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Abstract 

It has been understood for many years that a polymer molecule will uncoil in a 
coil-to-stretch transition when it is placed in an extensional flow with a strain rate exceeding 
the slowest molecular relaxation rate. This paper looks at the effort which must be exerted 
to achieve this uncoiling, in other words the transient stress in a dilute solution of such 
uncoiling polymer molecules. Numerical simulations have been performed of an isolated 
linear chain of inextensible links which are freely hinged, the chain being placed in an 
axisymmetric extension flow. Hydrodynamic interactions between the many beads are not 
included. 

During the uncoiling, the stress is found to be mainly dissipative rather than elastic, i.e. the 
stress is proportional to the instantaneous strain rate rather than being independent of it. A 
rapid build up of this viscous stress with the total strain is shown to come from the growth 
of segments of fully stretched chain. The evolution of these segments, the growth in their size 
along with the reduction of their number, is examined with a simplified ‘kinks dynamics’ 

model. 
The above rheological behaviour in transient strong extensional flows is not described by 

the standard constitutive relations which have been used in the past for dilute polymer 
solutions, e.g. the Oldroyd-B fluid and FENE dumbbell models. A suitable modification is 
suggested, which gives large strain-dependent viscous stresses. 
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1. Introduction 

As at last it has become possible to compute reliably some visco-elastic flows for 
some simple constitutive relations, there seem to be some discrepancies between the 
computed flows and the experimental observations. The interesting flows have a 
large extensional component. 

In flow through a contraction, the pressure drop for the Oldroyd-B fluid 
(Debbaut et al. [ 11) and for quite short FENE dumbbells (Keiller [2]) is predicted 
to be less than that for a Newtonian fluid, whereas experimentally it is observed to 
be greater. The size of the upstream vortex is also predicted to be smaller than that 

observed (Boger et al. [3]). 
In trying to fit computations to experiments, Rallison and Hinch [4] for the 

four-roll mill and Chilcott and Rallison [5] for the flow past a sphere found that 
they needed unexpectedly short FENE chains in order to develop sufficient stress. 
Similarly, an analysis of the pressure drop across an orifice by Cartolos and Piau [6] 
in terms of polymers deforming to a rigid finite limit seems to require a finite limit 
much shorter than of the fully extended chains. 

Experiments by Ambari [7] with the same dilute solution of ‘Polyox’ in different 
flow geometries could not be understood in terms of the simple dumbbell model, as 
discussed by Rallison and Hinch [4]. 

The interesting flows are extensional in nature, strong in terms of a large 
Weisenberg number, and transient as seen by a fluid particle. Thus this paper will 
examine the response of an isolated polymer molecule, initially unstressed and 
coiled, suddenly placed in a strong axisymmetric extensional flow. 

There are many simple models of the deformation of a polymer along with the 
stress that it consequentially exerts. The simplest bead-and-spring dumbbell model 

is equivalent to the Oldroyd-B fluid, and was derived from considering small strains 
of the coil. Its unphysical behaviour of infinite and even negative steady extensional 
viscosities can be rectified with the FENE modifications for large strains. Other 
modifications include a non-linear friction and a rotation of the beads, and a linear 
chain of N connected beads and springs (see, for example, Rallison and Hinch [4]). 
All these models, however, have an elastic polymer stress over and above the 
Newtonian solvent viscous stress, so that if the flow was instantaneously switched 
off the polymer stress would not change in that instant. We will see that the 
numerical simulations of a linear chain do not behave like this in strong flows, but 
have a mainly viscous stress, i.e. one proportional to the instantaneous strain rate. 
Thus, in converging flows where the strain rate increases towards the orifice, the 
stress can increase more rapidly than the strain, which might help explain some of 
the puzzling experiments. 

The need for larger stresses was recognized by James and Sarringer [8] in their 
experiment which measured the pressure drop in a conical channel. To provide an 
explanation of these large stresses, King and James [9] suggested that the partially 
stretched chain might ‘freeze’, perhaps due to knots or self-entanglements, with the 
frozen chain behaving rigidly and thence producing the required large dissipative 
viscous stresses. As a refinement to this model which permitted the chain to 



E.J. Hinch / J. Non-Newtonian Fluid Mech. 54 (1994) 209-230 211 

continue to uncoil whilst producing rigid-like stresses, Ryskin [lo] proposed his 
‘yo-yo’ model in which a fully stretched central part of the chain connects the two 
uncoiling ends. This behaviour was not seen in some early computer simulations by 
Rallison and Hinch [4], who suggested that the slow unfolding of ‘back-loops’ was 
responsible for the rigid behaviour. Larson [ 1 l] has recently presented a ‘kinks 
dynamics’ model of this unfolding. A further examination of the kinks dynamics 
will be given in Section 3. 

2. Computer simulations 

2.1. Governing equations and methods 

A linear chain is considered to consist of N equal rigid inextensible links (or 
bonds) which are freely hinged. Note that the links are rigid rather than elastic 
springs as in the Rouse-Zimm models. Typically N was taken to be 100, but some 
simulations have also been performed with N = 50, 200, 400 and 800. The position 
of each hinge is represented by x,, with i = 1, . . . , N. 

The initial random configuration was generated by choosing the three Cartesian 
components of the displacment of each link, 6, = x, + 1 - x,, uniformly randomly on 
[-b, b] and then resealing the vector length to b. This process produces a chain 
with a random configuration, with some small preference for bonds along the 
diagonals of the co-ordinate axes. 

Initially, at t = 0, the random chain is placed in the axisymmetric extensional 
flow: 

u(x) = (Ex, -$$, +z> 

with strain rate I? > 0. Hydrodynamic beads are allocated to each hinge, on which 
drag forces are exerted which are proportional to the slip between the imposed 
extensional flow and the velocity of the bead, 

FL = 6npa(u(x,) - .i-,), 

where ,u is the solvent viscosity and a is the hydrodynamic radius of the bead, taken 
to be constant. No hydrodynamic interactions between the beads are considered. 

The chain is also given a Brownian motion by applying during each time-step a 
random force to each bead. The three Cartesian components of each random bead 
force B, are selected independently and uniformly randomly on [ -B, B], with 

where kTis the Boltzmann temperature and At is the size of the time-step. If the beads 
were not connected on a chain, this magnitude of the random force would produce a 
displacement in one time-step with a variance of 6DAt, where D = kTl6xpa is the 
diffusivity of the Brownian motion of an isolated bead. This simple prescription of 
Brownian motion, which was employed in the simulations, is in fact not quite correct 
when the rigid constraints are applied, as discussed by Grassia et al. [ 121. 
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To stop the links changing length, a tension T,, must be exerted in the link-between 
the (i + 1)th and ith beads exerting forces _I T,b, on those beads where b, = b,/b. 
It is convenient to define tensions in the non-existent end links as vanishing, 
i.e. T,,, = 0 = To. 

Solving the force balance of the ith bead (neglecting inertia) yields the evolution 
equation for the ith bead: 

i, = u(q) +- ’ (B,+T&T,_,&_,) 
6npa 

involving the undetermined tensions. Applying the inextensibility constraint to the 

link between the (i + 1) th and ith beads, (i-,, 1 - a,) b, = 0, yields an equation with 

a tridiagonal matrix for the tensions 

T,+&+, . b, -2T,b^, b, + T,_,&_, 6, 

=(B,+, -4) b, +6w4@,+J -4x,)) . b,. 

This equation can be applied for i = 1, . . . , N - 1 with the convention that the end 
tension vanishes. Note that the above dynamics offers no resistance to untying a knot 
because it does not prevent one link passing through another. 

It is convenient to non-dimensionalise the problem, scaling lengths with the length 
of the link, 6, and scaling time with the time it takes an isolated bead to diffuse 
through the link length, b2/D = 6npab2/kT. Using this time-scale, the non-dimen- 
sional measure of the strain rate is the bead P&let number or bead Weissenberg 
number W, = &b2/D. The total strain of the imposed llow after a time t, which in 
dimensional terms was E = I&, now becomes in dimensionless variables E = W, t. 
The length and time scales give a scale for the velocity kT/6zpab which suggests a 
scale for the forces kT/b, with an association scale of kT for the stresses. The scalings 
for the force and time yield the non-dimensional size of the random Brownian force 
B = a. Finally, the governing equation for the motion remains unchanged, 
except that the factor 6npa disappears, and the dimensional strain rate E is replaced 
by the non-dimensional flow strength W,. Henceforth all variables will be non-di- 
mensional as described. 

At each time-step, the imposed extensional flow at each bead and the random bead 
forces are evaluated. The tensions are then found which permit the velocity of each 
bead to be determined. A simple explicit first-order forward time-stepping was used, 
because the velocities change discontinuously through the random Brownian force. 

Fig. 1 shows the evolution of an 800-link chain placed in the axisymmetric 
straining flow; in this case, Brownian motion has been neglected for economy, i.e. 
W, = co. Note that the initial random walk configuration is irregular and not the 
smooth hand sketch which carefully leaves no holes. 

The size of the numerical time-step was initally taken to be At = 10m3 so that 
the typical random displacement of a bead was h. Such a large displacement 
meant that the length of the links typically increased by 1% at each time-step through 
second-order errors. The method chosen to correct this slow drift was to add to 
the above tensions a term proportional to the accumulated error in the length of the 
link, with a pseudo-spring strong enough to halve the error in three time-steps. 
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Fig. 1. A chain of 800 links placing the axisymmetric straining motion u(x) = (&, -$/?JI, -$z) at total 

strains E = W,,t = 0.0, 0.2 and 0.4. There are no Browman motions in this particular simulation. 

Note that this problem cannot be avoided by just making the time-step smaller, 
because with random displacement O(At”‘) second-order errors will be O(At) per 
time-step, and hence U( 1) after O( 1) time. 

As the chain uncoiled, quite large tensions developed, proportional to the square 
of the extension. To avoid a numerical instability, it was found necessary to reduce 
the size of the time-step so that the largest tension acting alone could only displace 
a bead through a quarter of the length of a link. The maximum tension in the chain 
was therefore monitored, and the time-step halved when appropriate. 

2.2. Results for the radius of gyration 

The overall distortion is measured by the radius of gyration R which is defined 
as 

R2(t) = $- ,$ (x, - 2)’ 
1 N 

l-1 

where X = N C x, 
r-l 
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Frg. 2. The radius of gyration R as a function of total strain E = W,,t for a chain of 100 links with the 
same initial configuration being placed in flows of different strengths: - - -, W, = 0.01; - --, W, = 0.02; 

---, W,=O.OS; -, W,=O.l. 

This is a poor measure of small deformations, because it varies only quadratically 
with them, but at the large deformations of interest it is proportional to the overall 
linear size. 

For a randomly coiled chain the (non-dimensional) radius of gyration is R z 
(N/6) ‘I2 as N + co. Thus for a typical simulation with N = 100, R is only 4.08. If 
the coil becomes fully stretched, then R z N/( 12)‘12, which is 28.87 for N = 100. 

Fig. 2 shows the radius of gyration as a function of the total strain of the 
imposed flow for a chain of 100 links with the same initial configuration being 
placed in flows of different strengths. As all the flow have W, cc 1, Brownian motion 
will dominate the advection by the flow for the individual beads. The collective 
diffusivity of all the beads together, however, is much weaker, being reduced by a 
factor of l/N. Moreover, for the full chain to change its configuration, the collective 
diffusion must take place over the radius of gyration O(bN’12). Thus one should 
define a Weissenberg number for the full chain as WC = N2 W, (for these simula- 

R z- 

1.5 

Fig. 3. The radius of gyration R as a function of time E = Wbt for 22 different realisations of a chain 

with 100 links in a flow of strength W, = 0.2. The continuous curve gives the arithmetic mean. 
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tions which have no hydrodynamic interactions). A flow is then said to be strong 
(for the full chain) if WC > 1. All the simulations in this paper are very strong in 
the sense that WC >> 1. 

There are large fluctuations between different realisations, as can be seen in Fig. 
3, which shows the growth of the radius of gyration as function of time for 22 
realisations of a chain of 100 links. Note that at a total strain of E = 2.0, one 
realisation is more than twice the size of the average, while another is less than 
half the size. Thus the accuracy of the average over 22 realisations is not good. 
Most of the results below will be for averages over fewer realisations. 

Returning to the insensitivity of the gross distortions to Brownian motion when 
the flow strength is strong for the full chain WC >> 1, Fig. 4 shows that the growth 
of the radius of gyration as a function of the total strain of the imposed flow, 
when averaged over several realisations, is independent of the magnitude of the 
strain rate as long as it is strong. Fig. 5 shows the configurations at three different 
times for two chains which started from the same initial configuration, one in a 
strong flow and the other with no Brownian motion. It can be seen quite clearly 
that the gross distortion is the same. However, the Brownian motions are domi- 
nant at the scale of the single link, producing large fluctuations of the chain at the 
small scale. 

In strong flows, the dumbbell model would have the advected solution 

Ne2W’ 
R2(t) = 6 

b + 2 emWb’ 

3 

until finite length effects become important This is also plotted in Fig. 4. It is seen 
that the short chains with N = 100 extend more slowly, being decelerated by the 
unfolding of the back-loops. Longer chains are advected by the flow more 
efficiently, until they become almost fully extended. 

R 

Fig. 4. The radius of gyration R for a chain of 100 links averaged over several realisations as a function 
of the total strain E at various strong flow strengths: - - -, W, = 0.2 (22 realisations);---, W,, = 1.0 (4 

realisations); ---, no Brownian motions (9 realisations). Also plotted with the solid curve is the 

advection solution for strong flows. 



216 E.J. Hinch / J. Non-Newtonian FluId Mech. 54 (1994) 209-230 

\ 

Fig. 5. The configurations at total strains E = Wht = 0.8, 1.6 and 2.4 for a chain with 100 links, with no 

Brownian motion and with W, = 0.2, both chains starting from the same initial conditions. 

2.3. Results for the stress 

The contribution of one chain to the stress tensor c is the moment of the 
Brownian and tension forces, which in light of the force balance is equal to the 
moment of the hydrodynamic forces: 

The non-dimensionalisation takes a scale of kT for the stress. In the axisymmetric 
straining motion, one is interested in the deviatoric stress: 

a’=20 11-022-633 
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In thermodynamic equilibrium with no flow, the stress tensor has an averge value 
of NZ. There are, however, large fluctuations at each instant for a single realisation, 
essentially fluctuations of the order BRfi. Thus the fluctuations dominate the 
average in the unstressed state by a factor of U( l/J%). Such large fluctuations 
were reduced by one order of magnitude by averaging the stress over the small 
interval of time during which the total strain changes by 0.2, an interval typically 
containing some 1000 time-steps. A long interval could not be used because the 
system is evolving. Further averages were made over several realisations. However, 
the fluctuations remain comparable with the average value of the unstressed state. ’ 

The large fluctuations in the stress, even averaged over 1000 time-steps, are seen 
in Fig. 6. Each realisation shows larger fluctuations with time for the smaller 
strains, sometimes resulting in negative values. At larger strains, the fluctuations 
become relatively smaller for each realisation, although there are very large 
differences between different realisations. 

Also shown in Fig. 6 is the average over 11 realisations. Its magnitude is O(N) 
and grows with R2 roughly according to the elastic dumbbell theory, which has 
0’ - 36R2 in sudden large deformations. 

When the flow rate was increased by a factor of five, however, the stress was also 
found to increase by the same factor. This is not the response of an elastic 
dumbbell, which would have the same stress for the same total stain - recall that 
the gross distortion as measured by the radius of gyration was found to depenaon 
the total strain, but to be independent of the value of the strain rate once that was 
large. Fig. 7 shows that if WC >I 1 the stress can instead be characterized by an 
extensional viscosity (non-dimensionalised by 6rc@ ‘) 

Pext = 0’16 W,, 

Fig. 6. The deviatoric stress u’ as a function of time E = Whf for 11 different realisations of a chain with 

100 links, with W, = 0.2. The average is given by the solid curve, while the open circles give the elastic 
dumbbell stress 36R’ 

’ Grassia [ 131 has recently developed a superior algorithm for the stress which avoids the 0( l/a) 

fluctuations. 
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Fig. 7. The extensional viscosity ,next for a chain of 100 links, averaged over several realisations, as a 

function of the total strain E at various flow strengths: - - -, IV,, = 0.2 (11 realisations);-P-, IV,, = 1.0 

(four realisatrons); ---, wrth no Brownian motions (nine realisations). The solid curve is R3(t). 

which is independent of the strain rate, although a rapidly increasing function of 
the total strain. For fully stretched chains, this extensional viscosity takes the 
limiting value &N3. 

There is some experimental support for the stress being dissipative rather than 
elastic in strong straining motions, as found in the simulations. 2 Moan and 
Magueur [ 141 found in an open syphon experiment that the stress depended 
strongly on the deformation up to the syphon, and that the results at different 
flow rates could be superposed by plotting the local stress divided by the local 
strain rate, i.e. a local viscosity, as a function of the total strain. Similarly, in a 
filament stretching device, Tirtaatmadja and Sridhar [ 151 found a universal be- 
haviour by plotting the stress divided by the strain rate as a function of total 
strain, a universal behaviour for each material and for all sufficiently high strain 
rates. 

The frozen rigid model of King and James [9] and the yo-yo model of Ryskin 
[lo] both suggest that the stress would be characterised by an extensional viscos- 
ity, and that this viscosity should increase with the cube of the radius of gyration. 
The computer simulations for N = 100 do have an extensional viscosity which 
increases roughly with R3(t) as shown by the solid line in Fig. 7. However, the 
coefficient of proportionality displayed in Fig. 8 is not found to be an 0( 1) 
constant as the number of links in the chain N is increased, but instead the 
coefficient of proportionality decreases with increasing N. Fig. 9 shows that as the 
length of the chain increases it seems that the contribution of each link to the 
viscosity does not change. In a certain sense this means that the overall size of the 
chain is irrelevant and each link creates a stress interacting with its local neigh- 
bours. This unexpected, and here tentative, conclusion will be explained by the 
‘kinks dynamics’ model later. 

* It is possible that the conclusion for the simulations that the elastic stresses are small is wrong, and 
is a result of the crude algorithm used to calculate the stress. 
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Fig. 8. The extensional viscosity peXt divided by R3 (the scaling of the yo-yo model) as a function of the 

total strain E for different numbers of links N: 0, A’ = 50 (W, = 0.2, 11 realisations), 0, N = 100 

( W,, = 0.2, 11 realisations); A, N = 200 (W, = 0.4, three realisations); V, N = 400 ( W, = 0.4, five 

realisations); 0, N = 800 ( W’, = 0.4, four realisations). 

Fig. 9. The viscosity per link peXt/N as a function of the total strain E for chains with different numbers 

of links; symbols as for Fig. 8. 

2.4. Results for birefringence 

Birefringence measures the average orientation of the links, 6 which have unit 
length. For the axisymmetric straining motion, one is interested in the deviatoric part 

This varies from 0 for random orientations to 2 when all the links are fully aligned 
with the flow. Note that it is possible for all the links to be aligned with the flow 
without the chain being fully stretched, as will occur with back-loop configurations. 
Thus a stress-optical law may have a limited applicability, particularly in this 
transient strong flow. 

Fig. 10 shows the evolution of the birefringence with the total strain of the 
imposed flow, averaging the value over the short interval of 0.2 of total strain and 
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Fig. 10. The birefringence b’ as a function of the total strain E with different lengths of chain and 
different flow strengths: 0, N = 50; 0, N = 100; A, N = 200; V, N = 400; 0, N = 800; - - -, WI, = 0.2; 
--~ , W, = 0.4;----, W,, = 1.0; -, no Brownian motions. 

Fig. 11. The birefringence b’ divided by ( W,) ‘1s for a chain of 100 links as a function of total strain for 

different flow strengths: - - -, W, = 0.2; - - -. W, = 0.4;- - -, W, = 1 .O. The solid line is proportional 

to R*(t). 

over several realisations. It can be seen that the birefringence depends on the strain 
rate and on the total strain, but that the average alignment per link is independent 
of the length of the chain. Again, the dynamics exhibits a local behaviour rather 
than one depending on co-operative effects over the full length of the chain. 

Fig. 11 shows that at intermediate strains the birefringence appears to increase 
roughly as R2(t), and over the limit range of 0.2 < W, I 1.0 is proportional to 
( Wb)‘j2. These correlations are not understood. 

3. Kinks dynamics 

3.1. Governing equations 

As the polymer chain extends it becomes more of a one-dimensional structure 
The key to the scaling as N+ 00 for the increase of stress with time is an 
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understanding of the growth of the straightened segments. To examine their 
dynamics, to see how they grow in length and reduce in number as they unfold, we 
now look at a highly simplified one-dimensional model, the kinks dynamics model, 
which has already been studied by Larson [ 111. This model has no Brownian 
motion. 

We take as the initial configuration a random walk in one dimension with N steps 
of fixed length b. This initial state of folded straight segments is then evolved as if 
it were a fully flexible string, an inextensible string, in the flow u = ,!?x. Typically, 
there will be N/2 straight segments in the initial configuration. As the string unfolds 
with time, the number of segments will decrease. 

Let the ith straight segment run from x,(t) to x,+,(t). Now, because the string is 
inextensible (exerting a tension to stop any stretching), the segment will move at the 
velocity of the flow averaged along its length: 

u,(t) = +X(x,+, + x,). 

We ignore here any hydrodynamic interactions between the different segments. We 
also assume that adjacent segments exert no force through the junctions, which is 
appropriate for a flexible string that cannot support compression. (An attempt to 
speed up the three-dimensional simulations by treating some straight segments as 
being rigidly locked was unsuccessful at producing a speed up, but did find that 
there was very little tension near the ends of the straight segments.) 

Because adjacent segments move at different velocities, the lengths of the seg- 
ments will grow and contract. Let the junction of the (i - 1)th and ith segments be 
at the arc length distance s,(t) from the beginning of the string. For a segment with 
a forward direction, x, + , > xi, the position of the ith junction will move at velocity 
S, relative to the material points on the ith segment, and at -S, relative to the 
material points on the previous (i - 1)th segment (which has the reverse direction 
x, <x,_ r), i.e. 

u, +s, =ul_, -s,. 

Using the geometry x,+ , =x, +(s,+, -si) and x,=x,_, -(sj -s,_i) for this for- 
ward-reverse pair, we obtain the evolution equation 

s, =;E(-SI+, +2s, -s,_,). 

The identical equation is obtained for the opposite reverse-forward pair of 
segments. It is easy to integrate these equations forward in time starting from the 
initial conditions on S, (0). 

As the system evolves, the small segments are consumed by adjacent larger 
segments. This occurs when s,(t) becomes equal to S, + , (t) for some i. At that 
moment the ith segment disappears. It is then necessary to relabel all the segments 
further along the string. 

While the original system of equations can be integrated analytically, it is the 
abrupt relabelling which makes the problem better suited to numerical simulations. 
As these simulations are very much simpler than the full three-diemsional simula- 
tions, it was possible to make 100 realisations with different initial configurations 
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Fig. 12. A simuiatlon of the kink dynamics with N = 80. The interval in time between the configurations 
1s 0.1/B 

using N = 20, 40, 80, 160, 320, 640, 1280 and 2560. This range allows scaling with 
N to be explored. 

A typical simulation with N = 80 is shown in Fig. 12. The one-dimensional walk 
in the horizontal direction has been opened up vertically so that it can be seen, the 
vertical position having no dynamic significance. The time between each displayed 
configuration is O.l/.!?, so that the total strain at the last configuration is l?t = 2.0. 
The larger segments grow at the expense of the smaller ones. 

3.2. Results for the radius of gyration and the stress 

The size of the unfolding chain can be measured by its radius of gyration defined 
as for the three-dimensional chain. The initial random configuration has a radius of 

2 

15 

10’ 

Fig. 13. The radius of gyration R(t) divided by the mitial value R,, = (N/6) I/* as a functton of the total 
strain 2?f, averaging over 100 reaiisations for each chain length N = 20, 40, 80, 160 320, 640. I.280, 2560. 
The dashed curve corresponds to advection with the flow R(t) = Roe&‘. 
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gyration of R, = b(N/6)‘j2. The growth in the size of the chain given by R(t)/R, is 
plotted in Fig. 13 as a function of the total strain ht. Each curve corresponds to the 
average over 100 realisations for the different values of N between 20 and 2560. It 
can be seen that the chains are sufficiently deformable to be advected with the flow, 
i.e. R = R, eBr as given by the dashed curve, until they are within a third of being 
fully stretched (where R = bN/( 12) 1’2). In the final stages the chain becomes more 
rigid, with a segment stretching the full width of the chain. The unfolding of the last 
few back-loops is relatively slow, although only finite time is taken by any 
individual chain. 

The contribution of a chain to the stress tensor in the kinks dynamics model is 
dissipative, corresponding to the viscous dissipation as each segment of inextensible 
string fails to deform with the flow. This can be represented by an extensional 
viscosity contribution: 

P ext =I*~i%~,--s,_*)3. 

Fig. 14 gives the growth of the extensional viscosity contribution with time. It was 
found that the behaviour of the chains of different lengths could be brought onto 
a single curve (while they were less than a third fully stretched) by plotting the 
extensional viscosity divided by the numer of initial links (and a dimensional factor 
of ,~b~). For the initial random walk, one can calculate the expectation of the size 
of the segments to be 2b, along with the expectation of the square and cube of the 
size as 6b2 and 26b3. Thus one can predict that the initial extensional viscosity 
contribution is 13pb3/12, which was found in the simulations. In the fully stretched 
state the contribution becomes pN3b3/12. Fig. 14 shows that the stress grows 
rapidly with time, more rapidly than the R3(t) behaviour of the yo-yo model. This 
rapid growth comes from events in which two segments merge into one that is 
roughly twice as large, giving four times the viscous dissipation. We interpret this 
rapid growth in the dissipation as the deformable chain becomes more rigid in 
nature as it unfolds. 

0 1 2 
it 

3 4 

Fig. 14. The extensional viscosity contribution per link, p,,,/pb3N, as a function of the total strain _&, 

averaged over 100 realisations for each of the chain lengths N = 20,40,80. 160, 320, 640, 1280 and 2560. 
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Fig. 15. The radius of gyration R divided by the full length of the chain Nb as a function of the total 

strain relative to that required to fully stretch the cham, Et - In ,,I%. 
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Fig. 16. The extensional viscosity contribution peext 

relative to that required to fully stretch the chain. .l?t - In 

Figs. 13 and 14 give the growth in size and the dissipation from the perspective 
of the initial chain. Larson [ 1 l] showed that the final stages, as the chain becomes 
fully stretched, have a universal behaviour independent of the length of the chain. 
To see this universal behaviour, time is mesured as the total strain relative to the 
value required to advect the initial random walk to the fully stretched state, i.e. as 
l?t -In fi. Similarly, the radius of gyration and dissipation are scaled by N and 
N3 respecively, as appropriate for the fully stretched chain. Figs. 15 and 16 give 
further evidence of Larson’s universal behaviour in the final stages of unfolding. 

3.3. Simple scaling of the unfolding 

To obtain some insight into the unfolding process, we can examine how the 
number of straight segments decreases with time as their typical length increases. In 
Fig. 17 we plot the number of segments, n,, divided by the number of initial links 
N as a function of the total strain 6t. The number of segments for the initial 
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Fig. 17. The number of segments n, divided by the number of initial links N as a function of the total 

strain Et. The dashed curve corresponds to e-ZEf 

random walk is $N. After the first unit of strain, the number of segments seems to 
decrease exponentially approximately as e -2’r, until the chain is nearly fully 
stretched. 

To study the evolution of the lengths of the segments we consider the distribution 
of the lengths at different times. There is a statistical problem of maintaining a 
sufficiently large sample when dividing the segments into groups of different length, 
particularly for the rarer longer segments. An adequate compromise was found to 
count the number of segments v(As, t) with lengths As in the range [2ki2, 2(k+‘)‘2]. 
Fig. 18 gives this distribution at the total strains L?t = 1.0 and 2.0. It was found 
posisble to bring together the results for the chains of different lengths by dividing 
the number of segments v by the number of initial links N. This scaling does not 
work as the chains become fully stretched as seen at t = 2.0/l?, when the results for 
the short chains N = 20 and 40 separate from the remainder. At the later time of 
3.018 (not shown), the chains with N = 80 also deviate from all the longer chains. 

A replot of the distributions on log-linear scales reveals that the longest segments 
have an exponential distribution, v( As, t) cc 2- As as As + co, like that for the initial 

random walk. After the first unit of strain which is dominated by the distribution 
of the initial random walk, a rather flat distribution emerges, spanning 2 I As I40 
at t = 2.018 and 10 I As < 300 at t = 3.018. Thus, while it is difficult to give a 
precise definition of the typical length, it is clear that it is growing rapidly. 

The evidence in Figs. 17 and 18 indicates that, until the chain is nearly fully 
stretched, each part of the chain evolves in a similar way. One could cut the chain 
into several pieces without causing a significant decrease in the number of segments 
with time and their distribution. The chain is therefore sufficiently deformable and 
non-rigid that the dynamics are controlled locally: until the chain is nearly fully 
stretched, the unfolding process does not ‘feel’ the total length of the chain. 

It is appropriate here to recall the results in Fig. 9 and 10 for the three-dimen- 
sional simulations in Section 2. These figures show that the contribution to the 
viscosity and to the birefringence from each link was independent of the number of 

links in the chain. 
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Fig. 18. The distribution of the length of the segments at the total strains Et = 1.0 and 2.0. The number 

of segments of lengths As in the range [2k/2, 2’k + ‘)/‘] 1s denoted by v(As, t). 

It has not proved possible to start from the growing differential equations and 
then derive an estimate of the growth of the typical length of the segments. The 
governing equation gives a large segment which grows fastest when it is surrounded 
by two smaller ones, then growing as eEf12, which is far too slow. The rapid growth 
occurs instead when a small segment is fully consumed and two larger segments 
combine suddenly to form one twice as large. Quantifying this growth process is a 
more difficult task. All that can be easily deduced from the governing equtions is 
that the rate of growth is proportional to the current length and so the typical 
length should grow exponentially with time. 

Fortunately, progress can be made from the ideas that until it is nearly fully 
stretched the chain is very deformable and that one part of the chain is quite 
independent of a remote part. If I,(t) is the typical length of the n,(t) segments, the 
conservation of the total chain length gives 

n,(t)&(t) = Nb. 

A second relationship comes from estimating the radius of gyration R as the size of 
a random walk of n, independent steps of size 1,: 

R(t) = k(n,(t))“2fs(t). 
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The 0( 1) constant k depends on the details of the distribution of the segment 
lengths and will change with time. For the initial random walk, k = A. Finally, the 
high deformability of the chain means that the radius of gyration will grow by being 
advected with the flow 

R(t) = R, eBr. 

Solving, we obtain the estimates 

n,(t) = 6kN e-” and Z,(t) = & b e”‘. 

Fig. 17 shows this rate of exponential decrease in the number of segments while 
the chains are not nearly fully stretched. After the first unit of strain, it appears that 
the value of the constant k = i would be appropriate. 

To test the predictions of the growth of the lengths of the segments we have 
plotted in Fig. 19 the distribution of the lengths of the segments, multiplying the 
number of segments by eZEf/N and their length by ee’“‘. It is seen that with these 
scalings the different times and different chain lengths are superposed. 

From the above estimates of the number and length of the segments, we can 
proceed to an estimate of the extensional viscosity (while the chain is unfolding) 

pext = p f$ n,lz = pNb3 e4” k, 
432k’ ’ 

with a further 0( 1) constant k, which depends on the distribution of segment 
lengths, and will therefore change with time. For the initial random walk, k, = 13/4. 
Note that the extensional viscosity grows proportionally to e4Er, more rapidly than 
the e3Et of the R3(t) in the yo-yo model, as seen earlier in Fig. 14. In Fig. 20 we have 
plotted ,uextNb4/pR4(t), which the above estimates give as k,/12k2. We see that the 
results for the different chains are superposed with the constant k2, increasing from 
its initial value of 13/4 to about 45, i.e. k2/12k2 decreasing from 39 to 15, during the 
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Fig. 19. The scaled distribution of the scaled lengths of the segments, scaling the number with N em2” 
and their length with e”‘: -, ~!?r =4.0; - --, .!?t = 3.0; , .!?t = 2.0. The results are for the longest 

chains N = 640, 1280 and 2560. 
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Fig. 20. The extensional viscosity Jo_, divided by R4(t)/Nb4 as a function of the total strain i‘t. 

first unit of strain and then remaining constant. We would not have found such a 
universal behaviour with the yo-yo model scaling peXtb3/R3(f). While the above 
estimates are for an unfolding chain which is not nearly fully stretched, using the 
radius of gyration in place of the exponential eBr yields an expression which can be 
applied to the fully stretched chain. We note that ,uNb4/R4 for a fully stretched 
chain is 12, and this is seen to be approached in Fig. 20. One possible interpretation 
of the R4 scaling of the extensional viscosity is to consider the dissipation as arising 
from a particle of size R with a rigidity which increases as R(t)/Nb. 

4. Conclusions 

The three-dimensional simulations of Section 2 studied an isolated polymer chain 
uncoiling in a suddenly applied very strong extensional flow. The stress was found 
to increase rapidly with time and is shown in Fig. 7 to be dissipative in nature 
rather than elastic, 3 i.e. proportional to the instantaneous strain rate rather than 
being independent of it. The increase was shown in Fig. 8 to follow roughly the 
yo-yo scaling of being proportional to R3(t), but in disagreement with the yo-yo 
model the constant of proportionality decreased with increasing N as the longer 
chains behaved less rigidly. 

The kinks dynamics of Section 3 showed how the rigidity of the chain varies as 
R(t)/Nb, i.e. starts very flexibly like N-l/’ and increased to fully rigid. The yo-yo 
model with two coiled ends joined by a fully stretched central region was not seen 
in the three-dimensional simulations. Instead there was a gradual buildup of many 
fully stretched segments. The kinks dynamics model showed that the number of 
straight segments decreased as N2b2/R2(t) (see Fig. 17) as their typical length 
increased as R*(t)/Nb, (see Fig. 19). This leads to the prediction that the dissipative 
stress build up with time as R4(t)/N (see Fig. 20). 

3 It is possible that this conclusion that the elastic stresses are small is wrong, and is a result of a crude 

algorithm used to calculate the stress. 
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Fig. 21. The extensional viscosity ~,,~(t) divided by R4(t)/N (the kinks scaling) as a function of the total 
strain E for the three-dimensional simulations with different numbers of links N: 0, N = 50 ( W, = 0.2, 

11 realisations); N: 0, N = 100 (IV, = 0.2, 1 I realisations); N: A, N = 200 (W, = 0.4, three realisa- 

tions); N: V, N =400 (W, =0.4, five realisations); N: 0, N = 800 (W, =0.4, four realisations). 

We must now test whether the kinks scaling for the stress is applicable to the 
three-dimensional simulation of Section 2. In Fig. 21 the data of Fig. 8 have been 
replotted, now plotting pe,,(t)N/R4(t) as a function of the total strain E. We see 
that, unlike in Fig. 8, there is no longer a systematic decrease in the constant of 
proportionality as N increases. Moreover, the value of p,,,N/R4 in Fig. 21 hovers 
around 15, the eventual value in Fig. 20 for the one-dimensional kinks model. The 
only difference between the three- and one-dimensional simulations seems to be at 
the early times, when the total strain is less than unity, where the long three-dimen- 
sional chains seem to be a little more flexible. 

We now need to encapsulate the above stress behaviour in a simple constitutive 
equation. The simplest model of the gross distortion of a polymer is the elastic 
dumbbell which leads to the Oldroyd-B fluid with f = 1 

a=pl+2pE+GfA 

DA 
-=AVU+VU’.A-;(A-0, 
Dt 

with solvent viscosity CL, elastic modulus G and relaxation time r. Here the deforming 
microstructure is represented by the second-order tensor A, which can be thought of 
as the moment of inertia tensor of the chain divided by its equilibrium value Nb2/6. The 
Oldroyd-B fluid suffers from infinite and negative values of the steady extensional 
viscosity when the strain rate exceeds 1/2r. This problem arises because its microstruc- 
ture can deform without bound. The problem can be cured by restricting the 
deformation of the elastic dumbbell with a FENE modification in which 

f= l 
1 - Trace(A)/L* ’ 

where L is the ratio of fully stretched coil size to the random uncoiled size, i.e. 
L2 = O(N). 
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To produce the behaviour found in the simulations, we need to add an extra term 
to the stress which is proportional to the strain rate and which increases with the 
deformation according to R4(t)/N. A suitable candidate with the correct tensorial 
shape is 2p2(A: E)A/L. This term gives the correct stress when the chain is fully 
stretched. This it is no longer necessary to make the elastic stress increase non-lin- 
early. I therefore propose a new expression for the stress: 

6 = -pl+ 2pE + 2&A : E)A/L + GA. 

The second microstructural equation should not be changed from the FENE form 
in order to limit the deformation to L. 

There is considerable uncertainty in the form of the elastic term in the new 
proposed equation. Further research is needed to examine the elastic component of 
the stress when the chain is greatly extended. It is also necessary to examine the 
effect of hydrodynamic interactions between the beads of the chain. Some prelimi- 
nary simulations with a poor aglorithm seemed to indicate that the stretching of the 
chain was reduced slightly from being affine (until the chain is fully stretched) and 
that the kinks scaling still applied. 
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