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Using the slender-body theory for Stokes flow, the equations of motion are 
developed for a small flexible inextensible thread. The nearly straight thread is 
examined analytically, and is shown to straighten rapidly. In  a simple shear 
flow the distortions decay less rapidly, but rapidly enough not to rotate the 
thread through the plane of flow. Numerical studies of simple shear with more 
substantially dist.orted threads show the same qualitative behaviour. Addition- 
ally some differences are revealed in the nonlinear regime between the buckling 
and stretching processes which occur in the compressive and tensile quadrants 
of the flow. 

1. Introduction 
I n  the study of fluid suspensions, the three basic problems in the microscopic 

dynamics are the rotation, deformation and interaction of the particles. Although 
the rotation and interaction problems are by no means easy, there has perhaps 
been least progress in understanding the deformation of particles in a shearing 
flow. Small fluid droplets with surface tension have been analysed in a near- 
sphere approximation; for a recent paper see Barthhs-Biesel & Acrivos (1973). 
A viscoelastic sphere is an artificial particle which can be examined at  significant 
distortions (Roscoe 1967). The difficulty with deformable particles is that in 
general an infinite number of degrees of freedom are needed to describe the 
distortion. This complication is serious because the problem is unavoidably non- 
linear (through the particle shape entering the boundary-value problem for the 
viscous flow of the solvent). The fluid droplets with surface tension are tractable 
with the near-sphere linearization, while the viscoelastic spheres require only 
five variables to describe their distortion by a shearing flow because their shape 
remains ellipsoidal. In  this paper the study of a third deformable particle, a 
thread, is begun. The simplification available for threads is the slender-body 
theory for the Stokes flow of the viscous solvent surrounding the thread. 

Paper pulp and asbestos fibre suspensions are two examples of industrially 
important suspensions of thread-like particles. In  these applications the particles 
are probably too close together to behave like the single isolated thread to be 
examined in this paper. The interaction of deformable threads must be left for 
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the future. More dilute suspensions of threads occur in the preparation of solid 
composite materials containing chopped reinforcing fibres. When a dilute polymer 
solution is subjected to a strong flow, it is believed that the polymer molecules 
can be substantially stretched into a thread-like configuration. The study of 
threads may thus throw some light on the mechanics of highly deformed macro- 
molecules. 

For this first study of the motion of a deformable thread in a shearing flow, 
the thread will be made as simple as possible. By making the thread very thin, 
only the leading-order approximation need be retained in the slender-body 
theory for the Stokes flow. This leading-order approximation is notoriously 
inaccurate (giving 25% errors for particles with a length-to-breadth ratio of 
loo), but its local form for the friction forces is a crucial simplification of the 
dynamics of the thread. Although the poor quantitative predictions owing to 
the slender-body theory are unfortunate, more regrettable is the loss of some 
qualitative features. In  simple shear a straight thread will eventually rotate 
across the plane of flow through the small couple from the velocity difference 
over the width of the thread. The approximation of slender-body theory adopted 
here does not include this couple. Thus in simple shear we shall find that a 
straight thread tends to align with the flow instead of truly rotating periodically. 
The internal dynamics of the thread are similarly chosen for simplicity. The 
thread will be inextensible but perfectly flexible. This combination means that 
no dimensional property of the thread is introduced: the elasticity for stretching 
is infinite while the stiffness for bending is zero. Although the stiffness is related 
to the internal elasticity, the chosen behaviour can be achieved by making the 
thread appropriately slender. 

The basic formulation of the problem is given in the following section, and a 
pair of equations is derived for the evolution of the shape of the thread. The 
equations are linearized in $ 3  by making an approximation for nearly straight 
threads. The general solution of the linearized equations is found for axisym- 
metric straining and €or simple shear flow. The problem in simple shear of 
whether small distortions can help a thread to rotate across the plane of the 
flow is examined in $ 4. Some numerical solutions of the full nonlinear equations 
are presented in $ 5 .  The range of validity of the linear theory is found along 
with some nonlinear deviations from the linear theory. 

2. The governing equations 
We consider a thin thread of length 2 L  with a slowly varying cross-section 

which typically has a thickness 2p ( p  < L). The deformed shape is restricted to 
have curvature comparable with the length rather than the thickness. Arc length 
along the thread is measured by s, - L < s < L. A suitable kinematic description 
of such a deforming thread is to specify the position x(s, t )  of the centre-line of 
the cross-section. Dashes and dots will be used to denote derivatives with respect 
to arc length and time, i.e. x' and x. Thus the definition of arc length yields for 
every position s 

x'.x' = 1. (2 .1)  
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If the thread were extensible, one might use the variable s as a Lagrangian 
label of material points along the thread. As the thread stretched, s could not 
remain the true arc-length variable, i.e. satisfying (2.1) at different times. The 
inextensibility of the thread is expressed by the preservation of arc length in 
time. Thus we have the constraint 

To preserve the arc length there must be a tension T(s,t) in the thread, the 
Lagrangian multiplier associated with the constraint (2.2). The tension is the 
net force transmitted over a cross-section of the thread, and with no stiffness it 
must be in the direction of the unit tangent x’. Because the elasticity of the 
thread has been assumed to be infinite, the tension is locally indeterminate. 
The values of the tension along the length of the thread are instead determined by 
the need to satisfy globably the constraint (2.2). 

The tension forces in the thread must balance the viscous forces, which resist 
the motion of the thread relative to the ambient shearing flow. If the viscous 
force acting on the thread is f(s, t )  per unit length, then the force balance on an 
element of arc is 

-f = (Tx’)’ = Tx” +T’x’. (2.3) 

This equation shows two orthogonal contributions from the tension. (From (2.1) 
note that x”.x’ = 0.) There is a force in the direction of the unit tangent x‘ 
proportional to the increase in tension along the thread T’. There is also a 
‘hoop’ force in the direction of the normal X“ proportional to the tension T 
multiplied by the curvature I x ” ~ .  

The description of the thread dynamics is completed by an expression for the 
fluid drag f. Only the local value of the gradient of the undisturbed flow affects 
the changes in shape if the thread is small. Thus we consider the motion of the 
thread when it is placed in a time-dependent general shearing flow I’(t).x. 
It is useful to split the velocity gradient I’ into the symmetric strain rate E and 
the antisymmetric vorticity S2: I’ = E + S2. From the slender-body theory 
(p 4 L) for Stokes flow (rL2/v < 1), the drag f per unit length is related locally 
in the leading approximation to the slip of the undisturbed flow relative to the 
moving thread, I’.x-% a t  each s. The friction coefficient for motion parallel 
to the thread is 2np/ln (2L/p)  and twice this for transverse motion (Cox 1970). 
Thus 

In  solving the preceding system of equations it is useful to absorb the factor 
ln (2L/p)/2np into the tension, changing its units of measurement. First the drag 
force (2.4) is substituted into the force balance (2.3). To solve for the rate of 
distortion of the thread S the inverse Q( I + x’x’) of 21 - x’x‘ is needed. Thus we 
obtain the main evolution equation for the thread, using x’ .x” = 0 from (2.1), 
as 

j z  = I’.x+T’x’+&Tx“. (2.5) 
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The motion of the thread is the combination of three effects. It is advected by 
the undisturbed flow, pulled in the direction of the local tangent owing to the 
increasing tension along it, and pulled normal to itself by the 'hoop' tension. 
The coefficient of a half in (2.5) comes directly from the two-to-one ratio of the 
friction factors in the slender-body theory. 

Supplementing the evolution equation (2.5) we need a side equation for the 
tension. This is clearly connected with the internal dynamics, i.e. the inextensi- 
bility constraint (2.2). From the velocity k given by (2.5), we can find the rate 
of change of the tangent x". On substituting this into the constraint (2.2) and 
using x"' . x" = - X" .XI", obtained from (2. l), we find 

T"-$(x"")'T = -XI. E.x". (2.6) 

The tension is generated by the component of the strain rate E in the direction 
of the local tangent. There is a tendency for a compression in the thread to be 
produced when a tensioned part is curved, the tensioned part pulling the thread 
towards the centre of curvature. The second-order differential equation for the 
tension is solved subject to the boundary conditions that the tension vanishes 
at  the ends of the thread: 

T = O  a t  s = + L .  (2.7) 

Given the shape x(s, t )  at one instant, the tension equation (2.6) ean be solved 
with the boundary conditions (2.7). With the tension given at one instant, the 
evolution equation (2.5) gives the rate of change of shape. The initial-value 
problem thus requires knowledge of only the initial shape of the thread. 

3. Nearly straight threads 
The nonlinear partial differential equations (2.5)-(2.7) can be solved asympto- 

tically when the thread is nearly straight. A straight thread in the direction of 
the unit vector p ( t ) ,  

x(s,t) = P(t)S, 

rotates according to i, = r .p -p(p .r .p ) .  (3.1) 

As remarked in the introduction, this equation predicts in simple shear that the 
thread tends to align itself with the flow, when the thread really undergoes 
periodic rotations. However, the period of the rotations is long, O(L/I'p), so 
that there should be little difference between the true orientation and that 
predicted by (3. I )  at any fixed finite time as the thread is made slender, p/L+ 0. 

We now look at  the behaviour of small, O(E) ,  deviations from a straight line, 
where E is a small parameter. At the lowest order, the subject of this section, we 
shall find the basic development of the distortions. Higher-order analyses pro- 
duce small corrections to this basic development, including the important 0 ( e 2 )  
correction to the rotation law (3.1), which will be discussed in $4.  We consider 
the nearly straight thread 

X(S, t )  = P(t)S + ey(s, t ) ,  (3.2) 
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with p(t) satisfying (3.1). At the present order of approximation we must take 
p orthogonal to that part of y(s,t) which varies with s. More care should be 
exercised at higher orders, where the direction p of the average straight thread 
must be precisely chosen and the component of the distortion parallel to p 
subtracted out of y(s, t ) .  

Substituting the shape (3.2) into the tension equation (2.6) gives correct to 

T” = - p . E . p - 2 ~ p . E . y ’ ,  
O(4 

with a solution satisfying the boundary conditions (2.7) given by 

T = p . E . p ~ ( L 2 - s z ) - 2 e p . E . ( ~ ~ L y - ~ / ~ L y ) ,  

where, as in all integrals in the paper, the integration variable is the arc length. 
When this expression for the tension is substituted into the evolution equation 
(2.5), and the rotation of the straight thread (3.1) is subtracted off, we obtain 
the equation for the development of y: 

j ,  = r . y + p.  E .p[ - SY’ + &(L2 - s2) y”] - 2pp.  E. [ y-- ; y L Y ] .  (3.3) 

From (3.3) the rate of change in time f f  of that part of y which varies with s can 
be found. Using this and the rotation p from (3.1) we find 

a(p.y’)/at = 0 if p . y ’  = 0. 

Thus (3.3) implies that p will remain orthogonal to that part of y which varies 
with s if it  starts off orthogonal to it. The orthogonality assumed in the definition 
(3.2) is therefore preserved in time. 

In  (3.3) there are three contributions to the change in j,, only one being a 
change in shape. The thread drifts with a velocity h( t )  which is independent of 
the position along the thread. With the shape remaining fixed, there is also a 
contribution to the change in time of the vector distortion y from the rotation 
with the orthogonal p(t). In  order to remove this rotation from the genuine 
distortions, the complete orthonormal triad p, q and r is introduced. The rota- 
tion of q and r arises entirely from the rotation p, i.e. we choose 

I a = -p(q.p) = -p(q.r.p), 
i. = -p(r.p) = -p(r.I’.p). (3.4) 

The deviation y from the straight thread ps is now written as the sum of an 
accumulated drift a( t )  and two projections onto the rotating axes q and r: 

Y(S7 t) = + q(t) a@, t )  + r ( t )  4% t ) .  

Substituting this into (3.3) and using (3.4) yields an equation for the drift, 
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and two equations for the genuine changes in shape, 

} (3.5) 
q = (9. E .  q) q+ (9. r. r) r + (p.  E .  p) [ - sq'+ &(L2- s2) p"], 

1: = (r. r. q) p+ (r. E .  r) r + (p. E .  p) [ -sr '+ &(L2- s2) r"]. 

There remains in (3.5) 'a rotation without a change in shape in the vorticity part 
of the two coupling terms. This could be removed by modification of (3.4). 
Such a modification is rejected as an unnecessary complication. 

The shape equations (3 .5 )  will be solved by the method of normal modes. The 
eigenfunctions for the arc-length structure of the distortions are governed by 

$(L2--@)f"-s f '+hf= 0,  

with a regularity condition at the ends s = 
first derivative of the Legendre polynomials, i.e. 

L. This problem is solved by the 

f,(s) = LPk(s/L), An = &-(nz+n-2) for n = 1 , 2 , 3 ,  ... . 
The n = I modes, fi = I, are straight threads with nearby origins. The n = 2 
modes, f2 = 3s/L, are straight threads with nearby directions. The first distortion 
modes are those with n = 3, f 3  = 3(5s2 - L2)/2L2, and are symmetric about the 
centre. Small neglected couples exerted on the thread by the shear might be 
expected to produce odd functions of s. The first such modes are those with 
n = 4: f4 = 5s( 7s2 - 3L2)/2L3. These eigenfunctions are orthogonal with a quad- 

The orthogonality can be used to resolve the initial shape into the normal-mode 
components, and in 3 4 is needed to define 'the ' direction of the average thread. 

We now proceed to solve (3.5) by expressing the distortion in terms of the 
normal-mode functions : 

m 

Substituting this eigenfunction expansion into (3.5) yields 

In  a particular flow r(t), first ( 3 . 1 )  is solved for p(t) and then (3.4) is solved for 
the remainder of the triad {p, q, r}. Using these functions of time in (3.6), the 
evolution of the amplitudes qn and r, can be found. This solution procedure will 
be illustrated by two examples: axisymmetric straining flow and simple shear 
flow. 

As a f i s t  example the 'nearly straight thread' theory is applied to a steady 
axisymmetric straining flow u(x,t) = E(2x, -y, - 2 ) .  By the symmetry about 
the x axis, we may place the thread in the x ,  y plane. Further, the origin of time 
may be chosen as that instant when p bisects the x, y axes. Starting from these 
chosen initial conditions, (3 .1 )  integrates to 

p(t) = (I, e-3Et, 0 )  ( I  +e-6Et)-*. 
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This solution is always orthogonal to the z axis, which we now select as the 
constant r(t). The orthonormal triad is thus completed by 

q ( t )  = ( - e -3E t , l , o ) ( l+e-GEt ) -~ ,  r(t) = ( O , O , ~ ) .  

This geometrically constructed triad satisfies (3.4). With this natural triad, the 
amplitude equations (3.6) decouple into two first-order equations with time- 
dependent coefficients. The solutions are 

The distortions decay very rapidly, both in tensile straining ( E  > 0) and com- 
pressive straining ( E  < 0) .  In  tensile straining the r and q modes eventually 
decay exponentially a t  the same rate, after an initial phase in which the q mode 
decreases less than the r mode by a net factor of 4 2 .  The first and slowest dis- 
tortion modes, n = 3,  have an eventual decay rate of 6E, twice as high as that 
of the straight line approaching the x axis, 3E. The f i s t  odd distortion modes, 
n = 4, have an eventualdecayrate o61OE. In  compressive straining the eventaul 
exponential decay of an r mode is less rapid than that of the corresponding q 
mode. Indeed, in the straight-line modes, n = 2, the r mode tends to a constant 
29r(O), while the q mode has an eventual decay rate of 3E. This behaviour reflects 
the rotation of p ( t ) ,  which in general tends to the compression (y,x) plane but 
has no motion in that plane. The distortion modes do not eventually decay as 
rapidly as in the tensile case, the decay rates being 4 5 E  and 1.5E for q3 and r3, 
and 6.5E and 3-5E for q4 and r4. Taking into account the fact that the strain 
rate - E in the direction of alignment is half the value 2E of the tensile straining, 
the decay rates for the q modes are really larger in compressive straining, with 
the decay rates for the r modes an equal amount smaller. 

Of practical and experimental interest is the steady simple shear flow 

u(x, t )  = (yy, 0,O).  

In  shear flow a straight thread sweeps out a p ( t )  trajectory which is a great 
circle through the direction of flow. If we choose the time origin to be that 
instant when the thread passes through the orthogonal y, z plane, then ( 3 . 1 )  is 
solved by 

with C a constant of integration. When selecting the remaining orthonormal 
vectors of the triad, we can conveniently take r(t) t o  be the constant vector 
which defines the great circle of the above trajectory. Thus for a triad which 
satisfies (3 .4 )  we have 

p ( t )  = (yt, 1, C )  [ 1 + c2 + y2t21-4 

q ( t )  = ( - 1 - c2, yt, C y t )  [( 1 + CZ) (1 + c2 + y2t2)]", 

21-2 
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Substituting this triad into the amplitude equations (3.6) and solving yields 

In  shear flow the modes decay algebraically rather than exponentially. At large 
times the different directions of the neighbouring straight threads, q2 and r2, 
decay like ( ~ t ) - ~  and (yt)-l. The first distortion modes q3 and r3 decay like (@)d 
and (yt)-B, while q4 and r, decay like (yt)-Y and (yt)-%. At negative times the 
thread is in the compressive quadrants of the shear flow, where the distortions 
are increasing to their maximum at t = 0. Note that the linear analysis is sym- 
metric in time about t = 0, a property destroyed by nonlinearities. 

The two preceding examples illustrate well the general behaviour of a nearly 
straight thread: it tends to some particular orientation and the distortions decay 
rapidly. Almost all flows are like tensile straining flow, with the straight thread 
tending to a unique direction in which it is under tension. The compressive 
straining flow is exceptional only in that the final direction is not unique; all 
the possible final alignments are under tension. In  shear flow a straight thread 
tends to a unique direction (according to the adopted slender-body approxima- 
tion), but the direction is one in which the tension vanishes. The decay of the 
tension as the thread aligns with the flow leads to the distortions decaying 
algebraically rather than exponentially. 

The eventual tension in the thread is responsible for the removal of the dis- 
tortions. The essential process is simply a tensioned thread snapping straight in 
a resistive medium. While in shear flow the tension decreases as the thread aligns 
with the flow, the distortions are snapped out at a faster rate than that at which 
the tension decreases. The details of the snapping are modified by the two-to- 
one ratio of the friction coefficients, coming from the slender-body theory for the 
Stokes flow. The effective tension in the thread is halved by the relative shielding 
of the parallel flows. An isotropic drag law would have decay rates of 

i(n2-n) p.  E. p, 

associated with modal functions Pn-l(s/L). At large n this is approximately 
twice the &(n2 + n- 2) p . E . p in the above results. (Note that the labelling has 
been chosen such that n = 3 is the first distortion mode in both cases.) There is a 
secondary effect from the anisotropic friction. As the distortion decays, the 
thread does not move entirely in the more resisted sideways direction, but has 
a small velocity component along its tangent. This leads to a slight enhancement 
of the decay rate, by i ( n  - 2) p . E . p, over the halved tension result 

t(n2 - n) p . E . p. 

In  addition to the tension snapping, the basic flow itself gives an advective 
decrease of the thread displacement. This is the only contribution to the n = 2 
straight-thread modes. The magnitude of this effect depends on the direction 
of the distortion, thus accounting for the slight differences in behaviour between 
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the q and r modes. In  shear flow there is no advection effect in the r mode, while 
the q mode benefits by an extra factor of [ 1 + C2 + y2t2]- t .  It is possible for the 
advection effect to act negatively. On average for all directions of distortion, 
however, there must be advective enhancement of the decay. The vanishing 
of the flow divergence (i.e. l’: I = 0) and the stretching in the thread direction 
(i.e. p . E . p > 0) imply a net compression in the q, r plane. 

4. The crossing problem 
As discussed earlier, the rotation law (3.1) for the straight thread predicts in 

simple shear that the thread aligns with the direction of the flow (see the solution 
for p ( t )  in the worked example), whereas the thread should rotate periodically 
with a long period O(L/pI’). Missing from the slender-body approximation (3.1) 
is a small term O(p2/L2). This term represents the couple which is exerted by the 
velocity difference across the thickness p of the thread. Now the nearly straight 
thread is in some sense given a thickness by the O(e) distortions. In  this section 
we study whether such an effective thickness can cause the thread to cross the 
plane of the flow, calculating the O(e2) correction to (3.1) which comes from the 
distortions. If e $ p/L it  is possible for the distortion correction to dominate 
that from the genuine thickness. The distortions also produce small, O(e) ,  correc- 
tions to the shape equations (3.6). These corrections are of less significance, not 
producing such a major qualitative change as the difference between aligning 
with the flow and rotating indefinitely. 

E’or the higher-order calculation in this section, more care is needed in the 
kinematic description of the thread. The first problem is to define x ( s , t )  in 
terms of p ( t )  and y(s, t )  in such a way as to maintains as a true arc-length variable. 
As before we demand that the unit vector p ( t )  is orthogonal to that part of 
y(s, t )  which varies with s, i.e. p . y’ = 0. (The part of y which is independent of 
s is the drift a ( t ) ,  which cannot be kept orthogonal to the rotating p ( t ) . )  The arc- 
length condition (2.1) can be satisfied by making small adjustments to x in the 
direction of p .  With a neglected error O(e4), we may take 

x(s, t )  = s- &2 y‘2 p ( t )  +ey(s, t ) .  [ / : I  
The second problem in the kinematic description of the thread is to separate 

clearly the rotation from the distortions. A difficulty arises with the n = 2 modes, 
which represent straight threads in nearby directions. A nonlinear rotation of 
the thread must be made to appear in p and not as a change in the amplitudes 
of the n = 2 modes. Thus we exclude the redundant n = 2 modes from y at all 
times, defining ‘the’ direction of the thread to be exactly p ( t ) .  The restriction is 
effected using the orthogonality of the normal modes in the linear theory: 

This natural inner product is chosen because the orthogonality (4.2) of the dis- 
tortions to a straight line is preserved by the linear theory. 
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The refined definition of the thread (4.1) is now substituted into the basic 
evolution equation (2.5),  keeping terms O(s2). For ps we require that part of x 
which is orthogonal to p ( [ P I  = 1) and which is a linear function of arc length 
(straight-line mode). This part of x is extracted by employing the projection 
operator I - pp in real space and ( . , s} in eigenfunction space. The result of these 
projections, using (4.2), is 

[p - r. p + p(p. E. p)](s - s) = e(T'y' + &Ty", s). 

A fortunate consequence of first making the two projections is that the tension 
need only be calculated to O(E), i.e. to the order already obtained. Moreover the 
leading-order quadratic tension does not cont,ribute because of (4.2). The cor- 
rected rotation law is finally found to be 

The corrected rotation law (4.3) is applicable to all linear shesring flows. We 
now restrict attention to steady simple shear u = (yy, 0,O).  Further, we shall 
investigate only the two-dimensional case in which the thread rotates and de- 
forms in the 2, y plane. Thus with $ ( t )  the angle of the thread to the flow, we set 

p(t) = (cos 9, -sin $, 0), 

y(s, t )  = a@) + (sin 4, cos 9, 0) q(s, t ) .  

The rotation law (4.3) then becomes 

The thread will rotate through the plane of flow, rather than aligning with the 
direction of the flow, if the integral in (4.4) is negative when 9 = 0. The integral 
has independent contributions from the odd modes and from the even modes. 
On its own the first permitted mode n = 3 makes the integral vanish. Thus the 
slowest decaying form of distortion which on its own has a non-zero integral is 
the n = 4 mode, and this gives a negative integral - 5-4: L3. The integral can 
be positive for some combinations of modes, e.g. f 5 -  2 f 3 .  

In  the higher-order analysis of (4.4) the thxead can pass through the direction 
of the flow, $ = 0,  if it has a suitable distortion such as the n = 4 mode when it 
is in the flow direction. We now consider the approach of the thread to the flow 
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direction with a small distortion consisting of just the n = 4 mode. At small 
angles to the flow plane the governing equations become 

y-i$ = $2 + +5-ezq;~-2, 

y-1g4 = y $ q 4  + O(s@-l). 

If these equations are started with moderate values of $ ( < 0 )  and q4, we find for 
t < O  

# N ( - yt)-' + &%$( 0) L-'( - yt)-lo, 

qa N q4(0) (-yt)-2+O(€q;(O)L-l( -yt)-lO). 

The potentially useful distortion decays away much faster than the thread 
rotates. Thus the distortion vanishes before the thread reaches the flow direction, 
and so the thread does not manage to rotate through the flow direction. While 
far beyond the range of their validity, the equations for $ and eq4 suggest the 
thread will not cross the flow direction unless at  the initial instant 

5€q4 > -3& 

corresponding to a necessary maximum displacement eq(s, t )  of 6L at $ = - 1. 
We may thus speculate that a thread which does rotate through the flow direction 
must pass through an orientation at which it is substantially different from 
straight, where the concepts of its direction and of its rotation through the direc- 
tion of flow are unclear. [This speculation isbased on an analysis which neglects 
the velocity difference across the thread.] 

The above analysis has shown that the slowest decaying mode which is 
potentially useful decays too rapidly for a crossing of the flow direction. We may 
therefore conclude that an arbitrarily distorted, nearly straight thread, the only 
case for which the crossing problem is meaningful, will not cross. Essentially the 
distortions are higher eigenmodes than the straight-thread modes n = 2. These 
higher modes have higher decay rates than the straight modes. Thus the strength 
which they have to cause a crossing decreases rapidly from the initial instant. 

5. A numerical study 
The full nonlinear equations (2.5)-(2.7) have been studied numerically in the 

case of a steady simple shear flow with the thread in the plane perpendicular to 
the vorticity vector. The thread was split into a finite number of elements of 
equal size As. For some of the nonlinear phenomena unequal arc lengths might 
have economically improved the accuracy. A spatially second-order form of the 
evolution equation was found by considering the force balance on a numerical 
element, rather than simply finite differencing the differential equation (2.5). 
The side equation for the tension was developed similarly from the underlying 
physics, choosing the tension in each element such that its arc length was pre- 
served numerically. By thus deriving a numerical version of (2.5)-(2.7), a 
spatially second-order scheme was devised which avoided the unnecessary intro- 
duction a t  each time step of an error O(As2) in the length of the thread. The 
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tension equation was in the form of a triadiagonal matrix which was to be solved 
by the fast double-pass technique. 

The time-stepping was made by an explicit second-order scheme. The tem- 
porally second-order accuracy is more accurate than is justified by the spatial 
accuracy. The additional accuracy was, however, found useful, particularly for 
the rotation of a straight thread. The explicit time-stepping did introduce a 
small error O(As2At) in the length of the thread, as all explicit schemes must. 
Attempts to construct an implicit length-preserving scheme proved fruitless 
because of the severe nonlinearity of the constraint ( 2 . 1 ) .  A length-correcting 
routine was therefore applied after each time step. Points along the thread were 
repositioned such that the length between them was rescaled to As while main- 
ta.-yng the airection of each element. In this process it was found useful to stop 
drift of the thread by keeping its centre fixed, thus making easier the comparison 
of the shapes a t  different times. 

A first check of the program was that a straight thread remained undeformed. 
The rotation of the straight thread provided a test of the time-stepping scheme. 
Second-order, O(Atz),  behaviour was noted, giving an accuracy of 4% with 
yAt  = +. Numerical stability tests were performed using a small cubic seed dis- 
tortion. The stability boundary was found to be yAt 5 4As2/L2 corresponding to 
Ax < *As with a tension of $yL2. 

The &st distortion problem studied with the numerical model was the decay 
of the n = 4 mode. At low eq4 amplitudes this provides a check on the program 
and the linear analysis, as well as a verification of the second-order spatial 
accuracy of the scheme. From the worked example in Q 3 we have theoretically 

q4(t)  = q4(0 ) ( l+y2 t z ) -L .  = q,(o) lsin#Jl%L. 

A difficulty with the investigation was the difference between the theoretical 
n = 4 mode used for the initial conditions and the numerical n = 4 mode at  a 
finite As. Inevitably the initial shape is contaminated by a contribution from 
the n = 2 straight-line mode, which decays more slowly and eventually swamps 
the distortion. This troublesome lower mode was filtered out by measuring the 
distortion relative to the tangent at  the centre, this incidentally being taken to 
define #J. For the test of the linear analysis an initial amplitude of eqa = &As 
was used, producing a small end deflexion of 0.23As. The initial orientation was 
perpendicular to the flow, #J = - an. The results for three different A s / L  using 
yAt  = 0.05 are shown in figure 1, in which the scaled distortion 

eq(s , t ) /As Isin $ ( t ) l q  

is plotted against s. The scaled distortion should remain constant in time. By 
y t  = 5 the thread is 0.2 rad from the direction of the flow with the distortions 
having decayed by a factor of 1.3 x These numerical values illustrate 
extreme rapidity of the decay of the distortions. Within the context of a ten- 
thousand fold decrease in the unscaled distortions, the numerical results in 
figure 1 for the scaled distortions are very reasonably constant. The eigenmode 
structure and the decay rate are confirmed. The behaviour of the errors is con- 
sistent with second-order spatial accuracy. With the finest resolution As/L  = &, 
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0 0.2 0.4 0.6 0.8 1 .o 
SlL 

FIGURE '1. Confirmation of the linear analysis. The scaled distortion ~ q ( s ,  t)/Aslsin:$(t)ly 
is plotted against s/L at ~t = 0, 1, 2, 3 , 4 , 5 .  (a) As/L = z. ( b )  As/L = i. (c) Aa/L = &. 

there is a 4 % error in the scaled distortion and an error of less than 1 yo in the 
unscaled distortion during each unit time interval l/y. 

After confirming the eigenmode Pi with its decay rate in the linear regime, 
the program was run with larger amplitudes in order to establish the range of 
validity of the linear theory. The initial amplitudes used were eq4(0)/L = 0.094, 
0-18, k 0.37, 0.75 and f 1.5. After the initialization of ey(s, t )  these large ampli- 
tudes required an immediate application of the length-correction routine to 
x(s, t ) ,  so that the numerical elements all started with the same arc length As. 
The deflexions of the end of the thread corresponding to the initial amplitudes 
following the length-correction procedure were 0.27L, 0*42L, 0-58L, 0.65L and 
f 0-53L. The largeness of the distortions is exhibited by the fact that these end 
deflexions do not increase by a factor of two. As before, the distortion cq(s,t)  

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 31 Jul 2009 IP address: 131.111.16.227

330 E .  J .  Hinch 

20.i.,-.----- / O  (g) 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.6 

s /L  5IL 

FIGURE 2.  The range of validity of the linear analysis. The scaled distortion q(s, t ) /  

Aslsin $(t)Iy is plotted against s / L  at yt = 0, 1, 2, 3, 4, 5. Initial amplitudes are (a) 
6q4(0)/L = 0.094, (b )  0-18, (c) 0.37, ( d ) ,  - 0.37, ( e )  0.75, ( f )  1.5 and (9) - 1.5. 

was measured relative to the central tangent, which also was taken to define &t). 
While perhaps distorting some of the results, these arbitrary definitions are self- 
evident in the nonlinear regime, where the concepts of the distortion and orien- 
tation of a straight thread become unclear. In  all the runs presented yt = 0.05 
and As/L = &. Spot checks confirmed that these values gave a general accuracy 

The numerical results of this second study are shown in figure 2. The scaled 
distortion q(s, t ) /As  [sin Q(t)I+& is plotted against s. With an initial amplitude 
eq,(O) = 0.094L, the shape remains within 15 yo of that predicted by the linear 
theory. (The linear theory predicts thai the scaled distortion remains constant 
in time.) Some of the error at larger times may be numerical. The agreement is 
good considering that the initial end displacement is 25 % of the half-length of 
the thread. The linear theory continues to agree to within a factor of two up to 
an initial amplitude q , ( O )  = 0.37L. At this amplitude the end displacement has 
risen to 60 % of the half-length of the thread. In  the cases of nonlinear initial 
amplitudes, the linear theory becomes applicable once the distortions have de- 
cayed sufficiently. Figure 2 shows the scaled distortion settling down to the 
eigenfunction with a constant amplitude, this eventual amplitude no longer 
being the same as the initial scaled amplitude. 

of 1 %. 
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(4 
FIGURE 3. The different motions for positive and negative distortions. The configuration 
X(S, t )  is plotted against s at ~t = 0, 1, 2, 3, 4, 5 ,  6. Initial amplitudes are (a) EQ* = - 1.5L 
and (6) q & O )  = + 1-5L. 

Some of the nonlinear effects shown in figure 2 are probably due to the method 
of presenting the data. The arbitrary definition of 9 leads at  small times to a 
suppression of positive amplitudes and an enhancement of negative amplitudes. 
Once the thread has straightened sufficiently this temporary effect vanishes, 
and a genuine nonlinear effect is revealed. There is a difference between positive 
and negative distortions. Figure 2 shows that the eventual amplitude of the 
scaled distortion attained in the quasi-linear regime is below the initial amplitude 
for positive distortions but above that for negative distortions. The reduction is 
by a factor of 3 for eq4(O) = 1*5L, compared with an amplification of two €or 
eq4(0) = - 1.5L. The mechanics behind this nonlinear effect are suggested in 
figure 3, in which the full configuration of the thread x(s,t) is shown. The free 
end of the thread appears to be advected just in 0 < yt < 2. Such pure advection 
reduces the curvature near the end for positive distortion, but enhances it for 
negative distortion. The enhanced curvature corresponds to an increase in the 
amplitude of the linearized mode. The difference in behaviour between positive 
and negative distortions is equivalent to the buckling in the compressive quadrant 
when t < 0 differing from the stretching in the tensile quadrant when t > 0. 
Thus the nonlinearities destroy the symmetry in time possessed by the linear 
modes. 
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(6) 
FIUURE 4. TWO parts of the nonlinear phase: the rotation of the end and the advection of 
the outer straights sections. The configuration x(8, t )  is plotted against 8 at  intervals of 
time l / y .  The initial shapes are cubics in the compressional quadrants with the central 
fangent in the flow direction. 

The analysis in Q 4 for the crossing problem is confirmed by the cases studied. 
As seen in figure 3, the distortion is dramatically removed before the thread 
aligns with the flow. The distortions cannot therefore cause a crossing. The 
largest distortion (sph(0) = & 16L) decays so much that it is barely detectable 
by eye at the time yt = 4, when the thread is still 1 4 O  from the flow direction. 
The nonlinear phenomenon of the lack of time symmetry is also relevant to the 
crossing problem. A thread which managed to cross once with a positive distor- 
tion may not cross again. The nonlinearities reduce the eventual amplitude in 
the quasi-linear phase a t  the end of the tensile quadrant, when yt B 1, compared 
with that at the beginning of the compression phase, when - yt $ 1. The ampli- 
tude q4(0) = 1.5L is attenuated by a factor of six. Of course the opposite remarks 
apply to negative distortions. Experiments in shear flow by Forgacs & Mason 
(1969) showed that a thread did cross the flow direction with a shape like the 
positive distortion. At this stage we must therefore suspect that the observed 
motion is due to effects neglected in the primitive model of this paper. 

Two final numerical experiments were made in the fully nonlinear regime. 
The initial shapes chosen were cubics in the compressive quadrant with the 
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central tangent parallel to the flow. As shown in figure 4, the thread soon entered 
a nonlinear phase which was poorly treated by the numerical resolution available. 
This figure suggests that this nonlinear phase might be split into two distinct 
parts. First the ends turn over rapidly. That portion of the thread which starts 
approximately parallel to the end appears roughly to rotate like a freely hinged 
straight segment until an S-shape is formed. In  the second part of the nonlinear 
motion, the outer straight sections appear to slip past the central segment 
virtually through pure advection, growing as they peel off the thread from the 
central segment. The numerical calculations indicate that large curvature occurs 
at the peel-off point, although this is not treated accurately. Further study of 
this nonlinear behaviour is required. At the end of the nonlinear phase the thread 
straightens, still some way before aligning with the flow. During the nonlinear 
phase there is substantial attenuation between the initial and final effective 
linear amplitudes, which makes a crossing impossible. 
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