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Abstract 

A similarity solution is constructed for the flow of an Oldroyd-B fluid 
around a 270” re-entrant corner. The velocity is found to vanish like r5/9 and 
the stress to be singular like Y-~/~. A simple expression is found for the 
streamfunction. 
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1. Introduction 

When a fluid flows around a sharp corner there is a singularity in the 
stress. This singularity is an embarrassment in numerical calculations. Some 
numerical schemes for some elastic liquids fail at smaller and smaller 
Deborah numbers as the numerical resolution is increased [ 11. From an 
analytic solution for the flow in the neighbourhood of the corner, one would 
hope to produce a singular numerical element in order to avoid this 
difficulty. The stress singularity is also a test of the rheology: it is not clear 
that all constitutive equations behave properly at the very high stresses. 

We seek a similarity solution for the flow with a streamfunction II/ of the 
form 

where Q is an amplitude determined by conditions away from the corner 
and r and 8 are polar coordinates centred on the corner. In this flow the 
velocity behaves like P near to the corner. Very close to the corner, one 
hopes that length scales other than the distance to the corner become 
unimportant and so the flow must take the form of a scaleless power law. 
While one can hope, there is no certainty that such a flow exists. Moreover 
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even if such a steady similarity solution does exist, the fluid may not realise 
this flow in practice. 

Similarity solutions do exist and are realised for some fluids. For a 
Newtonian fluid, Dean and Montagnon [2] found a simple analytic solution 
with a = 0.5445 for a 270” re-entrant corner. In this solution the stress behaves 
like r -“.4555 near to the corner. For power law fluids with a viscosity p = y” - * 

and for a 270” corner, Henricksen and Hassager [3] found CI = 0.37 for the 
thinning n = 0.5 (stress r -“.31), and a = 0.640 for the thickening n = 1.5 (stress 
i” -“.540). For a suspension of rigid rods aligned with the flow, Keiller and 
Hinch [4] found a = 0.58 (stress r -“.42) at an effective concentration of the 
rods (p = 5, and a = 0.62 (stress Y -“.38) for 4 = 20. The suspension of rigid 
rods was able to produce stagnating streamlines cf = 0 not on the walls) 
although there were problems in interpreting them in terms of lip vortices. 
All the above cases: for which a similarity solution has been constructed are 
inelastic fluids without memory, i.e. the stress is determined by the instan- 
taneous local velocity gradient. Non-linear elastic liquids with a memory are 
more difficult. Evidence for the existence of a similarity solution for an 
Upper-Convected Maxwell fluid was found by Libscomb et al. [ 51 and Coates 
et al. [6] in the numerical solution of the 4: 1 contraction with a stress 
singularity between r-0.90 and r-r0 at a Deborah number of 0.65. 

The problem with fluids with memory is that they remember other parts 
of the flow. We shall thus find that the stress near to the corner is partly 
determined by the shear environment upstream some way from the corner, 
Previous attempts [7] using a local analysis may not have fully recognised 
this hyperbolic nature of the stress equation. We shall find it necessary to 
consider the evolution of the stress moving along a streamline. We start, in 
Section 2, upstream where the flow is approximately parallel to the wall, if 
we assume that there is no lip vortex. Now such a unidirectional flow is a 
viscometric flow, and so the stress field is well understood there. 

The gove~ing equations are the conse~ation of mass and of momentum 

v*u=o, 

V*a=O, 

where inertia is neglected. The constitutive equation for the Oldroyd-B fluid 
will be taken in the form of a pair of equations 

b= -pZ+2pE+GA, 

i3A 
~+wVA=A~Vu+Vu’~A -;(A -Z). 

I prefer to express the stress as a Newtonian solvent stress with viscosity p 
plus an elastic polymer contribution with elastic modulus G and polymer 
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stretch A. According to the second microstructural equation, the polymer 
stretch seen moving with the fluid is a result of deforming affinely with the 
fluid (first two terms on the right-hand side) and simultaneously relaxing on 
a time scale 7. 

Now it is possible, and has been common, to eliminate A to form a single 
equation for the deviatoric part of the stress o’ 

where 6/6t is the co-deformational or Oldroyd upper-convected time deriva- 
tive. Now it has been argued from this equation that near the corner where 
the velocity gradients are large the two Oldroyd derivatives must balance 
and so the stress is Newtonian, in fact the solvent stress. What has been 
overlooked in this argument is the possibility that the two Oldroyd deriva- 
tives are the dominant terms of the two sides of the equation yet they do not 
balance, and so at leading order ~?a’/& = 0. This alternative conclusion is 
more obvious from the non-eliminated form. The microstructural equation 
suggests that in regions of weak flow the relaxation dominates with A z Z 
and that in regions of strong flow the affine deformation dominates with 
6A /dt x 0. There is of course a question still of whether the elastic stress GA 
or the solvent stress 2pE dominates. We shall find in Section 3 that it is the 
elastic stress which dominates near the sharp corner. 

It is convenient to non-dimensionalise the problem, scaling time with the 
relaxation time z, length with (Qz)“’ -‘, and stress with the elastic modulus 
G. It is then possible to set Q = G = z = 1 in the above equations. 

2. The upstream viscometric region far from the corner and near to the walls 

To calculate the stress for fluids with memory it is necessary to go 
upstream to where the flow is weak and the microstructure little deformed. 
Upstream from the corner all the geometrically self-similar streamlines 
become tangential to the wall, so long as we assume that there is no lip 
vortex. The no-slip boundary condition means that the flow here is predom- 
inantly simple shear. Moreover, because the fluid near to the wall is moving 
slowly it sees a quasi-steady shear. 

Now on the upstream wall, which we shall take to be the direction 8 = 0, 
both components of the velocity vanish. With a streamfunction 
tj = r1 +“f(0), th’ is no-slip boundary condition gives f(0) =f’(O) = 0. It is 
tempting therefore to assume that near to the wall f z - 8*, the minus sign 
indicating that the flow is towards the corner. Unfortunately as we shall find 
later this quadratic form does not satisfy the momentum equation. Instead 
we need a different power fx - t?‘, with II > 1 in order to satisfy the 
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boundary conditions. When the whole coupled problem is resolved, we shall 
find y1 = 7/3. 

In the upstream viscometric region, we therefore take the streamfunction 
to be of the form 

$ = -yl +Vjn. 

This then gives a velocity 

and 

w 
ug = --&- = -( 1 + cI)PP. 

Because 0 < I, the radial flow dominates the flow in the angular direction, 
i.e. at a distance from the corner the flow is unidirectional. Two components 
of the velocity gradient are important, the shear-rate y and the radial 
strain-rate e 

y J$ = -n(n - l)f-‘p-* 

and 

8% 

e=Fr=-nar 
a-lp-l< 

Again because 8 < 1 the simple shearing motion at y dominates the radial 
straining. 

For the simple shear flow, the polymer stretch is well known to be 

40 = 1, Aer = y (shear stress), A,, = 1 + 2y2 (normal stress). 

When the flow is very weak with y 4 1 far upstream, the polymer is fully 
relaxed and A z I. As the fluid moves towards the corner, a Newtonian 
shear stress develops in Aor. Nearer the corner, once the local Deborah 
number equals unity, i.e. y = 1 in the non-dimensionlisation, the normal 
stress grows to dominate the stress. 

Following along a streamline towards the corner, the viscometric region 
breaks down when the radial stretching becomes important, i.e. e = O( 1). 
At the same time the quasi-steady approximation is lost as the rate of 
change of the shear-rate seen moving with the fluid becomes important, i.e. 
u . V = O( 1). For streamlines which go sufficiently close to the corner, this 
breakdown occurs near to the wall, 8 4 1. Thus at the breakdown the flow 
is still mainly radial, and the shearing y is much larger than the radial 
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stretching e so that the polymer stretch A is dominated by the normal stress 
term A,. 

After the breakdown of the viscometric approximation, the fluid moves 
rapidly around the corner in a small region of high velocity gradients. In the 
polymer stretch equation, the advection and a&e deformation terms 
dominate and we can neglect the relaxation term. Thus the polymer will 
deform affinely with the fluid. Since on entering this region the polymer 
stress is dominated by the streamwise normal stress term, within the region 
the polymer stretch must be proportional to the square of the velocity 

where the constant of proportionality g can be different on different 
streamlines. We determine g($) shortly. 

This behaviour, dominated by relaxation until the strain-rate exceeds the 
relaxation rate (appropriate Deborah number exceeds unity) and thereafter 
showing afine defo~ation, is seen from a La~angian perspective in similar 
rapidly varying flows, e.g. in sink flow [S], in fibre spinning with a 
sufficiently low initial strain-rate and the related stretching of a uniform 
column by a fixed force [9], The complication in the flow around a sharp 
corner is that the transition to affine deformation occurs only when the 
radial straining becomes large, not at the earlier time when the shear-rate 
becomes large. The behaviour was however noticed in flow around a sharp 
corner by Keiller [lo] and Renardy [ 111. 

To confirm the behaviour suggested above, the polymer stretch equation 
was solved numerically in polar coordinates in the near wall region where 
* = --Y ’ +‘W. The governing equations are 

dA,, 
dr 

d& (1 - a36 --_ 
dr 

A +(n-l)A,,+ ’ A 
nr IY rO tZyUQn - 1 rfI> 

d&e 2( 1 - a2)8 2ar 
------= 

dr ylr 4~ -+QB + & (J&B - 1). 

These equations have been solved numerically along a streamline 1+4 = -c 
where 0 = c’b -(l +‘)ln, starting from large r where A x Z and integrating 
towards the corner r = 0. 

Figure 1 shows the radial dependence of the polymer stretch A, along the 
streamline tt/ = - 10e3. In r > 3 the polymer stretch is relaxed with A, x 1. 
The shear-rate y(r) becomes equal to unity at r = 1.25 on this streamline, In 
the range 0.5 < r < 3, the polymer stretch is that in simple shear with 
A rr x 1 + 2y2. The radial strain-rate e becomes equal to unity at r = 0.063 
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Fig. 1. The variation of the polymer stretch A,, with radial position Y along the streamline 
I) = -1W3 in the viscometric r&on. 

on the streamline. For Y < 0.1 the polymer stretch follows the aEne 
deformation A, = kz.$, with k = 3.51 x 103. The same behaviour is found 
on other, geometrically similar, streamlines. Note that on the streamline 
$ = - 10e3 the radial strain-rate e = 1 when 8 = 0.34, which is not small 
compared with unity, and this angle only decreases to 0.2 on rl/ = - 10e5. 

To find the important variation of the polymer stretch across the stream- 
lines as described by g($), we need to examine the scaling of the stress in the 
viscometric region where II/ x -Al +VP. On the streamline $ = -c, the 
angle to the corner 0 is related to the radial distance by 

8 = c I/np -0 + G/n 

Using this to eliminate 0, the expressions above for the radial velocity, 
shear-rate and radial strain-rate have radial dependencies along the stream- 
line given by 

u, = _nc(“-‘)/“r-fn-l-cr)/n , 

Y = -n(n - 1)c (n - 2)/y -2(n - 1 - a)/n 

and 

f?= - nud” - I)/?$. -(2n - 1 -uyn 

The viscometric approximation breaks down when e = O(l), i.e. when 

y =z q&0/(~-1-D) )* 
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At this position we therefore have the estimates for the polymer stretch and 
the radial flow 

A,, = 0(?2) = 0(c-2(‘-@/(2n-1-a)) 

and 

u, = O(C (n - l)l@ - 1 - d 
1. 

Thus at the breakdown we have 

4, = g($)& 

with 

g( -c) = 1.3lc-8, p = 2(n -4 
2n-1-a’ 

The numerical factor 1.31 is determined from the numerical solution of the 
full equations near the wall. 

We have now determined the stress distribution as it leaves the upstream 
viscometric region near the wall in terms of the unknown parameters a 
and n. 

3. The core region near the corner and far from the walls 

Near the corner there are high velocity gradients, so that the relaxation of 
the polymer is negligible and instead the polymer deforms affinely with the 
fluid. Note that although the velocity tends to zero as Y --) 0 it does so with 
infinite gradient and so the residence time of the polymer in the corner 
region tends to zero while the fluid deformation tends to infinity. We 
assume that the elastic stress from the deformed polymer dominates the 
Newtonian solvent stress near to the corner, an assumption which must be 
checked when we have completed the solution. Thus near the corner we 
have 

B = -pz + g(~)uu* 

This form of the stress is rather like the Reynolds stress in inviscid fluid 
mechanics, with a ‘density’ g strongly varying across the streamlines. 

Substituting this stress into the momentum equation (with no inertia), we 
obtain 

o= -vp +gu. vu, 

where we used the incompressibility condition V . u = 0 and the kinematic 
requirement that along a streamline u * Vg = 0. The pressure can be elimi- 
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nated by taking the curl of the momentum equation, so forming the 
vorticity equation 

dg 
o=gu.vw-~u.v~u2, 

where co is the vorticity V A u. It is now time to substitute the similarity form 
of the streamfunction $ = -Y’ ‘“f(S) and the result from the previous 
section for the variation of the stress across the streamlines g CC tiPBe We 
thereby obtain the equation governing the similarity profile 

f’“&‘f”+~$+& 
f f ’ 

where the coefficients are given by 

1-a 
a,=j-- @J 

l+a’ 
a2=(P -2)(1 +a), a3=-l+a. 

This equation must be solved with the no-slip boundary conditions 

f(0) =f’(O) =f($) =f,@) = 0. 

This constitutes a non-linear eigenvalue problem for the unknown a and y1 
(and hence /I). 

The governing equation is quasi-linear, in that if f is a solution then any 
multiple off is also a solution. Thus the similarity solution has the same 
pattern of streamlines as the strength of the flow changes, a feature shared 
with similarity solutions for other fluids. A more unusual feature is that the 
stress (scaled on G) is predicted to be independent of the strength of the 
flow at a fixed non-dimensional distance from the corner (scaled on 

(QJ ). i/(1 -do 

Another surprising feature of the governing differential equation is that it 
is of third and not fourth order. This is a result of the stress involving only 
the velocity and not the velocity gradient. Now one solution of the 
non-linear equation is f’ E 0 corresponding to circular streamlines with a 
constant tangential velocity. This feature of the third-order equation, that 
f”‘=O wheny=O, means that the flow is symmetric about the directions 
wheref’ = 0; a symmetry in which f (i.e. ue) and f" are even andf’ (i.e. u,) 
is odd. Thus to find the flow around a sharp corner from 8 = 0 to 8 = 3rc/2, 
we need only consider the half problem from the upstream wall 8 = 0 to the 
symmetry direction 0 = 37c/4. The symmetry means that the core region 
near the corner will deliver the polymer to the downstream wall region in 
the same state as it left the upstream wall region, and so the downstream 
wall region will be a symmetric version of the upstream wall region with no 
new large stresses there. 
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The governing third-order equation is singular as f+O. An initial as- 
sumption that f w - 8* leads to f”’ K 8-l which is inconsistent. If we try 
instead f w -0” then we find that it is possible to balance three of the four 
terms in the equation if 

n(n - l)(n - 2) = a,n’(n - 1) + u3?z3. 

Substituting in the expressions for the coefficients al and u3, we find 

p = 2(n - 1)/n, 

independent of the value of a. This result implies that as one approaches the 
wall from the core region the stress guru, is independent of 8 at each Y. Now 
the viscometric region investigated in the previous section gave an expres- 
sion for /I in terms of CI and ~1. Eliminating /3 we find 

a=3n-n*-1 

Now the non-linear third-order differential equation for f(6) does have a 
simple closed-form analytic solution. Some preliminary numerical solutions 
revealed a simple sinusoidal structure for f(0). There is an obvious exact 
solution of simple shear I,$ = Y* sin28 for a plane boundary with no sharp 
corner, for which the stress is constant. These hints together with the 
singular behaviour discussed in the previous paragraph suggest seeking a 
solution in the form 

f = -m --n sin”m0. 

Substituting this into the governing equation we find 

n(n - l)(n - 2) - n3 sin*me = a, [n’(n - 1) - n3 sin*&?] 

+ a2m-*n sin*me + a3n3( 1 - sin*m@. 

The terms independent of 8 give the same balance as in the analysis of the 
singularity as f + 0, and so will cancel with the same choice of /I. The terms 
proportional to sin*me give, after substituting the expressions for the a,, 

m=3-n. 

The problem is finally resolved by selecting m = 2/3 appropriate to the 270” 
corner, so that the streamfunction vanishes at the two walls 8 = 0 and 
8 = 3x/2. Note that the above solution for f is applicable to all sharp 
re-entrant corners, from a plane boundary (180” corner) with m = 1 to 
complete 360” turn with m = l/2. For the 270” corner, we need m = 2/3 and 
so we find 

7 
n =5, 

5 
a =5, P =$, 

$j = _(37/3r14/9 sin7/3$@_ 
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Now in the core region the elastic stress has the form 1.31( - $) -%Ju. 
Substituting our solution for the streamfunction, we find a stress 

fr,, = -p + Kr-2’“-2)(3 - n>*n cos%ze, 

B r0 = -Kr- 2(“-2)(3-n)n(3n -rz2- 1) sinmBcosm0, 

gee= -p+Kr- 2(n-2)(3n - n2 - 1)2 sin2m0, 

where K = 1.31~ -6/n. Thus for the 270” corner the elastic stress has a 
singularity with a radial defiendence rP2j3 in the core region near to the 
corner away from the walls. The solvent stress has a weaker singularity like 
rd419 and hence it was correct to neglect it in the analysis. (For a general 
corner, the solvent stress has a singularity like r-’ for = r -2 +3n-nz which is 
less singular than the elastic stress like r -2(n - ‘) while 1 < n < 4, which it is 
for all re-entrant corners.) The stress in the viscometric region has a 
singularity like r-4/9 in c,~ and like r-8’9 in CJ,, these variations being for 
fixed 8 rather than fixed $. 

4. Conclusions 

A similarity solution has been found for the Oldroyd-B fluid flowing 
around a sharp corner, with a velocity varying like r5’9 and a stress 
singularity like r - . 2/3 This behaviour has not yet been seen in numerical 
solutions [5,6], although the reported stresses between r -“.9 and r-l.’ may 
be the r -8/9 in the viscometric region near the walls. It may be that the 
numerical methods were not working well near the corner, or that the 
similarity region is too small to resolve. There are certainly difficulties 
integrating the stress equation near to the no-slip wall. On the other hand, 
the above similarity solution may be unstable or there may be other possible 
solutions, perhaps not of a similarity type. 

The behaviour near the corner is controlled by the distribution of stress 
across the streamlines, g(e), which is determined some way upstream from 
the corner. In this paper it was assumed that the similarity velocity field was 
applicable there, at least as far upstream as where the Deborah number 
becomes less than unity. Future studies should generalise this assumption. 
Thus lip vortices have been excluded by assuming that upstream the fluid 
comes from near to the walls. A preliminary investigation suggests that lip 
vortices would radically change the above analysis, by making g($) constant 
and so making the elastic stress smaller than the solvent stress. To test the 
theory of this paper, perhaps some full numerical solutions could be made 
in geometries which inhibited a lip vortex, e.g. flow around an abrupt 
junction in a channel. 

In the corner region it was found that the rm2j3 elastic stress dominated 
the r -4/9 solvent stress, so that in a sense the analysis is for a Maxwell fluid. 
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In fact the calculation does not depend on the value of the non-dimensional 
group Gz/p so long as it is not zero. Thus the analysis is applicable to all 
Oldroyd fluids other than the Newtonian fluid with Gz/p = 0. 

Finally, it should be pointed out that the analysis has neglected the 
polymer relaxation in the core region and has not satisfied the momentum 
equation very close to the walls in the viscometric region. There is certainly 
a possibility that these small effects might destroy the above solution. 
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