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Abstract

A new numerical method specially adapted to the free-surface flow of viscoelastic material is proposed. It is based on a Lagrangian discretisation
of the material and objective derivatives, which accounts well for the hyperbolic nature of these terms and goes well with a Lagrangian tracking of a
time-evolving domain. Through the Arbitrary Lagrangian–Eulerian (ALE) formulation, the method can also be applied efficiently to solid-boundary
problems, and is tested on the benchmark problem of the drag on a cylinder in a channel. The collapse of a column of Oldroyd-B fluid is then
considered: under the action of surface tension, the column undergoes large deformation leading to the “beads-on-string” structure. Asymptotic
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esults on the evolution of this structure are recovered in numerical simulations, and further features of this flow are exhibited.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Free-surfaces and the extra-stress tensor are both quantities
hose local properties at one given time essentially depend, not
n the history of the flow at the point considered, but on its
istory along the material trajectory passing through this point
nd time. In one word, they are naturally understood from a
agrangian point of view, moving along the flow, rather than

rom the observer’s Eulerian point of view. This obvious remark
as well-known, deep implications: the equations governing the
volution of such quantities are of hyperbolic nature, and thus
he boundary conditions and numerical methods applied to them
eed to take into account this hyperbolic nature.

It is rather natural to try to take advantage of this common
oint between free-surface and viscoelastic flows, rather than
aving two separate difficulties, and thus to use a Lagrangian
oint of view for both of them. This is done in a very natural
ay for the free-surface, and several approaches have been pro-

∗ Corresponding author. Tel.: +44 1223 337877; fax: +44 1223 765900.

posed for treating viscoelastic flow from a Lagrangian point of
view. Rasmussen and Hassager [1,2] simulate creeping flows of
viscoelastic fluids described by an integral model and with zero
solvent viscosity using a Lagrangian integration of the mem-
ory function. Alternatively, fully Lagrangian formulation of the
objective derivative has been proposed by Fortin and Esselaoui
[3], which allows the simulation of flows of fluids described by
a differential constitutive equation. A similar idea is used by
Harlen et al. [4], where the simulation cleverly employs a piece-
wise constant rate of deformation to express the co-rotational
derivative solely in terms of the deformation of a Lagrangian
mesh. The idea of Fortin and Esselaoui can be seen as a gener-
alisation of this procedure, were a local change-of-basis matrix
tracks the deformation along material trajectories. Thus trans-
formed, the governing equations of a moving-boundaries, vis-
coelastic flow (in the case of an Oldroyd-B fluid for the sake of
simplicity) are presented in Section 2, and their discretisation in
time in Section 3. A mixed finite elements space discretisation
is introduced in Section 4, the particulars of the simulation of
surface-tension driven free-surface are developed in Section 5.

It is well known that purely Lagrangian methods are
E-mail addresses: J.Etienne@damtp.cam.ac.uk (J. Étienne),
.J.Hinch@damtp.cam.ac.uk (E.J. Hinch), jie@bpi.cam.ac.uk (J. Li).

not well suited when solid boundaries are involved, because
the mesh is sheared by the flow and frequent remeshing is
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thus needed to preserve the accuracy of the solution. Also,
inflow and outflow boundaries are not naturally dealt with by
Lagrangian methods. Thus, we introduce in Section 6 an Arbi-
trary Lagrangian–Eulerian (ALE) extension of the method, in
which case the mesh is advected with an arbitrary advection
velocity, which can locally differ from the material velocity.
In the case when this advection of the mesh is zero, the algo-
rithm can deal with fixed boundary problems, and the method
is validated in Section 7 by comparison of the calculated drag
on a cylinder in a channel flow with the values obtained by
other authors (with codes specifically adapted to this latter fixed-
boundary case).

Finally, we turn in Section 8 to a free-surface flow of both
theoretical and practical interest, the collapse of a column of
Oldroyd-B fluid. After the initial destabilisation of the column,
elastic stresses build up in necking regions and control the rate of
thinning. Thus, long threads of stretched material form, which
connect drops of nearly relaxed fluid, a structure known as beads-
on-string, with the thread radius exponentially decaying at a rate
controlled by the Deborah number only [5–7]. Pioneer numer-
ical work on this problem was done by Keunings [8], where
the beads-on-string structure is obtained for a creeping flow of
Oldroyd-B fluid by means of an axisymmetric simulation. The
same technique is used by Bousfield et al. [9] in order to vali-
date a one-dimensional model, with which they obtain the decay
predicted by asymptotic theory over a short time range for a Deb-
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where σtot = −pI + 2(1 − α)Du + σ and initial conditions are pro-
vided at time t = t0, u(t0) = u0.

The extra-stress tensor obeys the Oldroyd-B constitutive law:

σ + De
∇
σ = 2αDu (4)

where
∇
σ denotes the upper-convected objective derivative of σ,

∇
σ =

(
∂

∂t
+ u · ∇

)
σ − (∇u)Tσ − σ∇u (5)

with the convention that

(∇u)ij = ∂uj

∂xi

and the Deborah number, De = λU/R, is the non-dimensional
relaxation time of the fluid. Because there is no inflow, no
boundary conditions are necessary for σ; only initial conditions
σ(t0) = σ0.

Ω(t) can be related to Ωr by the trajectories t �→ X(xr,t)
of material points of reference coordinates xr ∈ Ωr as
Ω(t) = X(Ωr,t). The material trajectories are tangent to the
instantaneous velocity of the material u[X(xr,t),t],⎧⎨
⎩

∂X

∂t
(xr, t) = u ◦ X(xr, t), t ∈ [0, T ],

X(xr, tr) = xr,
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rah number of 2. The simulations presented in this article are
xisymmetric and for Deborah numbers reaching 300. A good
greement with the asymptotic law is exhibited over a time equal
o the relaxation time of the polymers.

. Lagrangian–Eulerian formulation of the governing
quations

Let us consider a viscoelastic material, composed of a solvent
f viscosity, ηs, and polymers making a contribution to the solu-
ion viscosity, ηp, and having a relaxation time, λ, occupying at
ome reference time tr the domain of space Ωr. As displacement
ccurs, the material will occupy at time t a domain Ω(t), this
omain is bounded by solid boundaries Γ D(t) and free bound-
ries Γ N(t).

The conservation of momentum and mass in the domain Ω(t)
re expressed as:

e

(
∂

∂t
+ u.∇

)
u = −∇p + (1 − α)∇ · (2Du) + ∇ · σ (1)

· u = 0 (2)

here u is the velocity, p the pressure, Du the rate-of-strain
ensor (�u +�uT)/2 and σ is the extra-stress tensor. Here,
e have assumed that the fluid has a constant density �0

nd put α = ηp/(ηs + ηp), the fraction of polymer contribu-
ion to the total viscosity. The Reynolds number is therefore,
e = �0UR/(ηs + ηp), with R and U characteristic length and vis-
osity. Boundary conditions are

|ΓD = f D; σtotn|ΓN (t) = f N (3)
here u ◦ X(xr,t) is understood as u[X(xr,t),t]. Then the govern-
ng equations can be rewritten in the domain of reference Ωr
hanks to the mapping X:

e
∂u ◦ X

∂t
= (−∇p + (1 − α)∇ · (2Du) + ∇ · σ) ◦ X, (6a)

∇ · u) ◦ X = 0 (6b)

σ ◦ X + De

(
∂σ ◦ X

∂t
− [(∇u)Tσ + σ∇u] ◦ X

)
= 2α(Du) ◦ X. (6c)

Note that X is the identity for t = tr, and so composition by
simplifies everywhere except in time-derivative terms with a

roper choice of tr (and indeed, a different reference time can
nd will be used at each step of the numerical method). This
ew system has the double advantage of being written on a fixed
omain Ωr and of having reduced the material derivatives to
artial derivatives in time, it may be discretised as is for instance
n refs. [10,11]. In the momentum Eq. (6a), this process has
emoved any transport term from the equation, however, in the
ase of the constitutive Eq. (6c), non-elliptic terms remain. In
rder to go one step further, let us remark as Fortin and Esselaoui
3] that a matrix R, such that ∂R ◦ X/∂t = −(R(�u)T)(X(x,t),t)
an be seen as a change-of-basis tensor which keeps track of
he deformation locally seen by the fluid between the reference
ime tr and any time t. This corresponds to the fact that we have

(RσRT) ◦ X/∂t = (R
∇
σRT) ◦ X.

This allows us to rewrite the problem:

∂X

∂t
= u ◦ X (7a)
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∂R ◦ X

∂t
= −(R(∇u)T) ◦ X (7b)

Re
∂u ◦ X

∂t
= (−∇p + (1 − α)∇ · (2Du) + ∇ · σ) ◦ X (7c)

(∇ · u) ◦ X = 0 (7d)

σ ◦ X + DeR−1 ∂(RσRT) ◦ X

∂t
R−T = 2α(Du) ◦ X (7e)

X(xr, tr) = xr, R(tr) = I,

u ◦ X|ΓD(tr) = f D ◦ X, σtot ◦ X · n|ΓN(tr) = f N ◦ X

3. Discretisation in time

Let {tn = n�t; n = 0, . . ., N = T/�t} be a partition of the time
interval [0,T]. With the choice of tn for the reference time, for
n = 1, . . ., N, we can discretise system (7) in terms of Ωn, un, pn,
σn the respective approximations of u, p and σ at time tn, taking
u0 = u0 and σ0 = σ0:

Ωn = Ωn−1 + �tun−1(Ωn−1) (8)

Xn−1(x) = x − �tun−1(x) ∀x ∈ Ωn (9)

∇
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The fourth step is the resolution of system (11) and (12),
which is a generalised Stokes type problem for unknowns un

and pn. The choice of discretisation involves a term in σn, which
makes the scheme more implicit, but is an unknown at this stage.
However, Eq. (13) gives an explicit formula for σn in terms of
already calculated quantities and of un:

σn + β[Rn−1σn−1(Rn−1)
T

] ◦ Xn−1 + 2α(1 − β)Dun, (15)

where

β = De

De + �t
. (16)

Thus, the same technique as in ref. [12] can be used to rewrite
(11) as

un − un−1 ◦ Xn−1

�t
− (1 − αβ)∇ · 2Dun

− β∇ · [Rn−1σn−1(Rn−1)
T

] ◦ Xn−1 + ∇pn = 0 in Ωn,

(17)

and the system composed of (17) and (12) can be solved for un

and pn in terms of known quantities.
Finally, the fifth step is the explicit calculation of σn through
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I − Rn ◦ Xn−1

�t
= −(Rn−1(∇un−1)

T
) ◦ Xn−1 in Ωn (10)

un−un−1 ◦ Xn−1

�t
−(1 − α)∇· 2Dun−∇· σn+∇pn =0 (11)

· un = 0 in Ωn (12)

n+De
σn−[Rn−1σn−1(Rn−1)

T
] ◦ Xn−1

�t
=2αDun in Ωn

(13)

This choice of discretisation allows us to define a semi-
mplicit algorithm as follows.

The first step (8) is the explicit calculation of a first order
pproximation of the domain Ω(tn), using the approximations

n−1 of Ω(tn−1) and un−1 of u(tn−1). The second step (9) is
he approximation of X(tn−1) for the reference time tr = tn. It

akes explicit the relation between the points of the new domain
n and those of Ωn−1, but is purely a matter of notation here,

ince step (8) already allows us to keep track of the trajectories
f material points (namely, for a space-discretised algorithm,
he image Xn−1(xn

i ) of node i of the mesh of Ωn will be by
onstruction xn−1

i , the node i of the mesh of Ωn−1).
The third step (10) is the discretisation of Eq. (7b), where we

ave used that Rn = I because tn is the reference time. Up to the
rst order in �t, it can be inverted so as to provide an explicit
ormula for Rn−1 ◦ Xn−1, in terms of the velocity at the previous
ime-step and Xn−1:

n−1 ◦ Xn−1 = I + ∆t(∇un−1)
T ◦ Xn−1. (14)
q. (15), using u .

. Discretisation in space and resolution method

We will now construct a finite element approximation of
he sequence (Ωn, un, pn, σn). This construction is given for

(t) ∈ R
2 for the sake of simplicity, but extension to three

imensions is straightforward. Let T 0
h be a finite element tri-

ngular mesh of Ω0
h, an approximation of Ω0. Meshes T n

h and
pproximate domains Ωn will be obtained in the course of the
lgorithm, and we use finite element spaces based on these tri-
ngulation, which are continuous and quadratic for the velocity,
ontinuous and linear for the pressure, and discontinuous and
inear for the extra-stress tensor (see Fig. 1). Additionally, we
equire the velocity to satisfy the boundary condition on the solid
oundary, the pressure to have zero mean and the stress tensor
o be symmetric.

The sequence of approximated domains Ωn and correspond-
ng meshes T n

h and finite element spaces can then be defined by
nduction: define mesh T n

h as mesh T n−1
h advected by the (con-

inuous) velocity field un−1
h . Then Ωn

h is the domain described
y T n

h . A quadratic approximation of the velocity allows the
ossibility for the mesh to have curved boundaries (isoparamet-
ic mesh of degree 2). However, a simpler implementation has
een used where only the vertices of the triangles are advected,
eeping straight-sided triangles.

This of course results in a suboptimal convergence rate, as
he boundary of the domain is only represented by a piecewise
inear approximation while the interior approximation is of sec-
nd order. The convergence rate for Stokes problem with this
ombination is known to be 3/2 in H1 norm, see, e.g. ref. [13]
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Fig. 1. The finite element approximation. Arrows, velocity components
(P2–C0); circles, pressure (P1–C0); squares, extra-stress (P1–C−1).

for this result and numerical tests. The present algorithm also
achieves a 3/2 convergence rate (see Fig. 2) for the calculation
of the drag force on a cylinder in a Newtonian confined channel
flow, in the setup presented in Fig. 4.

Let us now give the final algorithm in terms of the variational
formulation of the problem in the finite element spaces at time
tn:

Algorithm.

Step 1: Let T n
h be a triangulation with the same con-

nectivity of T n−1
h and vertices xn

i = xn−1
i +

�t un−1
h (xn−1

i ) for all xn−1
i ∈ T n−1

h .
Step 2: Calculate explicitly:

Rn−1
h (xn−1

i ) = I + �t(∇un−1
h )

T
(xn−1

i ). (18a)

F
a
r

Step 3: Calculate explicitly:

σ̃n−1
h (xn

i ) = [Rn−1
h σn−1

h (Rn−1
h )

T
](xn−1

i ), (18b)

ũn−1
h (xn

i ) = un−1
h (xn−1

i ). (18c)

Step 4: Solve the (linear) generalised Stokes problem: find uh
and ph such that:(

un−1
h − ũn−1

h

�t
, υh

)
+ (1 − αβ)(2Dun

h, Dυh)

−
∫

ΓN

f N · υh ds + β(σ̃n−1
h , Dυh)

− (pn
h, ∇ · υh) = 0, (18d)

(∇ · un
h, qh) = 0, (18e)

for all υh and qh in the finite element spaces for velocity
and pressure.

Step 5: Calculate explicitly σn
h = βσ̃n−1

h + 2α(1 − β)Dun
h.

Note that the operations in Eqs. (18a) and (18b) are merely
scalar algebra on node-values of the fields, and do not involve
any interpolation or cross-node communication. If the triangle
v
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ig. 2. Relative error in the drag on a cylinder in a channel in Stokes flow as
function of spatial resolution h. The straight line gives the slope h3/2. The

eference drag value used is the one obtained by Hulsen et al. [22].
ertices only are advected, interpolation is needed for midpoint
odal values in (18c). We use an augmented Lagrangian tech-
ique with a Uzawa iterative algorithm for the resolution of the
tokes-like problem in Step 4, as in ref. [14], which allows us

o enforce exactly a zero-divergence of the velocity.
In the case of fixed, polygonal boundaries, the numerical anal-

sis of this algorithm was made by Bensaada et al. in a recent
rticle [15]. In particular, they show that optimal error bounds
old for the L2 error on the extra-stress tensor and the H1 error
n the velocity, that is, the error tends to zero as �t + h2 sub-
ect to the condition that as h tends to zero, �t tends to zero as

t ≤ Chd/2 for some arbitrary constant C and d the dimension
f space containing the computational domain. Note that this
ondition is not a stability condition.

. Case of free-surface flows

In the case of a flow with a free-surface Γ F(t), the boundary
ondition at Γ F(t) is set by the pressure jump across the surface,
etween the outer medium (supposedly of uniform pressure p0)
nd the fluid. This pressure jump is due to surface tension, and
an be expressed as

totn|ΓF(t) =
(
p0 + κ

Ca

)
n, (19)

here κ is the local total curvature of the boundary Γ F(t) and
a = (ηs + ηp)U/γ is the capillary number, based on the surface

ension γ . In the discrete case, this raises the question of what
he normal is at nodes of the boundary, where our approximation
f the free-surface has corners. We choose to calculate a cube
pline passing through all nodes on the free boundary, and then
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Fig. 3. Anisotropic mesh calculated for the beads-on-string problem (Section 8).
The detail plot shows the triangles are adapted to the aspect ratio of the features
of the fluid domain.

use this spline function to define the normal at nodes and to
calculate the curvature, see, e.g. ref. [16].

As the domain deforms, the mesh deteriorates because of ele-
ment stretching, which in turn affects the quality of the solution.
Two strategies are possible, namely local re-arrangement of the
mesh at each time-step [4] or occasional complete remeshing
[2]. Both present the inconvenience that the solutions need to be
interpolated onto the new mesh, an operation in which accuracy
is not controlled and that may be unstable. Indeed, even if only
edge-swaps are performed, the extra-stresses are in some sense
interpolated, as the shape functions on which they are defined
change, even if the node location and nodal values are kept the
same. Thus, this operation is not altogether neutral on the solu-
tion, an equilibrium solution with one mesh will no longer be
in equilibrium if edges are swapped. In the present case, the
material undergoes very large deformations (see, e.g. Fig. 11),
which means that large changes of connectivity in the mesh are
necessary. In addition, the local aspect ratio of the final shape is
extreme, and only anisotropic meshing can allow us to describe
these geometries with a reasonably sized mesh. Thus, we opt
for completely remeshing the domain at large time intervals, so
as to reduce the number of interpolations,1 which allows us to
obtain a mesh well-adapted to the current domain shape.

1 Another reason for the common choice of local re-arrangement of the mesh
i
a
t
t

An example of anisotropic mesh is shown in Fig. 3. Ele-
ments have an aspect ratio adapted to the local aspect ratio of
the domain. This allows us to save a large number of nodes, and
is more adapted to the solution we wish to calculate, as spanwise
variations are much higher than variations along the stretched
directions [17]. Thus, a metric depending on the local aspect
ratio is calculated which prescribes the mesh step at every point
of the domain in all directions through a matrix representation,
the mesh generation itself being delegated to the free software
bamg [18].

6. Case of inflow and outflow boundaries

In the case when the fluid is flowing through part of the bound-
ary, the mesh cannot be advected by the material velocity (at least
in the neighbourhood of these boundaries), and the scheme has to
be modified accordingly. A natural extension of the scheme pro-
posed above is to use the Arbitrary Lagrangian–Eulerian method
for mesh advection and the method of Lagrange–Galerkin (also
called weak form of the method of characteristics) to account
for the difference of mesh and material point advection. Let us
introduce a partition of the boundary as ∂Ω = Γ I ∪ Γ F ∪ Γ M(t),
where Γ I is the part of the boundary through which fluid is
flowing, Γ F the fixed part of the boundary and Γ M(t) its moving
part. For the sake of simplicity, Γ I and Γ M(t) are supposed to
be non-adjacent.2

c
x⎧⎨
⎩
i
b
a
I
c
i
f
H
d

w
c
g
e
t

s

s that interpolation between unstructured meshes is a difficult operation from
n algorithmic point of view. However, the localisation technique developed for
he method of characteristics (detailed in the end of Section 6) allows us to do
his with a high cost-efficiency.
Let us introduce an arbitrary advection field ua, and the asso-
iated trajectories t �→ A(xr,t) of points of reference coordinate
r ∈ Ωr,

∂A

∂t
(xr, t) = ua(A(xr, t), t), t ∈ [0, T ],

A(xr, tr) = xr

This advection field will be used instead of the physical veloc-
ty u to advect the mesh vertices. For clarity, mesh vertices will
e denoted ai instead of xi in the sequel, since their trajectories
re now the curves t �→ A(xr,t) instead of the curves t �→ X(xr,t).
n order to have Γ M(t) = A(Γ M(tr),t), a necessary and sufficient
ondition is that ua · n|ΓM(t) = u · n|ΓM(t). If in addition ua van-
shes on Γ I, and is tangent to Γ F, we obtain that Ω(t) = A((tr),t)
or any arbitrary choice of ua in the interior of the domain.
owever, due to the difference between ua and u, the material
erivative now becomes(

∂

∂t
+ u · ∇

)
u ◦ A = ∂u ◦ A

∂t
+ (u − ua) · ∇u ◦ A

= ∂u ◦ A ◦ X̃

∂t
◦ X̃

−1
, (20)

ith X̃ such that A ◦ X̃ = X. The method of characteristics [19]
an thus be used to discretise this term. Note that X̃(Ωr, t) is in
eneral not included in Ω(t), e.g. if there is inflow at xr, then at
arlier times the advected point X̃(xr, t) will not have arrived in
he domain. This illustrates the hyperbolic nature of the transport

2 Adjacent inflow and moving boundaries can be dealt with by considering
eparately the directions of advection.
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term, which requires upwind information. Since there will nearly
always be streamwise variations of the extra-stress upstream of
the inflow boundary, it is necessary to provide an analytic expres-
sion (or tabulated values) for the extra-stress of the incoming
fluid for all points that reach or cross the inflow boundary in a
time �t. However, in the case of a Poiseuille inflow, there is no
streamwise variation of the extra-stress in the neighbourhood
of the inflow boundary, so if X̃(xr, τ) is before the boundary,
the value of σij(X̃(xr, τ)) can be taken to be σij(X̃(xr, τ

′)) with
τ′ such that τ < τ′ < tr and X̃(xr, τ

′) ∈ ΓI (and this point is eas-
ily determined, since trajectories are straight lines close to the
inflow boundary).

Thus, the modifications in Algorithm (18) consist of replacing
Step 1 by the three following steps:

Step 1a: Determine some mesh advection field ua,h within the
above conditions.

Step 1b: Let T n
h be an isoparametric triangulation of degree k,

with the connectivity of T n−1
h and nodes an

i = an−1
i +

�tun−1
a,h (an−1

i ).
Step 1c: Calculate the characteristic feet [approximation

of X(an
i , t

n−1)] with: xn−1
i = an−1

i + �t(un−1
a,h −

un−1
h )(an−1

i ).
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than the cost of solving a 2D Stokes problem on the same mesh.
This implementation is embedded as part of the open-source free
software rheolef, which provides a general purpose C++ finite
elements library [21].

7. Validation of the approach for a fixed boundary
problem

The algorithm (18) developed in this paper is tailored for
free-surface flow problems, and is also well adapted for transient
flows, especially when convection is dominant. There is no ques-
tion that it is not very well-suited for dealing with fixed-boundary
flows; nevertheless, we want to show briefly that algorithm (18)
can cope with fixed boundaries up to reasonably realistic Deb-
orah numbers, so that it is an interesting approach for problems
involving both a free-surface and some fixed boundaries: thus we
present here calculations of a well-studied, stationary problem
for which a proper comparison with results from the literature
is possible.

In this test, we consider the flow of an Oldroyd-B fluid in
a plane channel of infinite spanwise dimension, blocked by an
infinitely long cylinder disposed in the spanwise direction, at
equal distance of the channel walls and of diameter half the
channel width. The flow far from the cylinder is supposed to be
undisturbed established flow, perpendicular to the cylinder axis
a
a
b
a
t
P
t
o
c
s
p
t
f
s

r
c
f

C

for t
Steps 2–5 are only changed in that velocity-advected nodes
n
i are replaced everywhere by the newly defined an

i nodes, and
n that the points xn−1

i are generally not nodes of the mesh T n−1
h :

hus the operations in Eqs. (18b) and (18c) are now interpola-
ions except when un−1

a,h − un−1
h vanishes. It is thus interesting,

herever possible, to have ua = u and to localise areas where
nterpolations take place only in the vicinity of inflow or outflow
oundaries, where the extra stress tensor is a smooth function.

In order to interpolate the finite element fields at points xn−1
i ,

t is necessary to identify the mesh element to which they belong.
his localisation problem is not straightforward for an unstruc-

ured, locally refined mesh and an efficient procedure needs to be
eveloped. We use an approach known as quadtree, in which the
ectangular bounding box of the domain is divided recursively
n regular rectangular subgrids, which are in turn divided in the
ame way until they cover a fixed number of triangles [20]. The
oint xn−1

i can efficiently be localised in the quadtree, and then
nly a small, fixed number of triangles remain to be examined.
ith this algorithm, the cost of localising any point in the mesh

s logarithmic in terms of the total number of elements in the
esh. In practice, the computational cost of this implementa-

ion of the method of characteristics is found to be much less

Fig. 4. Domain and boundary conditions
nd parallel to the walls. The fixed computational domain Ω is
s described in Fig. 4, the boundary conditions for the velocity
eing no-slip boundary conditions u = 0 at the wall boundary Γ D
nd cylinder Γ C, symmetry conditions uy = 0 and ∂ux/∂y = 0 at
he axis Γ A. At the inflow and outflow boundary, an established
oiseuille flow is imposed ux = 3U(R2 − y2)/2R2, uy = 0, and for

he inflow boundary only, the corresponding analytical solution
f the Oldroyd-B constitutive law is used for providing inflow
onditions on σ. A time-marching approach is used, that is, we
tart from an artificial initial condition and let the system evolve a
ermanent flow. The initial condition for a given De number was
aken as the steady solution obtained in a previous simulation
or a lower De number, and for a Newtonian fluid for the first
imulation.

In order to compare with published numerical simulations
esults, we take the flow parameters as Re = 0 and α = 0.41. The
omparison is based on the value of the non-dimensional drag
orce Cd exerted by the fluid on the cylinder,

d = ex ·
∫

ΓC

σtotnΓC ds

he problem of the cylinder in a channel.
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Table 1
Drag coefficient Cd as a function of the Deborah number De

De Alves et
al. [31]

Hulsen et
al. [22]

Dou and Phan-
Thien [32]

Algorithm
(18)

0 132.36 131.81 132.33
0.01 132.34 132.31
0.025 132.21 132.16
0.05 131.79 131.75
0.1 130.34 130.36 129.72 130.22
0.2 126.62 126.63 126.41 126.53
0.3 123.20 123.19 123.52 123.41
0.4 120.60 120.60 121.56
0.5 118.83 118.84 120.58

It was considered that convergence had been reached when
all three conditions were met:

||un+1
h − un

h||L2

||un+1
h ||L2

< 10−6,

||σn+1
h − σn

h||L2

||σn+1
h ||L2

< 10−5,

Cn+1
d,h − Cn

d,h

Cn+1
d,h

< 10−6.

The only purpose of these simulations being to validate our
numerical approach, a single mesh has been used. The mesh is
fixed: the advection field of the mesh ua = 0 everywhere. For
De ≤ 0.3 and on this mesh, the method reaches convergence;
however, for higher De convergence was not reached. As the
method is primarily designed for moving boundary problems
rather than flows past obstacles, this range of convergence is
satisfactory. Other works in literature obtain results for up to
De = 1.8 [22], however, even in recent papers, authors disagree
on the quantitative results from De = 0.5, and there is no evidence
that solutions exist for large Deborah number flows of Oldroyd-
B fluids past obstacles [23]. It should also be noted that, due
to high shear in the boundary layer close to the cylinder, the
actual Deborah number characteristic of this boundary layer is
actually approximately 10 times larger. Throughout the range of
c
w
s
c

p
s
a
l

8

f
r
o
c

Fig. 5. Drag coefficient Cd as a function of the Deborah number De. (+) Alves
et al. [31]; (×) Hulsen et al. [22]; (�) Dou and Phan-Thien [32]; (©) present
algorithm.

the well-known beads-on-string structure, where spherical drops
form at intervals along the liquid column and remain connected
by threads of uniform radius before the final break-up occurs
when polymers in the threads are fully stretched.

This phenomenon may be described by the Oldroyd-B model,
as the balance involved in the thread-thinning regime is between
capillary forces and the build-up of elastic forces. This model
only fails to predict the later stages of the flow, when polymers
reach their maximal stretching. Analytical investigations of slen-
der cylinders of Oldroyd-B fluids [5–7] have determined the rate
of thinning of these cylinders, namely

r = r0 exp
(
− t

3De

)
, (21)

F
a
n

onvergence, algorithm (18) gives results, which compare well
ith results from the literature, see Table 1 and Fig. 5. Fig. 6

hows the three components of the extra-stress tensor around the
ylinder.

Although the simulation of this type of flow is not a strong
oint of algorithm (18), it is shown to be sufficiently robust to
imulate viscoelastic flow in a classical test with fixed bound-
ries, and the results compare well with those given in the
iterature.

. The beads-on-string problem

We consider the flow of a viscoelastic fluid, which initially
orms an infinite cylindrical column of constant radius R of fully
elaxed fluid at rest. At time t = 0, a small-amplitude disturbance
f period L is applied to the free-surface, which will trigger the
ollapse of the column. These conditions are known to produce
ig. 6. Isocontours of the extra-stress tensor components in permanent flow
round a cylinder in a closed plane channel, for De = 0.2. Solid lines are at 0.5
on-dimensional units interval, dotted lines (for σyy only) at 0.25 interval.
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Fig. 7. Domain and boundary conditions for the beads-on-string simulations.

a prediction which has been confirmed by experiments [24,25].
It has also been obtained in numerical simulations of this prob-
lem using one-dimensional models based on a slender cylinder
approximation [9,26,27], but to the best of our knowledge was
never simulated in its original variables.

The flow presents an axial symmetry, thus simulations can
be reduced to two dimensions only. It is also periodic in the z
direction with symmetry planes at L/2 intervals. The computa-
tional domain is shown in Fig. 7. The flow is governed by Eqs.
(1), (2), (4) with boundary conditions as follows:

uz = 0, σtotez = 0, on ΓS, (22)

ur = 0, σtoter = 0, on ΓA, (23)

σtotn = 1

Ca
κn, on ΓM(t). (24)

Since there is no fixed boundary in this problem, the purely.
Lagrangian approach is well adapted to it. The mesh is thus
directly advected with the velocity field.

The capillary time-scale of the problem is T =
√

R3�/γ

and yields a characteristic velocity U = R/T. With this choice
of scaling, the inverse of the Reynolds number and capillary
number take both the same value (ηs + ηp)/

√
�Rγ , which is

called the Ohnesorge number Oh. The Ohnesorge and Deborah
numbers, along with the ratio of polymeric viscosity α are thus
t
t
r
s
a
r
a
1
p
D
s
r
r

Fig. 8. Collapse of the column for Oh = 3.16, De = 94.9; t = 2De/3  63.2,
t = De  94.9, t = 3De/2  142.4.

Fig. 9. The inertial and elastic pinching regimes for Oh = 3.16, De = 94.9, L = 10
vs. non-dimensional time. (+) Minimum radius of the liquid bridge; (- - -) ana-
lytical solution r0 exp(−t/3De) with prefactor r0 = 0.29.

of uniform radius. This radius is plotted against time in Fig. 9,
and compared to the analytical law with good agreement, the
coefficient being found as r0 = 0.29. There is also a very good
agreement between the present simulations and previous one-
dimensional simulations by Li and Fontelos [28], as shown in
Fig. 10. In addition to a cross-validation of our results, this indi-
cates that the one-dimensional model does retain the essentials
of the mechanism of formation of the beads-on-string structure.
This is important, as 1D calculations are much faster than 2D
ones and thus allow one to explore a wider range of parameters.

Now if we increase the role of surface tension by a factor 10
(Fig. 11, Oh = 1, De = 300), the fluid has relatively more inertia
during the initial stages of the flow, when the elastic forces are

Fig. 10. Comparison between 1D calculations (dashed lines) [28] and 2D cal-
culations (solid lines) at t = 4De/3.
he only parameters of the study. In order to match the condi-
ions of previous one-dimensional approaches, we choose the
atio of polymer viscosity to total viscosity α = 3/4 and con-
ider an initial disturbance of amplitude εR, with ε = 10−3, over
period L = 20R, so that the initial non-dimensional radius is

(z,t0) = 1 + ε cos(2πz/20). Let us compare the flow obtained with
small surface tension, Oh = 3.16 and De = 94.9 and with a

0 times larger surface tension, Oh = 1 and De = 300. Fig. 8
resents the time evolution of the free-surface for Oh = 3.16,
e = 94.9. At first the jet has an essentially Newtonian behaviour,

ince the polymers are initially fully relaxed, but as the column
adius is reduced elastic stresses build up and lead to the clearly
ecognisable bead-on-string structure, with connecting threads



J. Étienne et al. / J. Non-Newtonian Fluid Mech. 136 (2006) 157–166 165

Fig. 11. Collapse of the column for Oh = 1, De = 300. Solid lines, at non-dimensional time t as indicated; dashed lines, at time t − �t with �t = 0.5, are included to
exhibit the dynamics of the process.

Fig. 12. Axial tension force (non-dimensional) in the fluid column for Oh = 1,
De = 300 at t = 45 relative to z = 0. The total axial force at point z is

∫
0<xz<z

∇ ·
σtot dx, the elastic force is

∫
r

∫
θ
σzz dx and the capillary pressure force,

2π(r(z) − r(0)/Ca) −
∫

r

∫
θ
[p − p(z = 0)] dx.

negligible; and the relatively lower viscosity is not sufficient to
slow the capillary driven flow. In addition, the elastic reaction is
slow, so that the effect of capillary pressure dominates and sharp
necking regions form close to the drops, at each end of bulgy-
shaped bridges, which is typical of the pinching of Newtonian
jets. However, as the stretching increases in these necks, the
elastic stress eventually builds up and slows down the necking, as
shown in Fig. 12. It should be noted, however, that the capillary
pressure remains dominant everywhere else. It is also seen on
this figure that, due to capillary pressure, a net total force exists
between the neck and the liquid bridge, which will quickly chase
the fluid from the bridge into a central droplet, still connected
to the main drops by a thread. This phenomenon, referred to as
recoil, had been observed in 1D numerical simulations [26,28].

9. Conclusions

In this paper, we present an approach for free-surface flows
of viscoelastic fluids in which the Lagrangian point of view is
extensively used in order to describe the free-surface displace-
ment and the material and objective derivatives. This method

is thus highly specialised for this type of flow, but through
the Arbitrary Lagrangian–Eulerian technique, it can also handle
problems in an Eulerian setup, and it is shown that it manages
reasonably well with the difficult problem of drag on a cylinder.

In the case of free-surface flows, the method allows us to
investigate problems with extremely large deformations and
elastic stresses, and is validated by comparison with an ana-
lytic result (which has itself been verified experimentally).
Anisotropic meshing allows us to deal with geometries where
local aspect ratios are highly inhomogeneous.

Finally, the Lagrangian discretisation is intrinsically well
suited for transport terms: it is known to have good properties
when the material derivative dominates (see, e.g. ref. [29] for
an example of a high Reynolds Newtonian flow), and also it is
appropriate for free-surface viscoelastic flow. This was demon-
strated for instance by Rasmussen and Hassager [30], who carry
out three-dimensional simulations of the creeping flow of an
upper-convected Maxwell fluid described by an integral model
in a setup similar to ours. The high Deborah number free-surface
calculations presented here confirm that this is also true for
inertial flow of materials described by a differential constitutive
equation. The Lagrangian–Eulerian approach presented here is
thus an interesting technique for problems, such as the break-up
of high speed jets of viscoelastic material, in which solid bound-
aries have little effect but where very large deformations occur,
with beads-on-string structures appearing, which is an important
i
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ssue for industry, for instance in inkjet printing.
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