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Abstract 

Stress singularities in the neighbourhood of sharp corners can be a source of 
severe problems in the numerical simulation of non-Newtonian flows lead- 
ing to loss of convergence with grid refinement (G.G. Lipscombe, R. 
Kennings and M.M. Denn, J. Non-Newtonian Fluid Mech., 24 (1987) 85 
[l]). For Newtonian flows the nature of this singularity is given by the 
analysis of Dean and Montagnon (W.R. Dean and P.E. Montagnon, Phil. 
Trans. R. Sot. London, Ser. A., 308 (1949) 199 [2]) in terms of similarity 
solutions. In this paper we extend this similarity analysis to a suspension of 
rigid rods. In the limit of nearly full extension the FENE constitutive model 
has the same behaviour as such a suspension. Our analysis predicts the 
possibility of lip vortices but their behaviour is somewhat inconsistent with 
those observed experimentally. 
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1. Introduction 

The role of lip vortices in the flow of non-Newtonian fluids through 
abrupt contractions is a subject of much current interest. Experiments by 
Evans and Walters [3,4] suggest that lip vortices can be responsible for the 
vortex enhancement seen in these flows under certain experimental condi- 
tions. 

These lip vortices are so-called because they occur at the lip of the &r 
corner forming the contraction. Since the strain rate is singular at such a 
corner this presents difficulties in numerical simulations of contraction 
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flows. For Newtonian fluids the flow in the neighbourhood of such a corner 
is well understood as the linearity of the Stokes’ equation and its homogene- 
ity in Y, the radial coordinate, allow the streamfunction to be written as a 
summation over similarity solutions, as found by Dean and Montagnon [2]: 

l/J= i r”$(e) (1) 
t=l 

with A, = 1.545, A, = 1.908,. . . 

In general non-linearities in the constitutive equations used for the stress 
prohibit the use of such similarity solutions for non-Newtonian fluids. 
Henriksen and Hassager [5] have, however, obtained similarity solutions for 
the flow of a power-law fluid around a sharp corner. No lip vortices are 
observed in the neighbourhood of the corner in these solutions. These 
similarity solutions are possible because the stress is determined by the 
instantaneous strain rate. However, the power-law fluid model only de- 
scribes shear thinning effects; there are no additional extensional or elastic 
stresses. 

Davies [6] has examined the local behaviour of the corotational Maxwell 
model, which does incorporate elastic effects, near r = 0 in terms of a 
bi-orthogonal series expansion. In his analysis non-linearities in the stress 
equation lead to an infinite series of non-linear differential equations. 
Formally the solution of these equations may be written as a logarithmic 
series but the asymptotic behaviour near Y = 0 is far from clear. 

We consider in this paper the flow around a $r comer of a suspension of 
non-Brownian rigid rods. For a given orientation of rods the stress is again 
linearly dependent on the instantaneous strain rate with a viscosity which is 
anisotropic and dependent on the rod orientation. The rod orientation is, 
itself, dependent on the flow field introducing convective non-linearities. 
However, if the rod orientation is independent of r and so only a function 
of the angular variable 8, similarity solutions are permissible reducing the 
non-linear partial differential equations to a non-linear ordinary differential 
eigenvalue problem. Some of our solutions do possess recirculating regions 
near the comer but there are some unsatisfactory features which will be 
discussed in Section 3. 

2. Analysis and numerical calculation 

We consider steady two-dimensional creeping flow near two plane 
boundaries meeting at an angle ir. Polar coordinates (r, t9) are taken 
centred on the comer with the plane boundaries at f $. The velocity field 
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is written in terms of a streamfunction, J/, with the conditions of zero 
normal and tangential velocities on the plane boundaries 8 = + &r being 

34 t//=Jg=O. (2) 

The constitutive equation for a suspension of rigid rods in the limit of high 
aspect ratio and no Brownian motion is given by Batchelor [7,8] as 

fJ= -pl+E”(Vu+Vut)+2Cl~pp(pp:vu), (3) 

where p, a unit vector, is the orientation of the rods given by 

DP 
Dt =P~vu-p(p~vu*p) 

and + is the effective volume concentration of the rods given by 

ml3 
’ = 12 ln( I/u) ’ 

(4 

(5) 

where n is the number density of rods, 1 their length and a their radius. 
This constitutive equation is strictly valid only when the suspension is 

dilute in the sense that the rigid rods are non-interacting which requires 
+ s 1. However, Batchelor [8] showed that the stress equation (eqn. (3)) has 
the same form for larger concentrations, at least in extensional flow, but 
with 

IlnP 
’ = 12 ln(h/a) ’ 

where h = (2nl))‘I* is the average inter-rod spacing for a locally aligned 
distribution of rods. 

Lipscomb et al. [9] used a similar set of equations using a formulation 
from Evans [lo]. They were able to compute the flow of a suspension of 
glass fibres in an axisymmetric contraction in good agreement with experi- 
ments for values of r$ up to 20. We will therefore assume that eqns. (3) and 
(4) hold for large values of +. 

In eqn. (3) the stress is linear in VU but the viscosity depends on p. As p 
is given by eqn. (4), the combined system of equations is non-linear in VU 
and contains advection terms from eqn. (4). If the rod orientation p is 
independent of r, however, eqn. (3) becomes homogeneous in r, which then 
permits similarity solutions of the form # = r”f( 0) as for the Newtonian 
flow. The combined equations are still non-linear in U, though, so summa- 
tion over different similarity solutions is not permissible. In the momentum 
equation we ignore inertial and body forces so that the divergence of the 
stress (eqn. (3)) vanishes. Taking the curl of the momentum equation to 
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eliminate the pressure, we obtain the foiflowing non-linear eigenvalue prob- 
lem for X 

(1 + +a*)f”” 

-P(h-2)*- [h21-(h-2)2]f” \ 

(2h - h2)(SI’ -t rA - @)f 

+ [(X - I)(&’ I- /3A - yS) + (2X - ;\2)(SA - 2ca)jf’ 

+[-(2h-hZ)62+(X-l)(~A-2/36)+ST+eA-@]S” 

+S[A-2e+ (1 -X)~l]f“’ I; 

= 0, (7) 

where p = [p&Q peWI and 
Q! =p,2 -p;, p = at, y = &, s =prpe, f = S’, (= S”, 

r=~(~-2)S--(X-l)/C-~, A= -(X-1)~22~. 

2. I. A Iigned orien tatio~ 

Equation (41 for the o~entation of the rods may be reexpressed as 

with q satisfying 

Dq - =q*vu. Dt 

Equation (9) is the equation for the evolution of a line element and therefore 
has q = u as one solution. As the rods are aligned with the streamlines in this 
solution, we will refer to this as the aligned orientation for the rods. Now if 
u is given by a similarity solution then p is indeed independent of r as 
required for such a similarity solution. 

It is important to note the necessary conditions for the stability of this 
rod orientation. The criterion for the stability of this orientation is given by 
Lipscomb et al. [9] as 

u*‘t7u*u -Y‘v1*2?>0, (10) 
where u + o = 0 and u and o are of equal magnitude. In planar flow this 
requires that the fluid is accelerating in the direction of the velocity which is 
satisfied in the bulk flow in a contraction. In shear flows there is no 
acceleration of the flow but the rods still align with the streamlines. 
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Fig. 1. Antisymmetric aligned flows around $r corner for C$ = 0 (Newtonian flow) - - - - - - 
and for +=lO -. 

In the lowest mode of the Newtonian flow, fluid particles approach the 
comer from 8 = - $7r in a shear flow and accelerate until they reach 8 = 0 
(Fig. 1). We therefore assume that in such a flow the rods would be aligned 
along the streamlines by the shearing flow near 8 = - f?r and by the 
extensional flow in the bulk of the contraction. They will remain aligned 
with the streamlines until they approach 8 = &r. Consequently we examine 
the solution of eqn. (7) assuming this aligned orientation, increasing + and 
starting from the lowest mode of the Newtonian flow. For the orientation of 
the rods we now have 

(#0, -44 (f’, -Xf) 
(IL I%)= I(& --#,)I = I(f’, -Xf)I’ 

(11) 

and substitution into eqn. (7) yields, after rearrangement, 

-[(h-2)2+Aqf~~-AyX-2)2f 

A3gff’+A2(h-l)g’f2+(X+2)gf’f” 

+X&f “’ + (A+ 1)g’ff2+2Xg’ff”+Xhf’f Ii 
1+~hZf2f,2/(fr2+hZf2)2] ’ 

04 
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where 

and 

(13) 

As f and f’ both vanish at B = rfi: &T the denominator of eqn. (12) 
vanishes. A Taylor series expansion is therefore used at 8 = + &r to give 

f”“(*$r)=[-( h-2)2-P+@ $ -1 
i 11 

“V’(+&r). (15) 

These equations have been solved by numerical integration using a fourth- 
order Runge-Kutta scheme with a variable step-size and a shooting tech- 
nique for the eigenvalue X. The shooting parameters, h and f”, were varied 
at S=$ (f”’ may be normalized to unity at 8 = &r) until both f’ and 

f “’ vanished at 8 = 0. In this way flows antisymmetric about 8 = 0 were 
found for values of (p from 0 to 180 (symmetric streamfunctions produce 
antisy~et~c flows). Attempts to find asy~et~c flows were unsuccessf~. 

For $ K 137 these solutions are similar to the lowest mode of the 
Newtonian flow. For example, the flow for cp = 10 is shown together with 
the Newtonian flow in Fig. 1. The value of h for these solutions is slightly 
greater than for the Newtonian flow, rising from the Newtonian value of 
1.545 at + = 0 to 1.683 at cp = 130 indicating that these flows are slightly less 
singular. Figure 2 shows this variation of X with 9. 

Fig. 2. Eigenvalue h as a function of + for the aligned solutions. 
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Fig. 3. The wall shear rate, f”($a), for the aligned solutions as a function of 9. 

At r#~ = 137, the wall shear rate, f”(&r), changes sign as seen in Fig. 3 
For cp > 137 the flow now possesses two recirculating regions, symmetrically 
either side of the comer, as in the flow for $I = 180 shown in Fig. 4. X 
remains around 1.67 for these flows. 

Fig. 4. Streamlines for the aligned flow at $ =180. The increments between the bulk 
streamlines are 1000 times the increments between the recirculating streamlines. 
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Thus flows have been obtained with recirculating regions. However, the 
recirculations are present on both the upstream and downstream sides of the 
comer. Further the alignment assumption of the rods is now no longer 
appropriate in the corner region. Fluid approac~g the comer along the 
separating streamline is decelerating and so the rods will not align with the 
streamlines. 

We now reconsider eqn. (9) for flows past a comer where recirculation is 
present on the upstream side of the comer. Assuming that such a flow may 
still be described by a similarity form, f vanishes on the separating 
streamline and along this streamline eqn. (9) becomes 

The two solutions of these equations for the o~entation of the rods are 

(ca,! %?I = r ‘-r(l, 0) and or-’ [f”, 2(1 - X)f’J. The first solution is again 
the aligned solution which, for h > 1, decays as P + 0 showing that it is 
unstable. The second solution grows as r + 0 and is therefore the orientation 
which an initially random dist~bution of rods will adopt as they are 
advected towards r = 0. Thus, in the neighbourhood of P = 0, and along the 
separating strea~ine, we have 

If”, 2(1 - h)f’] 
p = $7 = ] if”, 2(1 - h)f’j 1 - 

(18) 

The o~entatio~ of the rods in the rest of tbe flow domain may now be 
found by the substitution of 4 = r o-h’[Q,(@), Q,(e)] into eqn. (9) with 
Q,=f” and &@==2(1-h)f’ on the separating streamline, This gives 

XfQ: = -20 - l>f ‘Qr -f “Qe, (19) 

Q;= @-2)&r. t201 

We call the resulting o~entatio~, p, the de-aligned o~entation. This 
orientation is also independent of t so similarity solutions for $J are indeed 
still permitted. 

This orientation is appropriate to symmetric flows such as the second 
mode of the Newtonian flow. We therefore solved eqns. (7) (18) (19) and 
(20) for f(8) antisymmetric about 8 = 0. Again these equations were solved 
as a shooting problem by integrating numerically from 8 = 0 to 8 = &r with 
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Fig. 5. Eigenvalue X as a function of (p for the aligned solutions - - - - - -, the symmetric 
de-aligned solutions - - - and the asymmetric de-aligned solutions -. 

initial conditions f(0) = 0, f’(0) = 1, f”(0) = 0 and with f “’ (0) and X 
varied until f and f’ both vanished at 6 = $r. 

In contrast to the antisymmetric flows X decreases with $ for these 
solutions indicating that the flow is more singular at r = 0 than the corre- 
sponding Newtonian flow. Beyond + = 18 these flows become more singular 
than the antisymmetric flows for the same cp. The values of X for these flows 
are shown in Fig. 5. 

We have also been able to obtain asymmetric flows with this de-aligned 
rod orientation. Finding such flows is a shooting problem in three parame- 
ters as f” no longer vanishes on the separating streamline. As the position 
of the separating streamline is also not known in advance for a general 
asymmetric flow this must also be determined as part of the solution. The 
following procedure was therefore adopted. 

Changing the origin of the 8 variable, let the separating streamline be at 
8 = 0. Now, integrating the equations away from B = 0, let - a[h, f “(0), 
f “‘(0)] be the first value of 9 at which f(0) = 0 for 8 -=z 0. X, f “(0) and 
f “’ (0) are now varied until f ‘( - a) = f (iv - a) = f ‘( $r - a) = 0. Return- 
ing to the original origin for 0 the separating streamline is at 0 = - &r + QI. 

In this way asymmetric flows were found for + = 16-34. Figure 6 shows 
the variation of the recirculation angle, the angle between the separating 
streamline and 8 = - $r, with $L As $I is reduced towards 16 this angle 
increases rapidly reaching $7 at a value of cp just less than 16. Thus these 
solutions arise as a result of a bifurcation of the antisymmetric flow at 
Cp = 16. Solutions have not been pursued beyond + = 34 but there is a 
possibility that at + = 137 the recirculation will vanish and the same flow as 
the aligned flow will be obtained since the initial conditions f ( - $7~) = 
f’(- &) = f “( - 112) = 0, f “’ ($72) # 0 are appropriate for an asymmetric 
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Fig. 6. Recirculation angle for the asymmetric de-aligned solutions as a function of #. 

recirculating flow in the limit where the rec~culation vanishes. The flows for 
C#B = 38 and 32 are shown in Figs. 7 and 8. For these solutions A remains 
appro~mately 1.65, close to the antisy~et~~ aligned flows but greater 
than the symmetric flows with the de-al&ned orientation. Again these values 
of h are included in Fig. 5. 

Fig. 7. Streamlines for the asymmetric de-aligned flow at + = 18. 
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Fig. 8. Streamlines for the asymmetric de-aligned flow at $J = 32. Increments between the 
bulk streamlines are 20 times the increments between the recirculating streamlines. 

Alternative alignment assumptions have also been considered, for exam- 
ple with the aligned orientation for rods moving past the corner and the 
de-aligned orientation in the recirculating region, These solutions are quali- 
tatively similar to the de-aligned solutions. 

3. Discussion 

Qualitatively at least we would expect a dilute polymer solution to behave 
similarly to a suspension of rigid rods in the neighbourhood of a flow 
singularity such as a $n comer. If the flow is strong enough to fully unravel 
the polymers then their ~ont~bution to the stress (as described for example 
by a FENE dumbbell) will be viscous in nature just as in a suspension of 
rigid rods. This would occur at least while the flow is still trying to stretch 
the polymers; fully extended polymer chains would not exert any stresses to 
resist compression as rigid rods would. 

We have found solutions for the flow of a suspension of rigid rods around 
a sharp $r corner corresponding to the lowest two modes of the Stokes’ 
flow. These solutions require the orientation of the rods to be independent 
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of Y and in either the aligned or the de-aligned orientation. At least for 
+ < 34 these solutions are consistent with the alignment assumptions 
adopted. At + = 16 the symmetric flows bifurcate to produce an additional 
asymmetric flow. This flow possesses a recirculating region on one side of 
the corner which could be considered as part of a lip vortex similar to the 
vortices observed by Evans and Walters [3,4] and others. However there are 
certain unsatisfactory features of these solutions. 

We have found that the recirculation angle of the asymmetric flows 
decreases with increasing +. This is in contrast to the series of experiments 
reported by Lipscomb et al. [9] for a suspension of glass fibres in a 4 : 1 

contraction. The angle of recirculation at the corner in these experiments 
increases with the concentration of glass fibres for 0 < + < 20. However our 
analysis is valid only in a very small neighbourhood of the corner, as the 
rods must experience the flow for long enough to adopt the de-aligned 
orientation. In such a small region the finite length of the glass fibres used 
by Lipscomb et al. makes eqns. (3) and (4) inappropriate. We suggest 
therefore that the vortices observed by Lipscomb et al. are a consequence of 
the contraction flow and not the flow singularity. 

As the underlying problem is non-linear it is not permissible to write the 
general solution of eqns. (3) and (4) as a summation over different solutions. 
Furthermore the eigenvalues, A, for all three possible solutions are very 
similar, indeed the symmetric flow becomes slightly more singular than the 
antisymmetric flow for $I > 18. Therefore it is not clear from this local 
analysis what the flow will look like near r = 0 and further information 
about the main flow may be required to determine whether lip vortices will 
be seen. From the point of view of numerical simulations of the full 
contraction flow, we can at least expect the singularity at r = 0 to be 
comparable if not slightly weaker than in a Newtonian flow. 
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