5 in the boundary-layer for a shear-free top
at A = 2, and Ra = 108 (dot-dash), 3 × 108 (long dashed), 109 (dashed), 3 × 109 (dotted) and
1010 (solid). The streamlines are plotted in 0.1 increments.

boundary-layer regimes in § 3.2 gives a complete characterization of the scalings
in the parameter space (A, Ra).)

We also compare the results for rigid and shear-free boundary conditions in
figure 14. The shear-free case leads as might be expected to a larger volume flux
than the rigid case, by approximately 25% (figure 14a). The Nusselt number is
approximately 60% greater for the shear-free case (figure 14b), presumably because
the flow for the shear-free condition leads to a larger deformation of the isotherms,
and hence to larger vertical temperature gradients.

We can use the boundary-layer scalings to collapse the isotherms and streamlines
for different Rayleigh numbers. In figure 15, the isotherms are collapsed over
two decades of Rayleigh number with the vertical scale z/Ra−1/5. The correspon-
ding scaled streamlines ψ/Ra1/5 are shown in figure 16. The collapse of both the
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left-moving boundary layer and the right-moving intrusion is excellent (figure 16).
Most of the return flow, approximately 70% over the two decades of Rayleigh
numbers shown, occurs in the intrusion within a depth z ≈ 8Ra−1/5 and does not
pass into the interior.

4.3. Plume and strongly stratified interior

Interior and plume equations

We now turn our attention to an analysis of the plume and interior flow. As shown
schematically in figure 10, some of the fluid falls down the left-hand side in a cold
downwelling plume, which then detrains over a range of heights into a stratified
interior. The following analysis applies to intermediate heights, Ra−α � z � 1, where
we argue later that α = 1/7. This region lies beneath the near-surface structure of
the boundary layer and intrusion, and is sufficiently far from the bottom that the
side plume is much narrower than the width of the interior. From figures 8 and 9, we
note that Tx � Tz in the interior, so that we can write T = T0(z)+T1(x, z), with T1 � T0.
We also note that ψx is not much larger than ψz in the interior. Hence, as verified
below, we assume that ψzT1x � ψxT0z and deduce that the leading-order balance in
(2.2) is

wT0z = T0zz, (4.1a)

i.e. upwards advection of cold fluid balances downwards diffusion of heat, as discussed
regarding the transient numerical simulations in § 4.1. We deduce from (4.1a) that
the upwelling velocity −w in the interior is independent of x at leading order, in
agreement with the main trend at intermediate heights in figure 9. From the no-flux
condition at x = 1 it follows that at leading order in the interior

ψ = −w(z)(1 − x). (4.1b)

(The no-slip boundary condition at x = 1 is satisfied by a weak, dynamically
unimportant boundary layer, driven by a small perturbation to the horizontal
stratification.)

Since ∂/∂x 
 ∂/∂z in the plume, we apply the lubrication approximation to (2.1)
and (2.2), giving

ψxxxx = Ra Tx, −ψzTx + ψxTz = Txx. (4.2)

Detrainment of the plume into the interior is described by matching ψ and T from
the plume approximation (4.2) to the interior approximation (4.1).

Solution for the interior and similarity solution for the plume

In the plume it is natural to seek a similarity solution in which x ∼ (z + z0)
p and

θ = T − Tb ∼ (z + z0)
−q for some exponents p and q (see Worster & Leitch 1985),

where we have included a vertical offset z0 allowed by the equations and assumed
that T → Tb at depth. From (4.1a), −w = (q + 1)(z + z0)

−1, and then from scaling
(4.2), p = 2 and q =7. In the interior we therefore have

ψ =
8(1 − x)

z + z0

, θ =
c

Ra (z + z0)7
, (4.3a, b)

for some constant c, to be determined by matching onto the solution for the plume.
We note that this solution must break down for z + z0 � Ra−1/7 since θ can be at
most O(1). For Ra−1/7 � z + z0 � 1 the leading-order interior flow,

u =

(
8(1 − x)

(z + z0)2
,

−8

z + z0

)
, (4.4)
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is driven across the box by a small tilt of the isotherms,

Ra T1x = ∇4ψ =
192(1 − x)

(z + z0)5
� Ra T0z =

−7c

(z + z0)8
, (4.5)

away from perfect horizontal stratification. As anticipated, ψzT1x � ψxT0z.
In the plume we now seek a similarity solution

ψ =
F (η)

z + z0

, θ =
G(η)

Ra (z + z0)7
, where η =

x

(z + z0)2
, (4.6a, b)

with F → 8 and G → c as η → ∞ from (4.3) Equation (4.2) becomes

F ′′′ = G − c, FG′ − 7F ′G = G′′, (4.7)

where a prime denotes differentiation with respect to η, which can be rewritten as

F (v) − FF (iv) + 7F ′(F ′′′ + c) = 0. (4.8)

We can scale out c with

F = c1/4f, η = c−1/4ξ, (4.9)

to obtain

f (v) − ff (iv) + 7f ′(f ′′′ + 1) = 0, (4.10)

where the prime now denotes differentiation with respect to ξ .
The boundary conditions for a rigid insulating wall are

f = f ′ = f (iv) = 0 at η = 0. (4.11)

(For a shear-free side f ′ = 0 is replaced by f ′′ = 0.) To ensure that F → 8 as η → ∞,
we must have f → f∞ for some constant f∞, and the constant c is then given by

c = (8/f∞)4. (4.12)

Linearizing (4.10) about f = f∞ gives solutions exp kξ such that

(k4 − f∞k3 + 7)k = 0. (4.13)

The root k =0 corresponds to a small change in f∞. Two of the non-zero roots
are in the right-half complex plane (Re(k) > 0) and give growing modes that must
be suppessed if f → f∞. The other two non-zero roots are in the left-half-plane
(Re(k) < 0); if

0 < f 4
∞ < 1792/27 (4.14)

they are complex and decaying oscillatory behaviour is expected in the far field. The
need to suppress two growing modes gives two boundary conditions at infinity, which,
together with the three conditions of (4.11), imply a unique solution for f and thence
for c, F and G. We integrated (4.10) with AUTO97 (Doedel et al. 1997), and obtained
f∞ = 0.887, G(0) = − 4980 and c = 6610 from (4.13).

The only free parameters of the solution for the plume and interior are the offset
z0 and the temperature Tb. In the limit A → ∞ (so that the bottom boundary does
not affect the interior), both are determined in principle by matching the plume and
interior onto the corner region and top boundary layer. In practice, we determine
them from the numerical solutions (see below).

Comparison with numerical solutions

We compare the similarity solution with numerical results, obtained for a tall
box (A= 2) to limit any effect of the bottom boundary. We can then accurately
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Figure 17. Offset z0 for different Rayleigh numbers, found by fitting (4.6b) and (4.3b) to the
numerical results at x = 0 (dashed) and x = 0.6 (solid), respectively. The suggested asymptote
(dotted) is z0 = 4.38Ra−1/7.

approximate the asymptotic temperature Tb at depth by the temperature in the
bottom right corner.

To determine z0, we fitted the power-law solutions for the wall and interior
temperatures, (4.6b) with c = 6610 and (4.3b) with G(0) = − 4980, to the numerically
determined temperature profiles at x =0 and at x = 0.6, respectively. (The position
x = 0.6 was chosen since it lies roughly in the middle of the counter-rotating cells
that can be seen superposed on the mean upwelling in figure 9(a), and the amplitude
of the consequent oscillatory perturbation to the mean temperature profile is smaller
there.) We fitted the profiles over the range z0 <z < 2z0, with z0 determined iteratively
from an initial guess, say z0 = 0.2. The converged values of z0 from x = 0 and x = 0.6
are in excellent agreement (figure 17), suggesting that they are constrained well. The
values are also described well by an estimated asymptotic behaviour

z0 = 4.38Ra−1/7. (4.15)

From figure 18, we can see that approximating z0 by (4.15) still produces a good fit
between (4.3b), (4.6b) and the numerically obtained temperature profiles, over nearly
two decades of Ra and over most of the depth. Hence, for simplicity, we have used
(4.15) for z0 in all the figures that require it. Further comment on the asymptotic
behaviour (4.15) is given below, in the discussion of matching at the end of this
subsection.

Figure 19 shows excellent agreement between the similarity solution for the plume
and the numerical simulations. In particular, the location and amplitudes of the
minima and maxima in the temperature and velocity are accurately predicted. The
strong downflow in the plume is driven by the very cold fluid that is falling down
the left-hand wall from the corner. Some warmer fluid is dragged down with it, as
seen in the weaker maximum in G − c near η =0.25, and this warmer fluid bobs back
up again as it detrains into the interior, as seen in the upwelling around η = 0.4. The
(decaying) oscillations of both w and θ into the far field are consistent with the fact
that f∞ satisfies the condition (4.14) for complex roots in (4.13). In the far field w
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Figure 18. Vertical temperature profiles (a) θ (x =0, z) and (b) θ (x = 0.6, z) for different
Rayleigh numbers. The straight lines are Ra θ = G(0)/(z + z0)

7 in (a) and Ra θ = c/(z + z0)
7

in (b), where G(0) = − 4980 and c = 6610, as determined from the similarity solution for the
sidewall plume.
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Figure 19. Similarity solutions (solid) for (a) the plume velocity −F ′ and (b) temperature
difference G − c, where c = 6610. There is good agreement with rescaled profiles from z = z0

in full numerical solutions at different Rayleigh numbers.

and θx tend to zero in the similarity solution, and to interior values that are small
relative to the variations in the plume in the full numerical solution.

Figure 20 shows that the numerically obtained plume width, which we define to
be the location of the maximum downwards velocity, agrees well with the similarity
solution for z + z0 � 0.5, but is a little narrower for z + z0 � 0.5. The numerical
solutions diverge from the similarity form when z = O(1) because the plume width,
(z+z0)

2, is O(1) at these depths, and hence is comparable to the width of the box. The
lubrication approximation that was used in (4.2) thus breaks down, so the similarity
solution is only expected to hold for z � 1. The slower growth of the plume width
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Figure 20. Plume width x(z) defined as the position of the maximum downwards velocity.
The line x =0.099(z + z0)

2 (dot-dashed) is given by the similarity solution (4.6).

0 0.2 0.4 0.6 0.8  1.0

0.5

1.0

1.5

2.0

x

z 
+

 z
0

Figure 21. Interior flow. Streamlines ψ = 0.5, 1, 2, 3, 4, 6, 8, 10, 12 at Ra = 3 × 108

(long dashed), 109 (dashed), 3 × 109 (dotted) and 1010 (solid).

when z = O(1) helps to maintain the structure of a downwelling plume and stratified
interior. At still greater depths, and if the bottom boundary is far enough away, the
streamfunction and temperature difference are expected to decay exponentially with
depth.

A second reason for the breakdown of the similarity solution when z ∼ 1 is that at
these depths, θ ∼ Tx ∼ Tz ∼ 1/Ra and ψ ∼ 1. Hence Tx becomes comparable to Tz, so
that the interior is no longer strongly stratified and the previous analysis does not
apply.

Figure 21 shows the interior streamlines at different Ra , with ψ considered as a
function of x and z + z0. Towards the top boundary, the influence of the counter-
rotating cells can be seen, but away from the top boundary the interior streamlines
show good collapse. Small deviations also arise near the bottom boundary at z = 2.
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Figure 22. Cellular structure ψ̃ = ψ − 8(1 − x)/(z + z0) for Ra = 3 × 108 (long dashed), 109

(dashed), 3 × 109 (dotted) and 1010 (solid), at contour levels ψ̃/Ra1/5 = − 0.15, 0, 0.15, 0.30,
0.45.

Counter-rotating cellular structure

From figure 9(a) we noted that the solution −w =8/(z + z0) is a reasonable
approximation over an intermediate range of heights (0.25 < z + z0 < 0.8), but
superposed on top of the leading-order solution is a smaller contribution from a
stack of counter-rotating cells. Figure 9(a) showed that these cells lie beneath the
surface boundary layer and intrusion, and decay with depth. The structure of the cells
is most readily revealed by plotting the perturbation

ψ̃ =ψ − 8(1 − x)

z + z0

(4.16)

to the uniform upwelling (4.3), as shown in figure 22. The scales for ψ̃ and the vertical
coordinate have been chosen to give agreement with the Ra1/5 scalings in the top cell,
which is the boundary layer and intrusion. Beneath the top cell, we can see at least
two weaker counter-rotating cells, which decrease in strength with depth.

Some insight into why the cellular structure exists can be gained by considering
small perturbations T̃ and ψ̃ to the background stratification T0(z) and upwelling
(4.3). The linearization of (2.2) about the background stratification is

ψ̃xT0z = T̃zz, (4.17)

which can be combined with (2.1) to yield

ψ̃zzzzzz = Ra T0zψ̃xx. (4.18)

Since the background stratification T0z only depends on the depth z, this equation
has separable solutions of the form ψ̃ = sin(nπx)fn(z), where fn is decaying and
oscillatory in z. For z � 1, the dependence of Ra T0z on z + z0 in (4.3) implies that
the vertical scale of the oscillations is small, in qualitative agreement with figure 22.
The counter-rotating cells are driven by the shear stress from the intrusion, and then
decay with depth.
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Figure 23. The position of the streamfunction maximum (xmax , zmax ) against Ra for A = 1 in
the boundary-layer regime. The power laws (dotted) are those predicted by scaling arguments.

Corner region

We denote the position of the streamfunction maximum by (xmax , zmax ). From
figure 23, we can see that both xmax and zmax follow approximate power-law scalings
with Ra , with xmax decreasing more rapidly with Ra than zmax . This thinning of the
flow as it comes round the top left corner is driven by the negative buoyancy of
sinking cold fluid. From (2.1), and an assumption that the temperature differences
are O(1) as in the boundary layer, the vorticity balance in the corner gives

ψ

x4
∼ Ra

x
. (4.19)

Since the volume flux arriving from the boundary layer is ψ ∼ Ra1/5, we predict that
xmax ∼ Ra−4/15, in reasonable agreement with figure 23(a). Figure 23(b) shows that
the expected scaling zmax ∼ Ra−1/5 is also asymptotically reasonable.

Comparison of ψzTx to Txx with the above scalings shows that thermal advection
dominates diffusion in the corner region, except near the positions of the maximum
in the streamfunction and of the stagnation point in the corner, at both of which
the velocity is zero. A small diffusive subregion near the corner is required to match
to the insulating boundary condition on the sidewall. If we assume that the flow in
the corner can be approximated by a rigid-wall stagnation-point flow ψ ∼ Ra14/15 x2z,
where the dependence on Ra is determined by matching to ψmax ∼ Ra1/5 at (xmax ,
zmax ), then a balance uTx ∼ Txx between advection towards and diffusion away from
the wall shows that the diffusive boundary layer on the left-hand side has thickness
x ∼ Ra−14/45. (For a shear-free side a stagnation-point flow ψ ∼ Ra2/3 xz leads to a
thickness x ∼ Ra−1/3.) This thickness is numerically indistinguishable from the width
xmax ∼ Ra−4/15 of the corner region.

Matching

We have already noted that the analytical similarity solutions obtained for the
plume and interior are only valid for an intermediate range of heights Ra−α � z � 1.
The condition z � 1 comes from requiring the plume width to be small compared
to the width of the box. The condition z 
 Ra−α comes from the need to match the
plume back to the corner region and the stratified interior up to the top boundary
layer. Now the similarity forms (4.6b) and (4.3b) for the plume and interior must break
down for z+z0 � Ra−1/7 since otherwise θ 
 1 and this would be inconsistent with the
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Figure 24. Schematic of the different regions of the flow in the large-Ra regime, with the
corresponding scalings of the temperature variations and streamfunction. The similarity
solution for the plume and the solutions of a strongly stratified interior with a uniform
upwelling are valid for Ra−α � z � 1, where α is assumed to be 1/7.

range of applied surface temperature. Hence if we make the natural assumption that
the vertical offset z0 is comparable to the scale of the matching region, i.e. z0 ∼ Ra−α ,
then it follows that α � 1

7
.

The good empirical fit (4.15) to the numerical data for z0 in figure 17 is consistent
with α = 1

7
as used in (4.15) and, for simplicity of exposition below, we shall assume this

to be the correct value. We note that the data could also be consistent with a slightly
smaller value of α – the last three data points in figure 17 give α = 0.139 ± 0.004, and
z0 is itself a fitted quantity and subject to a small uncertainty.

The scalings of the various regions of the flow are summarized in figure 24. Since
the thickness of the top boundary layer ∼ Ra−1/5 but the analytical solutions for the
interior are only valid at a minimum depth ∼ Ra−1/7 (and possibly slightly larger),
the present analysis leaves a gap in heights between Ra−1/5 and Ra−1/7. Also, the
Ra−4/15 width of the corner region does not match directly onto the minimum width
∼ Ra−2/7 of the similarity solution for the plume at depth ∼ Ra−1/7.

A complete theoretical analysis should describe how the Ra−4/15 outflow from the
corner region, together with its Ra−4/45 diffusive sublayer, separates into the intrusion
and the plume, and how the counter-rotating cellular structure decays from the strong
top boundary layer and intrusion into a small perturbation on a stratified interior. We
were unable to find a convincing matching argument to bridge the small asymptotic
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Figure 25. Temperature Tb in the bottom right corner, for (a) different aspect ratios with
a shear-free top, rigid sides and bottom, and a linear temperature profile T = x on the top
surface; and (b) different boundary conditions with A = 1, where e.g. sf-r denotes shear-free
top and rigid sides and bottom, L denotes the linear profile T = x and Q the quadratic profile
T = x(2 − x) on the top surface.

gap between the near-surface and deep structures. Various attempts gave plausible
scalings for the intermediate region, but it was impossible to distinguish between
them numerically. Even for Ra = 1010, Ra1/5 and Ra1/7 differ by only a factor 4 and
thus the intermediate region cannot be clearly separated. However, our numerical
simulations provide good evidence that the present analysis, though incomplete, does
give the scalings and solutions for the main regions of the flow.

4.4. Interior temperature and effect of aspect ratio

The solutions for the interior temperature differences derived in § 4.3 included
the reference temperature Tb, the asymptotic temperature at depth, which we
approximated by the bottom-right temperature of the numerical simulations. Since the
interior temperature variations are small below the top boundary, decaying rapidly
as (z+ z0)

−7, Tb is a good approximation for the temperature of the nearly isothermal
interior.

Figure 25(a) shows Tb as a function of Ra−1/7 for a number of different aspect
ratios. For all values of A, the interior temperature decreases as Ra increases, which
reflects the increased flow strength in the boundary layer. The consequent increase
in the strength of upward entrainment leads to less diffusion of the warmer surface
temperature to the interior. The data for A= 1 and A= 2 are indistinguishable, which
gives numerical evidence that Tb becomes independent of A as A → ∞, and is
determined only by the surface structure near the top boundary. At smaller values of
Ra , say 107, the proximity of the bottom boundary to the top results in an increased
bottom-right temperature for A= 1/2.

Figure 25(b) shows Tb as a function of Ra−1/7 for a number of different boundary
conditions on the top and on the sides and bottom. Changes to the top boundary
conditions, whether from a linear to quadratic temperature profile or from shear-free
to rigid, have a much greater effect on the interior temperature than either a change
from rigid to shear-free conditions on the sides and bottom or the variation over
two decades of Rayleigh number. The significant increase in the interior temperature
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Figure 26. Temperature variations relative to the temperature Tb(A) in the bottom right
corner at (a) x = 0 and (b) x = 0.6, for different aspect ratios and Ra = 1010.

for a rigid top or for the quadratic profile T = x(2 − x) reflects the reduction in the
strength in the right half of the surface boundary layer. The consequent reduction in
the strength of upward entrainment allows the warmer surface temperature to diffuse
to great depths. The variation with boundary condition suggests that the interior
temperature is primarily determined by the balance between upward entrainment into
the surface boundary layer and downward diffusion, though the rate of entrainment
is also influenced by the stratification established by the weak circulation through the
plume to the interior.

The choice of Ra−1/7 as an axis in figure 25 is motivated partly by convenience
and partly by the apparent form of the vertical offset z0. It gives a good straight-line
asymptote for the data with A= 2 (or A= 1) in figure 25(a), which can be extrapolated
to give Tb → 0.11 as Ra → ∞. The actual asymptotic form of the variation of Tb with
Ra is unknown, and would need to be determined by a full matching analysis of the
near-surface and deep structures.

The temperature at x = 0 and x = 0.6 relative to the bottom-right corner is plotted
in figure 26 for different aspect ratios. The temperature profiles for A � 1 follow
the temperature profile for A= 2 up to z � A/2, and then at z ≈ A/2 the bottom
boundary begins to have an influence and the curves peel off. Similarly, as shown in
figure 27, the streamlines for different aspect ratios follow those of the tall box A= 2
for z � A/2 and then the streamlines peel off.

5. Discussion
We have analysed very viscous horizontal convection for a wide range of aspect

ratio and Rayleigh number. The transition between the linear or intermediate regimes
and the boundary-layer regime is governed by A5Ra if A � 1 and by Ra if A � 1.
For steady states at large Rayleigh number, we have provided a description of the
several regions of the flow, and explained the scalings for the widths of the boundary
layers, the temperature variations and the streamfunction.

At large Rayleigh number, the independence of the scalings of whether the top
boundary is rigid or shear-free is at first surprising, as is the weakness of the flow
at depth, but both can be understood from the global structure of the flow. This
structure is summarized in figure 10, with the corresponding scalings in the different
regions detailed in figure 24. The sinking plume on the left-hand wall decays rapidly
with depth because of the strong stratification of the interior, and most of the return
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Figure 27. Streamlines in increments of 5 at Ra = 1010, and different aspect ratios A = 1/6
(dot-dash), 1/4 (long dashed), 1/2 (dashed), 1 (dotted) and 2 (solid).

flow comes back in a shallow intrusion. The intrusion therefore gives strong shear
in the boundary layer even for a shear-free surface condition and, as a consequence,
the scalings are independent of whether the top boundary is rigid or shear-free. The
dominance of the return flow by a shallow intrusion is supported by the experimental
observations of Wang & Huang (2005), who found ‘partial penetration’ of the return
flow into the interior, with most of the flow confined to near the heated surface.

The sidewall plume and interior form a viscous ‘filling box’. In § 4.3, we found
a similarity solution for the filling box that is valid for Ra−α � z � 1, and gave
numerical evidence that α = 1/7. The similarity solution gives Ra T ∼ (z + z0)

−7 in
both the plume and interior, and w ∼ (z + z0)

−3 in the plume and (z + z0)
−1 in the

interior, where z0 ∼ Ra−1/7. This solution does not depend on the details of the flow
at the top, and may be more generally applicable (e.g. to top boundary conditions of
imposed heat flux). We have not been able to match the interior solution directly onto
the horizontal boundary layer or corner flow. A complete theoretical analysis should
describe how the flow exiting the corner separates into the intrusion and plume,
and also the underlying cellular structure and the matching between the horizontal
boundary layer and interior.

Although we have primarily presented results with rigid side and bottom
boundaries, computations with all the boundaries shear-free show very similar results.
The main modification that needs to be made in the theoretical analysis is the
boundary condition (4.11) for the plume. Hence the structure and scalings we have
derived (see figure 24) are independent of the mechanical conditions on the boundaries.
Also, the exact geometry is unlikely to be important, provided the heated surface is
horizontal. For example, sloping sidewalls will give a similar structure and the same
scalings.

The present asymptotic analysis is in a similar spirit to that of a study of horizontal
convection in a porous medium by Daniels & Punpocha (2005). These authors show
that in a porous medium the horizontal boundary layer has width δ ∼ Ra−1/3 instead
of Ra−1/5 here. As in the present work, they find power-law decays in z, with ψ ∼ 1/z,
and Ra θ ∼ 1/z3 instead of 1/z7. A significant difference is that in a porous medium
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the interior is not strongly stratified and all the terms in the heat equation (2.2) need
to be retained. Hence the upwelling velocity and temperature are not uniform across
the width of the box.

For modelling of viscous horizontal convection in applications, several other effects
may need to be taken into account. For results with a highly temperature-dependent
viscosity (not presented here), we find that the solutions for the interior are not
significantly affected, since the temperature variations there are small, but the
horizontal boundary layer is quantitatively modified. Future work could consider
heat losses through the walls and three-dimensional geometry.

Despite the idealizations in the present work, it is interesting to consider the
relevance of the ideas to glass furnaces, which provided the original motivation for
the problem. The glass industry uses shallow tanks (A � 1) and, to aid convective
transfer of heat underneath the entire length of floating cold raw materials, it is thus
helpful to operate in the boundary-layer regime. Hence we require that A5Ra � 2×103

(figure 5). However, if the value of A5Ra is too large then a separation of scales will
exist between the top boundary layer and a stratified interior, leading to poor mixing
in the slow-moving interior and a risk of heterogeneities in the glass produced. A
reasonable requirement is to use a small enough value of A5Ra that the depth of the
tank is just smaller than the depth of the intrusion, which from figure 16 leads to
A/Ra−1/5 � 10, or A5Ra � 105. In glass furnaces, A5Ra ≈ 104 (Kraus & Loch 2002),
which is consistent with 2 × 103 � A5Ra � 105.

For the large- and infinite-Prandtl-number calculations reported here, the final
steady state for a shear-free top was found to be independent of the initial conditions,
even if the initial conditions are as disparate as those of figures 11 and 12, which
suggests that this final steady state is stable. Without fluid inertia the only plausible
instability would be in the upper left part of the top boundary layer, where cold
fluid near the top surface overlies hotter fluid. For the two-dimensional calculations
reported here, the velocity in the boundary layer with a shear-free top was apparently
sufficiently large to avoid instability. In three dimensions, however, the unstable
stratification may lead to overturning rolls with axes aligned along the flow direction
and this instability may occur at only moderately large Rayleigh number. By contrast
with the shear-free case, finite-Prandtl-number simulations for a rigid top did not
evolve to a steady state for Ra � 3 × 108, even at Pr = 105, owing to instability
in the upper left part of the boundary layer. Presumably, this is because the no-slip
condition allows time for local convective overturning in the boundary layer. Unsteady
and three-dimensional solutions remain topics for future investigation.

At finite Prandtl number, the effects of shear and inertia will almost certainly lead to
further instabilities at sufficiently large Rayleigh number. The vorticity equation (2.1)
becomes

1

Pr

∂(∇2ψ, ψ)

∂(x, z)
+ ∇4ψ = Ra

∂T

∂x
, (5.1)

from which we can define a local Reynolds number as the ratio of the typical
magnitude of the two terms on the left-hand side. The largest local Reynolds
number in our analysis comes from the downflow in the corner region, and scales as
ψxx

2/zPr ∼ Ra2/15/Pr . In contrast, the local Reynolds numbers in both the horizontal
boundary layer (∼ ψδ) and the side plume are only 1/Pr . Hence, in the boundary-layer
regime inertial instability might be expected first in the corner region.

Finite-Prandtl-number effects are particularly important for the Rayleigh numbers
of 1011–1013 considered by Mullarney et al. (2004) with Pr � 8. Indeed, they observe
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a much stronger, unsteady plume that entrains fluid, and reaches and spreads along
the opposite wall of the tank. They also report the presence of a convective mixed
layer in the horizontal boundary layer, weak interior mixing, and unsteady and
apparently turbulent flow. Hughes et al. (2007) present a model for the results of
Mullarney et al. (2004), and have shown that the Ra1/5 scalings of the top boundary
layer still hold (or Ra1/6 scalings for the case of imposed heat flux). However, the
intrusion is insignificant, and the return flow is characterized by the turbulent plume,
which is coupled to a filling-box model of the interior. Near the heated surface
the plume is driven by buoyancy and modified by entrainment, whereas away from
the surface it becomes a momentum jet with entrainment. The approximation (4.1)
for the interior balance still applies. However, the interior is only weakly stratified
because the plume/jet is driven to depth and coupled to the interior by turbulent
entrainment. The entrainment also leads to the volume flux in the plume increasing
with depth like z1/2. These results contrast with the strong stratification of the interior,
the detrainment of the plume and the z−1 decay of the volume flux in the infinite-
Prandtl-number case.

From the previous and current results, it appears that there is a trade-off between
Prandtl and Rayleigh number: at large Ra we expect that the intrusion dominates
the return flow for sufficiently large Pr (Wang & Huang 2005; present results), but
at fixed Pr a turbulent plume dominates the return flow for sufficiently large Ra
(Mullarney et al. 2004; Hughes et al. 2007).

To conclude, a physical understanding of infinite-Prandtl-number horizontal
convection has been achieved, and the main scaling relationships derived. In particular,
we have identified that at large Rayleigh numbers the return flow is dominated by a
warm shallow intrusion above a cool strongly stratified interior.

We thank Neil Ribe, Grae Worster, and three anonymous referees for helpful
comments on an earlier version of the manuscript. S. Chiu-Webster was supported
by an EPSRC research studentship.
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