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Summary 

The failure of some careful attempts to provide numerical solutions of the 
equations for non-Newtonian flow suggests to us some inadequacies of the 
constitutive equations. (After all no one would doubt the validity of the 
conservation of mass and momentum.) To understand the physics in the 
constitutive equation, and thence to correct its undesirable features, it is 
helpful to look at a micro-structural model which leads to the constitutive 
equation. The bead-and-spring dumbbell model for a dilute polymer solu- 
tion leads to an Oldroyd-like equation. 

The simplest version of the bead-and-spring model has a linear spring and 
a constant friction coefficient for the beads. While this model is simple and 
usefully combines viscous and elastic behaviour, it has the very unphysical 
feature of blowing up in strong straining flows (i.e at a Deborah number in 
excess of unity), with the spring lengthening indefinitely in time and the 
steady extensional viscosity becoming unbounded at a critical flow strength. 
The hope that the corresponding large stresses would not occur in a flow 
calculation seems to have been misguided: some simple examples show that 
the large stresses may not act through the momentum equation to inhibit the 
flow. 

To cure this unphysical behaviour one clearly needs to use a non-linear 
spring force which gives a finite limit to the extension. Incorporating this 
modification into the constitutive equation enables the numerical solution of 
(some) flow problems to proceed to large Deborah numbers. Care is of 
course still needed in the numerical calculations, for example in resolving 
thin layers of high stress. (A boundary layer theory needs to be developed 
for the nonlinearity introduced by the non-Newtonianness.) 

A further modification of the bead-and-spring model may be necessary if 
agreement is sought between numerical calculations and experiments. Many 
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flows of interest subject the fluid to a sudden strong strain. In such 
circumstances the polymer chains will not be in thermodynamic equilibrium 
and so will not give the standard entropic spring. It may be possible to 
model this behaviour by a large temporary internal viscosity. 

1. Introduction 

Ten years ago it appeared to us that the problem experienced in comput- 
ing non-Newtonian flows at Deborah numbers greater than unity was due to 
poor numerical techniques. But there have now been some very careful 
numerical studies (Crochet et al. [l]), all getting into trouble at a Deborah 
number of order one. There are also other disturbing signs. Phan-Thien and 
Walsh’s study [2] of an Oldroyd-B fluid in a squeeze film has the (steady) 
solution breaking down at a finite Deborah number. Yeh et al.‘s [3] 
numerical study of a two-dimensional 4 : 1 contraction shows limit points at 
a critical Deborah number. Hence in our opinion the governing equations 
themselves must be under suspicion. 

Now no one is going to doubt the validity of the conservation of mass and 
of momentum. Thus the finger must point to a fundamental difficulty with 
the constitutive equation. The constitutive equation most commonly em- 
ployed is an Oldroyd equation. This equation is simple, with just a few 
parameters and has the simplest combination of elastic and viscous effects. 
There is certainly no point in contemplating any more complicated constitu- 
tive equation until one can first compute flows with such a simple rheologi- 
cal equation. 

Unfortunately the Oldroyd equation has problems in steady pure-strain- 
ing flows. The extensional viscosity increases to infinity as a critical strain- 
rate is approached. It has been argued that this undesirable property will 
never cause a problem, because with a finite force available any real flow 
will adapt in order to avoid an infinite stress. These hopes are ill-founded. In 
a spinning problem, Hinch [4] has shown that the stress grows with no 
steady state. More intriguingly it is shown in Section 3 that an infinite stress 
can occur in the interior of a steady flow. This stress may have zero 
divergence in which case the flow is unaffected. Alternatively, the divergence 
may be infinite, but sufficiently limited in space that there is a negligible 
effect on the flow. These infinite stresses are unphysical, because they arise 
from infinitely stretched polymers in a region of flow with finite strain rate. 
Furthermore unless they can be smoothed appropriately they will inevitably 
give rise to computational difficulties. 
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Hence we need to understand the constitutive equation used in any flow 
calculation, its limitations and merits. Rather than studying the rheological 
performance and mathematical structure of the coupled flow equations, we 
prefer to retreat to some physical model of the microstructure which 
generates the constitutive equation. Here we consider bead-and-spring mod- 
els of polymer solutions. We do not believe these simple models can 
represent a polymer solution perfectly, but on the other hand some aspects 
of the model will apply to other more sophisticated deformable microstruc- 
tures. The aim is to understand to the physical behaviour of the model and 
thereby understand which desirable features have been included and which 
have been omitted in various versions. Hence the title of this paper. 

2. The bead-and-spring dumbbell model 

This model was originally introduced by Kramers [5] for dilute polymer 
solutions, i.e. no overlapping of the polymers c < c * = l/[,u]. A full discus- 
sion is given by Bird et al., [6]. The model represents only the gross 
distortion of the macromolecule by the vector R or its expectation 
A = (RR), so that the distorted macromolecule is effectively represented by 
its moment of inertia tensor. 

The distorting effect of the imposed flow is incorporated by calculating 
the opposing viscous drag forces on the two halves of the macromolecule. 
Using the Stokes drag law, this force will be a friction coefficient 677~~ 
times the slip velocity of the end of the vector R relative to the imposed 
flow, i.e. R . VU - k. Because hydrodynamic interactions between all parts 
of the polymer are strong, we use for the bead size a the radius of gyration 
of the undistorted macromolecule, b x (N/6)‘/‘, where b is the bond size of 
a single monomer and N is the number of monomers in the polymer (the 
degree of polymerisation). If the polymer is not in a theta solvent, then 
excluded volume effects increase the purely random walk N112 to something 
nearer to N”.6. 

Under the action of rapid Brownian motions of the whole polymer chain,. 
the randomly coiled macromolecule tries to have an isotropic spherical 
envelope. This is represented by a restoring spring force acting to reduce the 
distortion R. In the simplest model the force law is taken to be linear, 
proportional to the length of the vector, R with a spring constant 
K = 3kT/Nb2. 

Hence we have derived the governing equation for the vector R 

fi=RRvt7-M, (1) 

where A = 0.4kT/pb3N’.5 is the relaxation rate (for the gross distortion). 
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By adding Brownian motion for the beads we can form an equation for 
the second moment A = (RR), which can be thought of as the moment of 
inertia tensor of the molecule 

SA/St=DA/Dt-A.vu-vu=.A= -2X[A-(a2,‘3)1], (2) 

where S/at is an Oldroyd time derivative (which is the rate of change seen 
by an observer advecting with the bulk flow and also rotating and deforming 
with the flow). 

To complete the governing equations we need a relation between the 
stress and the deformed microstructure. This is obtained by counting the 
number of springs cutting a surface area element 

(7 = -pI+ /+7U + VU=) + 7, 

with 

(3) 

~=mc[A - (a2/3)1], 

where n is the number of polymer molecules per unit volume. 

(4 

Now it is possible to take the Oldroyd derivative of the stress and then 
use the microstructure equation to obtain a standard Oldroyd fluid 

(s/at + 2X)0’= (s/at + 2h,)2/.4+ c)E, 

where u’ differs from u by an isotropic pressure, E is the strain-rate and 

A2 =X/(1 + c) with c = nm3. 

Here c is an effective volume concentration of the polymers, and for a dilute 
solution c is small. Although it is possible to eliminate the microstructure 
variable A and form a single standard constitutive equation as above, we 
prefer in what follows not to suppress a central feature of the problem by 
making this substitution. 

The rheological behaviour of this Oldroyd equation is well-known. In 
steady simple shear flow, the effective viscosity is constant, the first- 
normal-stress difference increases quadratically with shear-rate, and there is 
no second-normal-stress difference. In steady pure straining motion, the 
extensional viscosity increases with strain-rate, becoming infinite at the 
finite critical strain-rate EC = A. While the shear flow response is not quite 
correct, the straining motion response is very unrealistic. 

In order to understand the unacceptable rheological response, and hence 
see a cure, it is prudent to look at the microstructural behaviour. In steady 
simple shear the macromolecule stretches to a length proportional to the 
shear-rate becoming more and more aligned with the direction of the flow. 
In pure straining motion, the macromolecule stretches by a finite amount at 
sub-critical strain-rates, but stretches indefinitely in time at super-critical 
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strain-rates. From eqn. (l), it is obvious that the polymer length will extend 
indefinitely if 1 VU 1 > A. Note that the case of pure straining motion is 
typical of almost all flows- strictly, any flow whose velocity gradient has an 
eigenvalue which has a positive real part 173. 

There are many possible refinements of the crude bead-and-spring dumb- 
bell model. The most urgent one is to stop the macromolecule stretching 
indefinitely. This is accomplished by making the spring law non-linear with 
some finite limit to the extension. Modifications to the friction law to reflect 
(a) the distortion of the polymer and (b) the distributed friction force will 
also be discussed. Other refinements which we mention in passing are (i) to 
take a polydisperse solution of polymer molecules each with different 
relaxation times, and (ii) to give the polymer some internal structure with N 
linearly connected beads-and-springs (this linear structure has the correct 
spectrum of relaxation times in a mono-disperse solution). These last two 
refinements may be necessary if flow computations are to predict accurately 
the flow of specific polymer solutions. For the present, however, they are 
clearly inessential. In the final section another modification, which is more 
tentative, but which may be even more important in understanding the flow 
of real materials, will be introduced. 

2. I Non-linear spring 

The linear spring law used in the first crude model is appropriate for 
small distortions of the macromolecule. The ‘correct’ non-linear law, at least 
for a linear chain of freely-hinged bonds in a theta solvent, is the inverse 
Langevin force F = kT/bSi( R/Nb), where Z(x) = cothx - l/x [8]. This 
law limits the extension to R < L = Nb. Given the complications of a real 
macromolecule, we adopt instead the simple non-linear law with a finite 
extension F= R X 3kT/Nb2/(1 - R2/L2). An even simpler law would be 
the linear-locked law which takes the linear from up to R = L, at which 
point the restoring force becomes whatever is necessary to stop the extension 
exceeding L. 

To implement our preferred non-linear spring law, X should be replaced 
by A/(1 - R2/L2) in the microstructure eqn. (2) and the K should be 
replaced by K/( 1 - R2/L2) in the expression for the stress (4). Thus 

&t/St= -2X[A - (a2/3)1]/(1 - tr(A)/L2), (5) 

7=n~[A - (a2/3)1]/(1 - tr(A)/L’), (6) 
where tr is the trace. 

With any of these spring laws the polymer behaves reasonably: its 
response at small distortions is virtually identical to the linear spring law 
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(because the undistorted size is much smaller than the full extended length, 
a -=x L), but there is now a limit to the large distortions. 

The rheological consequence of the finite-extensibility is to make the 
extensional viscosity tend to a finite limit ,u(l + naL2) at high strain-rates. 
Computations of strong flows can now proceed to high Deborah numbers 
(see e.g. Chilcott and Rallison [9]). In simple shear there is a small degree of 
shear-thinning, but only at very high shear-rates (XL/a). The growth of the 
primary normal-stress-difference is also controlled at these high shear-rates. 

2.2 Non-linear friction 

As the distortion of the polymer increases, the size of the object on which 
the flow exerts its frictional force grows [7]. For viscous flows (low Reynolds 
numbers) the frictional force grows with the largest linear dimension of the 
object. It should be noted that the frictional force on a long slender rod of 
length 2L and thickness d is the same as that on a sphere of radius 
4L/3 log( L/d). An alternative way of expressing this change in the friction 
factor is to say that the as the polymer becomes extended, the hydrodynamic 
shielding of the interior of the random coil is reduced, and so the hydrody- 
namics changes from Zimm-like towards Rouse-like. A simple way of 
modifying the friction factor, is to replace h in the microstructure equation 
by Xa/tr( A)l12. 

The rheological consequences of the increasing friction factor are first to 
increase the high strain-rate extensional viscosity to ~(1 + nL3). Second, a 
hysteresis in the extensional viscosity is introduced: a weaker flow is needed 
to maintain a highly stretched state than is required initially to stretch out 
the random coil. Strictly ‘speaking this hysteresis is only an apparent 
one-in a true steady state there would be a steady distribution of dumb- 
bells between the ttio stable equilibria, but the time taken to achieve the 
steady distribution can be too long to be of interest in practice. 

In simple shear flow the change in the friction factor can lead to a 
shear-thickening viscosity. This unwanted behaviour reflects how odd simple 
shear flow is, and how sensitive predictions for simple shear are to the 
details of the model. The behaviour may be corrected by a further, minor 
modification. 

2.3 Rotation of the beads 

In the crude bead-and-spring model the distorting frictional force on the 
polymer is calculated from the relative slip of the single point at the end of 
the vector R. In reality, the hydrodynamic force is distributed all over the 
polymer chain. This problem is exposed by the behaviour in simple shear, 
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where the dumbbell aligns with the flow and thereafter does not rotate 
(except Brownian motion). In simple shear there should still be a turning 
couple exerted on the thick polymer when it is aligned with the flow. 

A cure for this defect is to consider not only the force exerted on the 
beads but also the couple [lo]. The beads are not allowed to rotate 
independently, but are joined rigidly to the spring. A couple balance on the 
beads and spring together then yields the rotation rate. With this modifica- 
tion the bead-and-spring rotates with the vorticity in the bulk flow, but with 
only a fraction of the straining motion. The efficiency of the straining 
motion increases with the distortion, and as for the rotation of a long 
slender rod becomes nearly 100% efficient when the distortion is large. 

To incorporate this change in the response of the dumbbell to straining 
motion, the Oldroyd derivative in the microstructure equation should be 
replaced by 

L@A/L@t+ [tr(A)/(pa2+ tr(A))][E.A +A *El, 

where p is a numerical factor of order unity and ZBA/SBt = DA/Dt + 52. A 
- A . Q is the Jaumann derivative (which is the rate of change seen advected 
with the flow and rotating with the vorticity). The expression for the stress 
must also be modified by the inclusion of a term proportional to the 
inefficiency of the straining motion, i.e. an extra dissipation term 

In simple shear flow the microstructure now tends at high shear-rates to a 
finite distortion which is comparable with the random coil size and not the 
fully extended size. This finite distortion aligns itself with the flow, effec- 
tively with the polymer itself rotating inside a stationary envelope. The 
material shear-thins by an O(c) amount to a high shear-rate viscosity, 
thinning at shear-rates comparable with X instead of the previous XL/a. 
There is a new second normal-stress-difference, which is negative and about 
half the magnitude of the primary normal-stress-difference. At high shear- 
rates these normal-stress-differences tend to constant values. The rheological 
response is little changed in pure straining motion. 

3. Problems with infinite extensibility 

As mentioned in the introduction, it had been hoped in the past that the 
infinite extensional viscosity in the crude dumbbell model would never cause 
any problem in a computation of a flow because the flow would adapt to 
avoid the infinite stress. Some simple flow calculations show this not to be 
the case. 
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In a simplified calculation of the time-dependent behaviour of a dilute 
polymer solution in the spinning geometry, with a constant applied load, 
Hinch [4] found that although the extension rate was significantly reduced 
after a certain stage, the polymer molecules nevertheless continued to extend 
indefinitely. Initially the polymer molecules had no effect on the flow, 
because they were started from the undistorted state and the solution was 
assumed to be dilute. A little after the strain-rate exceeded X, the polymers 
were sufficiently stretched to contribute to the stress significantly. At this 
point the strain-rate fell dramatically, because the polymer molecules would 
otherwise continue to stretch rapidly and thereby produce a stress larger 
than the fixed applied load divided by the local area. This magnitude of the 
sudden drop in the strain-rate was found to be inversely proportional to the 
the square of the diluteness. There then followed a slow evolution with the 
stress provided by the polymers which were prevented from relaxing by a 
weak strain-rate. As this strain-rate reduced the area, the stress increased 
and so the polymers stretched indefinitely. 

A second example is provided by the steady plane extensional flow 
generated at the centre of a 4-roller device, which has been investigated 
experimentally by Lea1 [ll] and Dunlap and Lea1 [12] and others (see the 
references in Leal’s paper). A flow field with similar elongational character- 
istics is also produced by a cross-slit device, see experiments of Gardner et 
al. [13], and also the low-D numerical solution of Perera et al. [14]. Consider 
first the simplified problem of homogeneous flow with constant strain-rate 
E so that, if flow were by the the fluid 
would be 

, u= 

Suppose further the polymers unstretched at = y. the 
point which they the region homogeneous flow the 4-roller 

Then eqn. gives 

k=(E-h)R R=a at 

Now along hyperbolic trajectories the molecules = x0 

y=y0e -Et and so 

giving an elastic stress 

= na2K(y/yJ2h’E-2! 

Thus if the Deborah number D = E/2X exceeds l/2, then 711 + 00 as 
y + 0. Now the equation of motion for the fluid can be written 

p(au/at+u*vu)= -vp+pv2u+v ‘7, 
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where p is the fluid density, and so in calculating the extra flow generated 
by this elastic stress only v - T = ih,,/i3x appears, and for this problem 
kil/k = 0. Thus although infinite (and unphysical) stresses occur they 
cannot inhibit the straining motion which gave rise to them. 

This calculation, though revealing, is an oversimplification in that the 
independence from x formally requires that the region of constant straining 
extends to infinity. In the 4-roller flow field however the constant strain 
region is finite. The strain-rate along the x-axis is now E(x), where E is 
stationary at x = 0 and varies weakly. Thus, as may easily be verified by 
numerical solution, the elastic stress in the region near the origin becomes 

7i1 = na 2~ ( y/y0)(2a’E(o)-2) X (function of x) , 

and so has the same singular behaviour as y + 0 if D = E(0)/2X > l/2. 
Now this elastic stress distribution has a non-zero divergence and so gives 
rise to an additional flow. At low-Reynolds-numbers, the inertial terms in 
the equation of motion are negligible and a point force f at position x gives 
rise to a (planar) viscous fluid velocity at x’ proportional to both f and 
log 1.x x’ I, hence to the by these 

is 

(7) 

where J( x - x’) a log ( x - x’ 1 and e, is a unit vector in the x-direction. 
Now if l/2 < D < 1, the integral in (7) is convergent and hence propor- 

tional to n, which in a dilute solution is small. Thus the flow field suffers 
only a small perturbation and the kinematics which give rise to the infinite 
polymer stress are unaffected. (For D > 1, the y-integral no longer converges 
and thus however small n the flow is affected.) 

We have thus demonstrated for linear dumbbells at low concentration a 
range of values for D in which stress infinities can exist but over so small a 
region that the singularities are integrable and the fluid velocity is every- 
where finite. In our opinion such stress infinities (which arise from infinitely 
extended molecules) are unphysical and inevitably lead to computation 
difficulties (e.g. Perera et al. [14]). Such a phenomenon is likely to occur in 
any flow for which the strain-rate at a stagnation point can become 
super-critical, e.g. at the stagnation points on a gas bubble, or at a re-entrant 
corner in a flow. 

4. Dumbbells with finite extensibility 

We have noted above that infinitely extensible dumbbells can give rise to 
infinite stresses in strong flows such as occur in the 4-roll mill. Can 
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experimental observations of such a flow be reproduced-at any rate 
qualitatively-by a non-linear dumbbell model? Following the suggested 
modification of Section 2 we have 

li = ER - AR/(1 - R*/L*), 

so that while R -C L and E > A, R = a( JJ/J+,)(~/~-~) as before. But now this 
behaviour must cease for sufficiently small y when R becomes comparable 
with L, i.e. when 

y/y, = (L/ay’+? 

Since the exponent is negative, if L is large this value of y is 
when R becomes comparable with L, R is necessarily small 
dominant balance in the equation gives 

l/(1 - R2/L2) = E/X, 

and thus the stress eqn. (4) gives 

(sir a pnaL*E. 

small. Now 
and so the 

The proportionality between a and E indicates that the net effect of the 
polymers is to provide a thin region of fluid of high viscosity pnaL* along 
the outgoing stagnation streamline with negligible influence on the stress 
elsewhere in the flow. A suggestion of the same kind for a flow with inertia 
has been made by Rabin et al. [15]. For a low-Reynolds-number flow, this 
viscous region can be regarded as a distribution of Stokeslets along the 
x-axis of strength 

w4 E’(h-E) X &(naL*E(x)). 

In consequence, the fluid velocity along the x-axis satisfies the integral 
equation 

U(X) = uO(x) + cJ(L/a)“J(x - Ou”(<) dt, (8) 

where u,, is the unperturbed Stokes flow, J( x - 5) a log 1 x - 5 1 is the fluid 
velocity produced by a point force (neglecting boundary effects), and 
m = (2X - E)/(A - E). 

Now in the dynamically important part of the flow the variation of E is 
small, and E > 2X. In consequence as a first approximation the variation 
with x of the exponent m is negligible compared with the u” term retained 
(especially if E B 2X). We may then put 

m = (2 - 20)/(1- 20) where D = E(0)/2X, 

and hence on integrating by parts 



where (Y = c( L/a)” and f denotes the Cauchy principal 
Fourier transforms, we have by the convolution theorem 

ii(k) = ii,(k) - 1 k 1 mii, 

and so, since U(X) is odd, 
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value. Now taking 

U(x)= -;i 
~0 ii,(k) sin kx 

l+Ira,k, dk. 

Now Leal (1985) [ll] has measured the strain-rate along the axis of his . _ 
4-roller apparatus for a Stokes flow 
distribution is well-approximated for 
matically convenient) representation 

and, as shown in Fig. 1, the velocity 
a suitable scaling of x by the (mathe- 

u. = (x +x3) eCx212. 

The result above for U(X) then predicts that the strain-rate is modified by 
the polymers to 

00 

e-k2/2 4k2 - k4 cos kx dk 

1 + nak (9) 

If (Y is small, the perturbation to the stagnation point strain-rate u’(0) is 
small and thus our solution is self-consistent. If (Y is of order unity, the 
prediction is that the value of u’(0) is changed by a numerical factor. If 
O/a is sufficiently large however, the local kinematics near the stagnation 
point are unaffected, the degree of polymer extension is unaltered, and the 
solution should still be appropriate. If however (Y z+ 1, the flow near the 
stagnation point is changed and then eqn. (9) ceases to apply. In the Leal 
[ll] experiments it appears that (Y is always small (though in the cross-slit 
experiments of Gardner et al. [13] larger values are achieved). We now 
compare our results with Leal’s observation. 

First Lea1 observes a sudden onset of birefringence along the x-axis at a 
critical roller speed. In our terms this onset corresponds to the critical 
Deborah number (l/2) at which polymers first become extended, and, as 
noted above, the region of high extension coincides with the outgoing 
stagnation streamline. 

Second, as shown on Fig. 2 the strain-rate in the flow is not modified by 
the polymer when the birefringence first appears, but requires a higher 
Deborah number (approximately twice as large) before dynamic effects 
appear. This flow regime l/2 < D < 1 is that for which the integral (7) 
converges to give a small O(c) perturbation to the flow. 

Third, as shown in Fig. 1 the region in which the strain-rate is most 
significantly reduced by polymer is surprisingly not at the stagnation point 
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Fig. 1. Flow in a 4-roll-mill. Strain-rate versus distance from the stagnation point. o 
measurements of Leal [ll] for a Newtonian fluid (no polymers); - strain-rate for the 
approximate velocity u = (x + x3) e-x2/2, a = 0; X measurements of Leal [ll] with poly- 
mer; - - - - - - calculated distribution with (Y = 0.05. Measured strain-rates are normalized so 
that u’(0) =l for the Newtonian case; distances are scaled to give agreement for the value 
where u’ has its maximum. 

itself but some way downstream. The same effect is seen for non-zero values 
of (Y in eqn. (9). The explanation is that in a Stokes flow the strain-rate has a 
weak minimum at the stagnation point (see Fig. 1). The polymers are most 
stretched however where the strain-rate is highest, here downstream of the 
origin (X = 0.7). The body force exerted by the nearby polymers therefore 
acts to increase the strain-rate at the stagnation point. More distant poly- 
mers are relatively unstretched however, and these exert a net body force 
that acts to decrease the central strain-rate. These two effects tend to cancel 
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‘WD 
0.5 1 2 3 4 5 6 

Fig. 2. Flow iu a 4-roll-mill. Strain-rate at the stagnation point versus Deborah number. The 
onset of optical birefringence is taken to define D = l/2. The continuous curves are predicted 
values; x measured values from Leal [ll]. 

at the origin, but reinforce at the strain-rate maximum. Indeed .for small (Y 
eqn. (9) gives 

u’(x) = u;(x) - afigrne -k2’2(4k3 - k’) cos kx dk + @a’), 

and at x = 0 the O(a) term vanishes, but is negative for other values of x, 
having a minimum near x = 1. 

Fourth, for large values of D the dynamic effect of the polymer appears 
(Fig. 2) to saturate, in that the measured strain-rate at the origin increases 
linearly with D (but with a different slope than for small 0). Again this 
effect is predicted by theory: as D rises so the flow field is affected only 
weakly through 

a = c(L/a) (2-2D)/(l-220) 

, 

and as D --, 00, a --* constant. The physical reason is that for D --, 00 the 
region of strongly stretched polymers is asymptotically of thickness a/L. 
(independent of D) and behaves like a viscous fluid. Thus for creeping flows 
the fluid velocity everywhere is linearly proportional to the roller speed. 
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Finally, Leal [ll] noted that the magnitude of the polymer perturbation to 
the flow is smaller than might be expected if the polymers were regarded as 
fully uncoiled rigid rods. A partial reason for this is simply that the region of 
extended polymers is so thin (a/L) that their dynamic effect is reduced. But 
additionally attempts to fit the dynamic flow data by suitable choice of c 
and L/a (see Fig. 1) suggest that a small value of L/a ( 2 5) may in fact do 
better than a large value. The same conclusion is reached by Chilcott and 
Rallison [9] in the context of flow past an obstacle. On the other hand, the 
peak birefringence data appears to require a much larger value of L/a 
(Dunlap and Lea1 [12]). The likely implication is that the thickness of the 
zone in which the polymers contribute significantly to the stress is much 
broader than the strongly birefringent region (see also the discussion in 
Rabin et al. [15]), and a microstructural explanation is advanced in the 
following section. 

5. Sudden strong strains 

5.1. The problem 

Most experiments on dilute polymer solutions that show a large non- 
Newtonian effect subject the moving fluid particles to a sudden transient 
strong strain. In contrast experiments using simple shear flows subject the 
fluid particles to a near-constant strain history (and show comparatively few 
non-Newtonian effects). Standard constitutive equations may not adequately 
describe the fluid response to the transient conditions as described below. 

The problem is clearly revealed in the thesis of A. Ambari (1986) [16]. 
Ambari used the Same dilute solution of ‘Polyox coagulant’ in a series of 
experiments with different flow geometries, and thereby exposed a dis- 
crepancy between the experiments and theory which had not been apparent 
when the various experiments had been performed separately. 

In a flow past a cylinder, Ambari found that the mass transfer changed 
from the water value when the strain-rate exceeded 50 s-l, which is 
consistent with the relaxation-rate of the polyox (molecular weight about 
5 x 106, concentration 150 ppm.) being 10 ms. In flow through a circular 
orifice in a wall, the pressure drop changed from the water value at a 
strain-rate of 2 X lo3 s-i, i.e. 40 times the critical value for flow past a 
cylinder. Finally in two-dimensional flow through a long slot in a wall, the 
pressure drop changed from the water value at a strain-rate of 2 X lo4 s-l, 
i.e. 10 times the critical value for the axisymmetric hole. 

Previous workers had found that the onset of non-Newtonian effects was 
characterized by a critical strain-rate (which varied a little with concentra- 
tion), and that this critical strain-rate was similar to the molecular relaxa- 
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tion-rate. The difference between the precise value of the relaxation rate and 
the critical strain-rate has always been blamed on the polydispersity of 
polymer solutions. That excuse is not available to explain the differences 
between the different flows of the same solution prepared by the same 
person in the same way. 

5.2. Theory for flow through a hole 

We start the investigation by considering the flow in n (= 2 or 3) 
dimensions through a hole in a wall. Let the prescribed velocity of the fluid 
through the hole be U, the diameter of the hole d and call the radial 
distance from the centre of the hole r. Then the velocity of the fluid 
approaching the hole will be u = U( d/r)“-I. The strain-rate has a magni- 
tude vu = Ud”-l/r”. 

Now moving with speed u the polymer molecule sees a rapidly increasing 
strain-rate. It will be distorted little until it reaches the position where the 
strain-rate first exceeds the molecular relaxation-rate, i.e. at r, given by 
Ud” - l/r*” = A. Thereafter, according to the dumbbell model presented in 
Section 2, it will be stretched like a fluid line element (unless it becomes 
fully extended), because its relaxation is soon dominated by the rapidly 
increasing strain-rate. Hence the polymer distortion R is given up to a 
numerical constant (near to 1) by a( r*/~)~-’ as it approaches the hole. 

We can now estimate the magnitude of the elastic contribution to the 
stress from the polymers as 7 = 0( cpX( R/a)2) = 0( cpX( rJr)2”-2) and 
compare this with the Newtonian solvent stress 2pe = O(pUd”-l/r”) = 
O(p.X(r,/r)“). In the two-dimensional case, both the elastic stress and the 
solvent stress increase towards the hole like re2 but the elastic stress is 
always smaller by the diluteness factor c. Hence the dumbbell model of 
Section 2 predicts that a dilute polymer solution should not exhibit any 
non-Newtonian effect. Others have found this same problem when examin- 
ing the response of an Oldroyd fluid through a two-dimensional hole, e.g. 
see Tanner [17]. In the axisymmetric case n = 3, the elastic stress grows like 
r -4 and so can dominate the solvent stress which grows like rw3 if the 
Deborah number is sufficiently large for the extra factor r*/r to dominate 
the small c, i.e. if U/dX > c- 3. Unfortunately although the experiments 
show some variation of the onset strain-rate with concentration, the depen- 
dence does not scale with F3, but is closer to C-I/~. 

Now the estimates above supposed that when the molecular relaxation is 
weak the dumbbells are deformed by the strong flow like a fluid element, 
and that they just exert an elastic stress. Suppose instead that the dumbbells 
were unable to stretch quite so fast; suppose that they could only deform 
with some proportion, 80% say, of the strain of the fluid. Then while the 
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above estimates of the size of the deformation stand unaltered (except for 
the numerical SO%), there would be an additional viscous stress to reflect the 
dissipation in the 20% slip of the dumbbell relative to the fluid, with 
magnitude 0( C~VU( R/u)~). Now in the two dimensions, this stress in- 
creases like rm5 and could dominate the solvent stress if the Deborah 
number is sufficiently large U/dX > c-213. In the flow through the axisym- 
metric hole, the additional viscous stress increases like re9, and this exceeds 
the solvent stress if U/dX > c- 1’2 Thus by incorporating the additional . 

viscous stress (i) a non-Newtonian effect can now be anticipated in the 
two-dimensional case, and (ii) (because cm213 > cell2 when c -=z 1) a larger 
Deborah number is predicted for the two-dimensional case (as seen in 
Ambari’s experiments [16]). A further bonus is that the C-I/~ dependence of 
the strain-rate was found by James and McLaren [lg] in examining flow 
through a porous medium, which might be considered to look like a 
succession of roughly axisymmetric holes. The idea of introducing this 
additional viscous stress can be found in Ring and James [19] and Ryskin 

WI. 

5.3. Molecular basis 

There remains the problem of identifying a molecular basis for the 
additional viscous stress. To address this question we have performed some 
simple computer simulations of a polymer molecule in a sudden strong 
strain. Bonds of fixed length were joined in a linear chain by free hinges. 
This was placed in an axisymmetric straining motion with a viscous drag 
force applied at each hinge proportional to its slip relative to the flow, i.e. 
hydrodynamic interactions were neglected for simplicity, No Brownian 
motion relaxation was included because the flow was taken to be strong. 
Under these circumstances the time-dependence of the straining motion is 
irrelevant, the configuration depends only on the total strain. 

Figure 3 shows the evolution in time of a chain of 100 bonds, starting 
from a random configuration. Note that the initial random configuration is 
quite different from the free-hand sketches one often draws of a random 
chain. The real random walk dithers in one region and then advances before 
dithering again- the walk is not uniformly distributed throughout its en- 
velope. Until t = 0.8 s, i.e. a total strain of 5 (logarithmic strain of 1.6), the 
chain seems to stretch with the flow, and the viscous dissipation is relatively 
low. But thereafter the chain stretches much more slowly than the flow (at 
roughly 35% of the flow rate), and this is accompanied by a large viscous 
stress (corresponding to the 65% slip), see Fig. 4. This later motion of the 
chain is characterized by the slow unfolding of back-loops. Similar back-loops 
were seen by Acierno et al. [21]. The difficulty in removing the unstable 
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Fig. 3. Configurations at different time(s) of a freely-jointed chain of N = 100 fixed-length 
bonds in the axisymmetric straining flow u = (2x, - y, - z). 
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Fig. 4. The radius of gyration and the additional viscous stress and as a function of time for 
the freely-jointed chain in the strong straining motion. The broken curve would arise if the 
chain moved affinely with the flow u = 8(2x, - y, -- r) and e = 0.35, 

R = a\l(e4*‘/3 + 2e-*‘I/3) and o = (1 - 8)NR2/3. 

back-loops comes from the compressional part of the flow in the direction 
perpendicular to the stretching part [22]. The results obtained in the simula- 
tion may be sensitive to the amount of hindered rotation included (here 
none), which would stop the back-loops being collapsed so awkwardly. Note 
that the back-loop configurations have a high degree of alignment of the 
bonds, and so would give a high birefringence without the chain being fully 
extended. 

Further computer simulations are required, in particular for flows that are 
less strong. One interesting line to consider would be the effect of pre-shear- 
ing the polymer chains before subjecting them to the sudden strong strain- 
ing. In experiments James et al. [23] have shown that pre-shearing can 
enhance the response in the flow through a hole of some types of polymers. 
The important outstanding problem, however, is to characterize this tran- 
sient non-equilibrium behaviour of the polymers in a way which can easily 
be incorporated into the dumbbell model. One can speculate that this might 
be done by saying that beyond strains of 5 the polymer will behave as if it 
has an internal viscosity roughly twice that of the solvent, which makes the 
polymer stretch at l/3 the flow rate. 
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