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Abstract

The capillary thinning of a filament of viscoelastic liquid, which is the basis of a microrheometer, is analyzed in
terms of a multi-mode FENE fluid. After a short time of viscous adjustment, the stress becomes dominated by the
elastic contribution and the strain-rate takes on a value equal to two-thirds the rate at which the stress would relax
at fixed strain. This strain-rate decreases as the dominant mode changes. At late times, modes reach their finite
extension limit. The fluid then behaves like a suspension of rigid rods with a large extensional viscosity, and the liquid
filament breaks. Predictions are compared with the experiments of Liang and Mackley (1994). © 1997 Elsevier Science
B.V.
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1. Introduction

While real materials often have a wide spectrum of relaxation times for the viscoelastic stress,
most theoretical and numerical calculations ignore this and only use a single relaxation mode.
This is not without good reason. On the theoretical side, we have only a partial understanding
of how a material with relaxation time chooses to behave midway between a purely elastic and
a purely viscous material. On the numerical side it is still not easy to compute with flow
time-scales shorter than the relaxation time, i.e. high Deborah number, and so with a wide
spectrum few of the modes can have their Deborah numbers larger than unity. Using many
modes also has the danger of smearing out any interesting behaviour, and of introducing many
adjustable parameters for fitting data. Finally calculations using a spectrum have normally
found after much effort that the results were dominated by a single mode, the slowest.
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This paper examines a flow in which the spectrum plays a significant role. In designing a
suitable problem, it is important to allow the material to select its own time-scale and not to
prescribe one. Thus we must not impose a velocity and a length, as in flow past a sphere, which
would set a time-scale. Instead we impose a force. We are also interested in nonlinear dynamics
rather than a simple linear viscoelastic response as in simple stress relaxation. A problem which
is both nonlinear and allows the material to select its own time-scale is the liquid filament
rheometer (LFR), in which capillary forces squeeze a thinning liquid filament (Bazilevsky, Entov
and Rozhkow [1] and Liang and Mackley [2]). After a complicated initial formation, which we
do not study, the problem simplifies considerably to the stretching of a uniform circular
cylinder, which is homogeneous in space and varies only in time.

Before we start, it is necessary to discuss the form of the constitutive equations. In linear
viscoelasticity, a wide spectrum of relaxation times can be represented by a discrete or
continuous spectrum. We choose the former, with N modes having elastic moduli gi and
relaxation times ti. The nonlinear development requires a non-trivial assumption: in this paper
we assume that the modes are described by uncoupled FENE dumbbells with different
maximum extensions Li. This assumption is possibly appropriate to a dilute polydisperse
mixture in which each species contributes independently to a separate mode. In cases in which
the spectrum comes from different internal modes of a single species, one would expect
considerable cross-coupling between the modes in the nonlinear regime. To our knowledge this
cross-coupling has not been studied.

Given the considerable uncertainty in the constitutive equations, it is interesting to compare
our predictions with observations. In some recent detailed experiments, Liang and Mackley [2]
first measured the linear viscoelastic spectrum for the benchmark fluids S1 and the series
A20–A100. They then tested these fluids in a LFR.

Now, for a Maxwell fluid with a single relaxation time, Bazilievsky, Entov and Rozhkow [1]
have shown that in a LFR the radius decreases exponentially in time with a rate equal to
one-third the stress relaxation rate. The question thus arises for a fluid with a wide spectrum
which of the many relaxation times, if any, is measured by the LFR. Liang and Mackley [2]
found in their experiments that the rate was approximately � gi/� giti, except for the S1 fluid.
We seek to answer the question. We also try to explain in terms of finite extensibility why the
filaments break after thinning by an order of magnitude.

2. Governing equations

The LFR has been described in detail by Bazilevsky, Entov and Rozhkov [1]. Consider a
uniform circular cylinder of radius a(t) being squeezed by surface tension x. Let the axial
strain-rate of the axisymmetric extensional flow be e(t), so that the radius decreases according
to

a; = −1
2 ea. (1)

For the rheology, we take a FENE fluid with N uncoupled modes. We use the Chilcott–Ral-
lison version of the FENE equations, although in the purely extensional flow differences
between different versions are very minor. Each FENE mode is described by an axial
deformation Az

i (t) and radial deformation Ar
i(t), which in the particular stretching flow satisfy
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with relaxation times ti and FENE factors
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L2

i
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i +3−Ai

z−2Ai
r

, (4)

with different finite extension limits Li for each mode.
The boundary condition at the free surface sets the radial stress equal to the capillary pressure

−
x

a
=srr= −p−me+%

i

gi fiAi
r.

We assume that the axial stress vanished, because in the LFT the filament is attached to large
stagnant drops on stationary end plates

0=szz= −p+2me+%
i

gi fiAi
z.

In these expressions for the stress, m is the solvent viscosity and gi are the elastic moduli of the
modes. Eliminating the pressure p, we have

x

a
=3me+%

i

gi fi(Ai
z−Ai

r). (5)

This equation gives the strain-rate e in terms of the instantaneous radius and deformations,
which is then used in Eqs. (1)–(3) to evolve the radius and deformation.

For initial conditions, we take

a(0)=a0,

and an undeformed material

Ai
z(0)=1=Ai

r(0).

In Section 6 we make detailed comparisons with the experiments of Liang and Mackley [2].
Before then we will illustrate our analysis with a simple 8-model with

ti+1=2− it1, gi+1=2ig1 and Li+1=2− i/3L1. (6)

This spectrum extends over two and a half decades in relaxation times. Many of the spectra of
Liang and Mackley [2] have the feature that giti, i.e. the contribution to the zero-shear-rate
viscosity, is approximately the same for each mode, except for a couple of very slow weak
modes. The relation between the finite extension limits corresponds to polymers of the same type
but different molecular weights M, for which t8M3/2 and L8M1/2. In our simple illustration,
we further choose a moderately strong surface tension x/a0 � gi=1000/255 and a moderately
small solvent viscosity m/� giti=1/8 (and sometimes 1/16 and 1/4). Again these values are not
untypical.
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Our analysis will depend on the surface tension being large, x/a0�� gi. Because the total
elastic modulus � gi is small, the elastic stress enters only when the deformation is large. Thus,
at early times, studied in section 3, the stress will be dominated by the solvent viscosity
contribution. Since the elastic stress is increasing rapidly when it becomes important and thus
would soon exceed the driving capillary pressure, we find in section 4 that the strain-rate falls
dramatically. The elastic stress then dominates. A small strain-rate is required in a second phase
to stop the stress relaxing. Eventually finite extensibility has an effect, which is examined in
section 5.

3. Early viscous times

The assumption of strong surface tension along with the initial conditions mean that we start
with no elastic stress. Thus the initial stress is viscous, coming from the solvent viscosity. In this
section we consider the early times before the elastic stress has had time to build up to a
significant level. In these circumstances, Eq. (5) reduces to

x

a
=3me.

Substituting this into Eq. (1) for the decrease in the radius, and integrating gives

a=a0−
x

6m
t. (7)

Thus the radius of a filament of Newtonian fluid decreases linearly in time, vanishing at the
viscous breakup time tvb=6ma0/x. For a water filament of thickness 1 mm, this is less than 1 ms.

Fig. 1 shows the decrease in the radius in time for our illustrative 8-mode model Eq. (6). The
asymptotic prediction for early times Eq. (7) is given by the dotted lines. This analysis applies
before the elastic stresses have had time to build up to a significant level. As after a time tN the
fastest mode contributes a viscous stress 3gNtNe, which is comparable to the solvent viscous
stress 3me in our illustrative example, we require that the shortest relaxation time in the
spectrum be longer than the viscous breakup time tvb�tN. In the three cases studied in Fig. 1,
we have tvb/tN=0.77, 1.54 and 3.07. The agreement between the asymptotic prediction and the
full numerical solution becomes less good after t=tN=0.0039t1 for the last case.

Clearly the spectrum of relaxation times plays no role during the early viscous times, except
for the fastest relaxation time possibly delimiting the end of the phase.

4. Middle elastic times

At the end of the viscous phase, the elastic stress has grown so that it is comparable with the
capillary pressure and the viscous stress. The strain-rate must now drop, in order not to stretch
the elastic stress beyond the capillary pressure. The viscous stress drops with the strain-rate.
Thus a new balance is established between just the elastic stress and the capillary pressure. This
change is dramatic in the case of strong surface tension. In the new elastic phase, the strain-rate
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becomes independent of the surface tension, so long as it is large. It is also independent of the
solvent viscosity.

We assume that in the elastic phase the deformation of the modes is large, Az
i�1\Ar

i. This
occurs if the surface tension is large, x/a0�� gi, because a large elastic stress is needed, i.e. large
deformations. We restrict attention in this section to deformations smaller than the finite
extension limit, Az

i�Li
2, so that the FENE factors are fi=1. FENE effects will be studied in the

next section. The deformation Eq. (2) then reduces to

A: i
z=2eAi

z−
1
ti

Ai
z.

This can be integrated with the Eq. (1) for the radius to give

Ai
z=

a4
0

a4(t)
e− t/ti. (8)

here we have used the initial conditions, on the assumption that the full relaxation term
(Az

i −1)/ti has little effect during the short initial viscous phase.
Neglecting the viscous stress and the radial term Ar

i in the stress balance (5), we have

Fig. 1. Early viscous times. The decrease in the radius a(t)/a0 as a function of time t/t1, with the 8-mode model Eq.
(6), x/a0g1=103 and m/g1t1=0.5, 1 and 2. The dotted lines are the asymptotic result Eq. (7) for early viscous times.
The dashed curve is the asymptotic result Eq. (9) for the middle elastic times.
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Fig. 2. Elastic phase. The decrease in the radius a(t)/a0 as a function of time t/t1, with the 8-mode model Eq. (6),
x/a0g1=103 and m/g1t1=1. The dashed line is the asymptotic result Eq. (9).

x
a
=% giAi

z.

Substituting our expression Eq. (8) for Az
i , we predict the decrease in the radius in the elastic

phase

a(t)=a0
�a0G(t)

x

�1/3

, (9)

where

G(t)=% gie
− t/ti. (10)

The function G(t) is the linear stress-relaxation function for the material. If the material were
subjected instantaneously to a sudden shear g, then the shear stress would relax according to
gG(t). Eq. (10) is for discrete spectra, with an obvious generalisation for a continuous spectra.
For our particular spectrum Eq. (6) with giti constant, an asymptotic evaluation of the sum for
tN� t�t1 finds G�1.44g1t1/t.

Fig. 1 compares the asymptotic result Eq. (9) for the decrease in radius in time with the full
numerical solution for three values of the solvent viscosity m/g1t1=0.5, 1 and 2. We see that,
after the initial viscous phase which does depend on the value of the solvent viscosity, all three
cases approach the same asymptote which does not depend on the viscosity. Fig. 2 continues the
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plot to later times for the one case m/g1t1=1. Finite extension effects have been suppressed by
setting L1 equal to a very large number. The asymptotic prediction Eq. (9) is found to be good,
despite the large surface tension parameter of x/a0 � gi=1000/255 not being very large.

The quasi-exponential decrease of the radius in time Eq. (9) means that the liquid filament
does not break in this elastic regime. Later, neglected finite extensibility will become important.
We also observe that, if a filament starts with an initial radius varying slowly along the filament,
Eq. (9) means that differences in the radius increase by only the additional factor a0

1/3, and thus
do not produce a necking instability. This stability of the filaments follows from the stress being
saturated by the elastic contribution. We suggest that this mechanism may explain the stability
of viscoelastic liquids in spinning.

Another test of our analysis for strong surface tension is to compare the predictions for the
contributions of the modes to the stress, gifi(Az

i −Ar
i). We have assumed in this section that

Az
i�Ar

i and that fi=1, so Eq. (9) for the deformation yields contributions

gi

a4
0

a4(t)
e− t/ti.

These estimates are compared in Fig. 3 with the contributions in the full numerical solution. The
agreement is good, again despite the large parameter not being particularly large.

Fig. 3. Elastic phase. The contributions to the stress gi(Az
i −Ar

i)/g1 from the 8 different modes as a function of time
t/t1, for the model Eq. (6), x/a0g1=103 and m/g1t1=1. The vertical lines mark where t=ti for the mode. The dashed
lines are the asymptotic prediction gia

4
0e− t/ti/a4(t)g1.
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Fig. 4. Elastic phase. The strain-rate et1 as a function of time t/t1, for the model Eq. (6). x/a0g1=103 and m/g1t1=1.
The dashed curve is the approximation e�2/3t.

Fig. 3 shows that the stress is dominated by the modes in succession: the modes with high
moduli decay rapidly giving way to weaker slower-decaying modes. From the points marked on
the contributions at t=ti, we see that the mode which dominates at time t is the one with the
relaxation time nearest to t. This conclusion applies to spectra similar to our illustrative example
with giti constant.

The strain-rate in the elastic phase can be found by substituting Eq. (9) with Eq. (10) for the
radius decreasing in time into Eq. (1):

e= −
2G:
3G

=
2 % git

−1
i e− t/ti

3 % gie− t/ti

. (11)

Thus the strain-rate at time t is two-thirds the rate at which stress relaxes at the same time in
a standard stress-relaxation experiment with fixed strain applied at the initial time. Given the
conclusion from Fig. 3 that at time t the mode which dominates G(t) is that with the relaxation
rate ti nearest to t, we expect e�2/3t for tNB tBt1. Beyond t=t1 when the slowest mode
dominates, one would expect the strain-rate to be constant, e�1/3ti. In Fig. 4 we plot the
strain-rate as a function of time. The above estimate is seen to be within a factor of 30% over
the wide range of variation.
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As explained at the beginning of this section, in the elastic phase the stress is elastic, equal in
value to the capillary pressure. The only reason for a non-zero strain-rate is to stop the elastic
stress relaxing. In an axisymmetric extensional flow, the axial strain-rate required to stop the
stress relaxing is one half the stress relaxation rate, not the two thirds we have found. The
additional one sixth is required because the existence of the stretching flow means that the radius
decreases, and so to balance the slowly increasing capillary pressure the elastic stress must also
increase slightly.

Finally, we comment that the way in which the radius decreases in the elastic phase is
critically dependent on the spectrum of relaxation times, and could not be simply represented by
a single mode.

5. Late times limited by finite extension

As the deformation Az
i increases, the finite extension limit Li eventually has an effect and we

enter a new phase.
At the late times of finite extension effects, the numerical system of Eq. (5) in Eqs. (1)–(3) is

very stiff. The stiffness is particularly acute for large finite extension limits or low solvent
viscosities (as in the A20–A100 series of fluids). The problem is that, when the stress is
dominated by the elastic part, the viscous part, which is used to calculate the strain-rate e, is the
small difference of large numbers. Using the ideas of the previous section, we can develop an
alternative expression for the strain-rate to use in this situation.

Once the viscous part of the stress is small, Eq. (5) becomes a balance between capillary
pressure and elastic stress

x

a
=% gi fi(Ai

z−Ai
r)

In this section we do not assume that the radial deformation is negligible, because the fast
modes can be highly relaxed at the beginning of the phase. Also, we do not assume that the
FENE factors are unity. Differentiating the equation above with respect to time, we have

−
x

a2 a; =% gi
�

A: i
z

(

(Ai
z

fi(Ai
z−Ai

r)+A: i
r

(

(Ai
r

fi(Ai
z−Ai

r)
n

.

We now substitute Eqs. (1)–(3) for the time derivatives. This yields an expression which is linear
in the strain-rate e and the relaxation rates 1/ti. Solving for e and using Eq. (4) for fi, we find

e=
% gi f 3

i (Ai
z−Ai

r)/ti

% gi fi [
3
2(A

i
z+Ai

r)+2fi(Ai
z−Ai

r)2/L2
i ]

(12)

This approximation for the strain-rate was used in the numerical calculations once the viscous
stress dropped below 1% of the total stress. The resulting numerical problem still requires
caution as the finite extension limit is approached. Reducing the time-step so that the FENE
factors increased by a small factor each step proved adequate.
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Eq. (12) for the strain-rate is the generalisation of the earlier two-thirds the stress-relaxation
rate. It is based on the same physical balance, being the strain-rate necessary to stop the FENE
elastic stress relaxing from the value which balances the slowly increasing capillary pressure.

Fig. 5 gives the decrease of the radius in time with the finite extension limit L1=50 (and so
L8=7.9). Compared with the result (9) in Section 4, we see that this large finite extension limit
has little effect before t=t1. On the other hand, the stress contributions given in Fig. 6 show
considerable change before t=0.5t1. Once the FENE factors exceed 1.3, the stress contributions
relax faster. Thus the slowest mode comes to dominate earlier, in our example by t=0.43t1

compared with t=0.6t1 without FENE effects. Because the faster modes have relaxed early, the
dominant slower modes must bear more stress than the infinitely extensible case.

After t=t1, the radius decreases faster than the infinitely extensible case given by Eq. (9), see
Fig. 5. We see that the filament breaks after a finite time only when we take into account finite
extensibility. The precise time of breakup depends on the value of the finite extension limit L1.
For L1=50, the time of breakup is 2.2t1. We return to the dependence of the breakup time
upon the finite extension limit at the end of the section.

As the time of breakup is approached, the slower modes are virtually fully extended, Az
i�Li

2,
while the strain-rate e tends to infinity. Under these conditions, the rate of increase in the
deformation A: z

i in Eq. (2) becomes negligible, as does the 1 in the relaxation term. Hence Eq.
(2) reduces to

Fig. 5. FENE effects. The decrease in the radius a(t)/a0 as a function of time t/t1, with the 8-mode model Eq. (6),
x/a0g1=103, m/g1t1=1 and L1=50. The dashed curve is the asymptotic result Eq. (9) for infinitely extensible
dumbbells. The dotted lines are the predictions Eq. (15) using an effective viscosity m*=1667g1t1 (mode 1 only) for
tB1.35t1, and m*=2716g1t1 (modes 1 and 2) for t\1.35t1.
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Fig. 6. FENE effects. The contributions to the stress gifi(Az
i −Ar

i)/g1 from the 8 different modes as a function of time
t/t1, for the model Eq. (6), x/a0g1=103, m/g1t1=1 and L1=50. The dashed lines are the asymptotic prediction
gia

4
0e− t/ti/a4(t)g1 for infinitely extensible dumbbells. The vertical lines are where fi=1.3 for that mode.

0�2eAi
z−

fi

ti

Ai
z.

Thus the FENE factors are given by

fi�2eti. (13)

Hence the contribution to the stress for the modes becomes

2gitiL2
i e.

To the extent that this contribution to the stress is proportional to the instantaneous strain-rate,
and that the dumbbells are nearly locked rigidly at their maximum extension, we can say that
the FENE fluid is now behaving like a suspension of rigid rods, with an effective viscosity

m*=
2
3

% gitiL2
i . (14)

The sum here is to be taken over the highly stretched modes.
As the FENE fluid in now behaving as a viscous fluid, we can apply the analysis of section

3 with the radius decreasing linearly in time at a rate inversely proportional to the effective
viscosity. The approach to breakup at time t= tb is thus predicted to be
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a=
x

6m*
(tb− t). (15)

Fig. 5 shows this piecewise linear decrease, using the effective viscosity corresponding to one
highly stretched state up to t=1.35t1 and two modes thereafter. It would perhaps be appropri-
ate to use three modes after t=1.86t1, and further modes a little later, but they have little effect
in the linear extrapolation to breakup. Note that the linear extrapolation with just one mode in
Fig. 5 is not poor.

Associated with the linearly decreasing radius Eq. (15), section 3 predicts the strain-rate
increasing rapidly towards breakup

e=
2

tb− t
.

Combining this with the earlier expression Eq. (13) for the FENE factors, we find the growth
of the deformations of the modes towards breakup

Ai
z=L2

i
�

1−
tb− t

4ti

�
. (16)

This prediction of a linear approach to full extension at time of breakup is compared in Fig. 7
with the full numerical solution.

Fig. 7. FENE effects. The deformations Az
i of the modes as functions of time t/t1, for the model Eq. (6), x/a0g1=103,

m/g1t1=1 and L1=50. The dashed lines are the asymptotic prediction Eq. (16).
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Fig. 8. FENE effects. The decrease in radius a(t)/a0 as a function of time t/t1 for different finite extension limits from
left to right L1=20, 30, 40, 50, 60, 80 and 100, for the model Eq. (6), x/a0g1=103 and m/g1t1=1. The dashed curve
is the asymptotic result Eq. (9) for infinitely extensible dumbbells.

The dependence of the breakup time on the finite extension limit is studied in Figs. 8 and 9.
Fig. 8 gives the decrease in time of the radius of the filament for various values of the finite
extension limit L1. Note that the longer dumbbells need to be stretched for a longer time before
they begin to deviate from the infinitely extensible result Eq. (9). The times for breakup are
plotted in Fig. 9 as a function of the finite extension limit.

The time to breakup can be estimated by patching together our two asymptotic approxima-
tions Eqs. (9) and (15), the first from the middle elastic times in which all the FENE factors are
set equal to unity, and the second from the late times in which all the FENE factors are very
large. We choose to patch these approximations for the radius of the filament at a cross-over
time tc, defined to be where their slopes are equal. Of course, at this cross-over time, the FENE
factors are neither close to unity nor very large, and so neither asymptotic expression is strictly
applicable. Our cross-over time is therefore but a crude estimate. Setting equal the two
expressions for the time derivatives of the radius of the filament, we find tc from

a0
G: (tc)

3G(tc)
�a0G(tc)

x

�1/3

= −
x

4 % gitiL2
i

. (17)

The sum for the effective viscosity is taken over all modes which relax slower than the cross-over
time, ti\ tc. The breakup time then follows by the linear extrapolation Eq. (15),
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tb: tc−
3G(tc)
G: (tc)

. (18)

This estimate is compared with the full numerical solution in Fig. 9. The step in the estimate
between L1=40 and L1=50 reflects a switch from 2 modes to 1 contributing to the sum for the
effective viscosity.

For short FENE dumbbells, L1� (x/a0g1)2/3, the cross-over occurs in the middle of the
spectrum of relaxation times. Here we may use the approximation G(t)�1.44g1t1/t (for our
particular test spectrum, Eq. (6)), which leads to tb=4tc and

tb:5.44t1
a0g1

x

� %
ti\ t b/4

gitiL2
i

g1t1

�3/4

.

This estimate is good for L1540 in Fig. 9. For long FENE dumbbells, L1� (x/a0g1)2/3, the
cross-over occurs where the lowest mode dominates, G(t)�g1e

− t/t1, which leads to tb= tc+3t1

and

tb�t1
�

3 ln
4
3

L2
1−4 ln

x

a0g1
+3

�
.

This expression produces the same estimates for Fig. 9 when L1]150, although these estimates
are about 2t1 too large. Such an error is to be expected given the crudeness of patching the
asymptotic approximations, and is probably due to the finite extensibility making the radius

Fig. 9. FENE effects. The breakup time tb/t1 as a function of the finite extension limit L1, for the model Eq. (6),
x/a0g1=103 and m/g1t1=1. The dashed curve gives the estimate Eq. (18) with Eq. (17).
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decrease more rapidly than Eq. (9) at the cross-over time. An alternative to patching the radius
of the filament would be to patch the stretches Eqs. (8) and (16). This alternative suffers the
difficulty of having to decide whether an intermediate mode will relax on being affected by finite
extension or whether it will dominate the weaker slower modes in the stress.

There are two ways to view how finite extensibility leads to the breakup of the filament. In the
elastic phase of Section 4, the strain-rate is two-thirds the current relaxation rate. An effect of
finite extensibility has been seen in Fig. 6 to be to increase the relaxation rates by strengthening
the springs of the dumbbells. The relaxation rates thus increase without limit, leading to a faster
than exponential decrease in the radius of the filament. Alternatively, at large deformations the
elastic stress of the dumbbells becomes proportional to the strain-rate, i.e. the stress appears to
be viscous. We have seen in Section 3 that a viscous response produces a strain-rate propor-
tional to 1/a, and so the radius decreases linearly in time.

The spectrum of relaxation times does not play a central role when finite extension effects act,
although they do influence when those effects come into play. A fluid with a spectrum could be
adequately represented by a single mode with gtL2 set equal to � gitiL i

2. With many spectra, a
single mode does in fact dominate this sum over the modes.

6. Comparison with experiments

Our theoretical calculations above are based on an assumed form of the constitutive
equations, a system of uncoupled FENE dumbbells. There can be no certainty that this form
applies to any real material. It is therefore interesting to compare our predictions with
experiments.

Recently Liang and Mackley [2] have investigated the benchmark fluids S1 and the series
A20–A100. These are solutions of a commercial grade of polyisobutylene, with a wide range of
molecular weights which will produce a wide spectrum of relaxation times. The S1 fluid is a 2.5%
solution in 47.5% decaline and 50% polybutene oil, and the A20–A100 fluids are 1–5%
solutions in decaline. Liang and Mackley measured the storage and loss moduli G %(v) and
G¦(v) in oscillating shear in the linear regime. Software in the rheometer then fitted a discrete
spectrum gi, ti with 11 modes spread evenly over 3 decades on a logarithmic scale, see Table 1.
Nonlinear step-strain experiments were then conducted and interpreted in terms of a Wagner
exponential damping function in an integral constitutive equation. This gave good predictions
for the measured stress growth and measured steady viscometric functions. All these tests were
made in simple shear flow.

Now we have used a FENE constitutive equation rather than an integral equation with a
Wagner damping function, and it is not possible to interpret the damping coefficient k as a finite
extension limit L. The damping function produces strain thinning, whereas the FENE spring
produces strain hardening. The FENE modification of the linear Hookean dumbbells was
introduced to control extensional flow effects, and is not good for describing nonlinear shear
effects. As noted above, the good fit of the Wagner constitutive equation was only tested in
simple shear. Hence, we must discard the experimental data for the damping coefficient and
treat our finite extension limit L as an unknown adjustable parameter. We do however keep in
full the measured linear spectrum.
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Table 1
The moduli gi (in Pa) for the different relaxation times ti (in seconds) for the benchmark fluids

A60 A80ti S1 A100A20 A40

2.65e21.28e20.010 5.29e11.31e2 6.89e−1 9.97
5.12e−30.020 3.29e−3 1.163 6.34 1.69e1 1.40e−2

4.63e11.80e10.040 2.18 7.236.88e−1 3.09
2.11e10.079 1.47e1 1.62e−1 1.14 5.82 5.44e1
1.04e10.158 1.11e1 2.68e−2 3.05e−1 3.33 2.88e1
5.460.316 1.86e15.57 1.353.12e−3 6.16e−2

4.82e−1 2.840.631 3.04 6.85e−5 1.15e19.78e−3
4.421.101.259 1.74 1.22e−11.08e−7 1.03e−3

9.13e−3 3.12e−12.512 1.616.58e−1 2.43e−4 5.85e−9
7.73e−15.012 6.35e−27.11e−2 6.86e−74.33e−4 1.55e−5
9.11e−210.00 1.73e−2 4.66e−4 9.64e−5 7.57e−3 2.73e−2

For our comparisons, we also need values for the surface tension and the solvent viscosity.
We take x=3×10−2 N m−1 and m=3 Pa s for S1 and m=2.41×10−3 Pa s for A20–A100.
The asymptotic theory tells us that the results are reasonably insensitive to the values selected
for these parameters.

After characterising the rheology of the benchmark fluids, Liang and Mackley then placed a
sample of the fluids in the Liquid Filament Rheometer. They measured the capillary thinning of
a liquid filament (see their Fig. 13). The initial diameters of the filaments were 2.44 mm (S1),
0.45 mm (A20) and 0.9 mm (A40–A100). The diameters decreased to 0.02 mm over a time of
16–0.3 s depending on the fluid.

The experimental results show no early viscous phase. With the parameters of the experi-
ments, this phase is expected either to be very short (tvb=2.2×10−4 s or less) for the
A20–A100 fluids, or to be unnecessary because of low surface tension (x/a0 � gi=0.15 for S1
and A100, and 0.36 for A80). In the former case, the phase will occur in times shorter than those
resolved by the experiments, and most probably during the setting up of the initial filament. This
is a problem with the Liquid Filament Rheometer, that the process of making the initial filament
is not yet well characterised. Thus we do not know how much the material is deformed during
the process. For the fluids S1, A80 and A100 we choose to assume that the material is not
deformed, i.e. the initial conditions Az

i (0)=1=Ar
i(0) are satisfied. For the other fluids it is

necessary to assume that the material is deformed before measurements start. For these cases we
assume a pre-stretch P, setting

Ai
z(0)=P

L2
i

L2
i +P

and Ai
r(0)=

1
P1/2 .

This corresponds to the length of the filament being stretched by a factor of P2 by the
combination of the setting up and the rapid viscous phase. The arbitrary factor Li

2/(Li
2+P) is

necessary to stop modes being stretched beyond their finite extension limit. The value of the
pre-stretch was adjusted so that the radius changed least at the beginning of the numerical
calculations. One would anticipate this value to be P=a0 � gi/x, in order that the elastic stresses
start in balance with the capillary pressure.
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First we consider the S1 fluid. This fluid has a solvent viscosity which is not small, but which
is 21% of the total solution viscosity (at zero shear-rate). Also, as noted above, the capillary
pressure is not large compared with the total elastic modulus, x/a0 � gi=0.15, although after the
fastest mode relaxes at 0.01 s the ratio increases to 0.63, and after the further 0.3 s it increases
to 2.2. Thus the capillary thinning of the S1 fluid is not entirely within the asymptotic analysis
of Section 4. Numerical solution can however be made of the governing equations.

Fig. 10 gives the decrease in diameter as a function of time. The points are the experimental
observations of Liang and Mackley. The three continuous curves are the numerical solutions
using the experimental spectrum with three choices of the finite extension limit, L1=17, 20 and
22. No pre-stretch was applied. The best fit of the adjustable parameter is L1=20. We note that
Eqs. (17) and (18) predict L1=47 using the observed breakup time of 16 s. Also plotted in Fig.
10 is the prediction Eq. (9) for the middle elastic times. This has the correct magnitude until the
finite extension limit is felt. Discrepancies at early times may be due to the fastest modes
(ti=O(0.01 s)) having relaxed before the first experimental observation. Also, the viscous
breakup time tvb is 0.73 s, due to the large solvent viscosity, and this is not small compared with
the fastest relaxation times.

Fig. 11 shows the deformation of the various modes for L1=20. Note the linear approach to
the maximum extension, as predicted by Eq. (16). Fig. 12 shows for the contributions of the
different modes to the stress for L1=20. Note that the slowest mode never dominates, because
its modulus is so low. It is the second slowest mode which dominates for most of the time.

Fig. 10. S1 fluid. The decrease in the diameter 2a(t) (in m) as a function of time (in s). The diamonds are the
experimental observations of Liang and Mackley. The three continuous curves are, from the left, predictions for
L1=17, 20 and 22. The dashed curve is the asymptotic result 2a0(a0G(t)/x)1/3.
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Fig. 11. S1 fluid. The increase in the deformations Az
i (t) as a function of time (in s) for the case L1=20.

Fig. 13 shows the decrease in diameter for the fluid A20. This fluid has strong surface tension,
x/a0 � gi=45, and so one would expect a rapid viscous phase to produce a pre-stretch of about
this value. In fact the experimental data are best fitted (with no jump near t=0) with just this
pre-stretch P=45. With this optimal value of the pre-stretch, the full numerical solution and a
modified asymptotic result for middle elastic times, a0(Pa0G(t)/x)1/3, which takes into account
the pre-stretch, both follow the experimental data fairly well until the finite extension limit is
felt. The breakup time of t=0.3 s is best fitted with a finite extension limit L1=77. The
approximate theory of Eq. (18) with Eq. (17), modified to incorporate the pre-stretch, gives the
poor estimate L1=38.

Fig. 14 shows the decrease in diameter for the fluids A40–A100. For A40, the initial capillary
pressure x/a0 is 3.19 times the total elastic modulus � gi, but this doubles after the fastest mode
relaxes at t=0.01 s, and doubles again when the next mode decays at t=0.02 s. A pre-stretch
of 5 was found necessary to avoid an early jump in the diameter. The best fit of the breakup at
t=0.7 s was obtained with a finite extension limit of L1=77. The approximate theory of Eq.
(18) with Eq. (17) modified to incorporate the pre-stretch gives the estimate L1=89. For A60,
with an initial capillary pressure of 0.76 times the total elastic modulus, a pre-stretch of 3 and
a finite extension of L1=24 (cf. 15 from Eq. (18) with Eq. (17)) fitted the experimental data. For
A80 and A100, with initial capillary pressures of 0.36 and 0.15 times the total elastic modulus,
the experimental data was best fitted with L1=4.5 and 0.84 (cf. 6.5 and 3.2 from Eq. (18) with
Eq. (17)). These values for L1 are of course absurd if one interprets them as the finite extension
limit of a polymer molecule. The results for the fitting parameters are summarised in Table 2.
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Using the two adjustable parameters, the pre-stretch P which is adjusted to avoid an initial
jump in the diameter and the finite extension limit L1 which is adjusted to fit the breakup time,
the experimental observations of Liang and Mackley of the capillary thinning have been fitted
reasonably well using their measured spectra with the wide range of relaxation times. There are
some discrepancies at early times, which are probably due to the fastest modes having relaxed
before the first observation. The poor characterisation of the initial filament is a problem with
the Liquid Filament Rheometer which needs to be addressed in the future.

Our asymptotic theory Eq. (9) for the middle elastic times also predicts the experiments
reasonably well until the finite extension limit is felt, despite in most cases the initial capillary
pressure not being much greater than the total elastic modulus. It would be possible to develop
an alternative theory for weak capillary pressure, but this would in effect be linear viscoelasticity
producing the viscous estimates of Section 3 with a time-dependent viscosity m*(t)=m+� giti,
where the sum is taken over the modes which have had time to relax, tiB t. In the LFR
experiments however, as soon as a few of the fastest modes (with the highest moduli) have
decayed, the capillary pressure does become larger than a sum over the remaining moduli, and
so our theory Eq. (9) becomes applicable.

The predictions for the finite extension limit by the approximate theory Eq. (18) with Eq. (17)
are not good compared with the full numerical solutions, particularly for the cases involving a
pre-stretch.

Fig. 12. S1 fluid. The stress contributions gifi(Az
i −ar

i) (in Pa) as a function of time (in s) for the case L1=20. At
t=10 s the modes are, from the top, i=2, 1, 3, 4, 5, 6, 10, 7, 11, 8, 9, where t1=10 s and t11=0.01 s.
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Fig. 13. A20. The decrease in the diameter 2a(t) (in m) as a function of time (in seconds). The diamonds are the
experimental observations of Liang and Mackley. The continuous curve is for L1=77 and a pre-stretch P=45. The
dashed curve is the asymptotic result 2a0(Pa0G(t)/x)1/3.

We can now return to the question at the end of the introduction, of what relaxation time is
measured by the LFR for a fluid with a wide spectrum of relaxation times. It is instructive to
compare the two fluids S1 and A80. These have virtually the same spectrum, see Table 1 and
also Fig. 5 in Liang and Mackley for the storage and loss moduli G %(v) and G¦(v). The fluids
differ substantially in their solvent viscosities, by a factor of 103, but the solvent contributes only
20% to the solution viscosity in the larger case. Liang and Mackley further show in their Fig.
9 that the steady shear viscosity m(g; ) is the same for the two fluids. In the LFR, however, the
capillary thinning is very different, S1 breaking after 16 s while A80 breaks after 1.8 s. Thus the
simple shear flow characterisations fail to catch all of the rheology.

The experimental observations for each of the six fluids can be divided into two roughly equal
periods. The first half follows, more or less, the asymptotic result Eq. (9) for the middle elastic
times, the dashed curves in Figs. 10, 13 and 14. This asymptotic result does not depend on the
solvent viscosity, so long as it makes a small contribution to the total viscosity, m�� giti. The
result does depend strongly on the spectrum. As the spectra of S1 and A80 are virtually the
same, the dashed curves in Figs. 10 and 14(c) are the same. Hence, the difference between the
two fluids is the time at which they deviate from this asymptotic curve, t=8 s for S1 and t=0.9
s for A80. The fluids start to deviate from the asymptotic result, and so enter the second period
of the experimental observations, when the finite extension limit comes into play. This limit
would seem to be quite different for the two fluids, L1=20 for S1 and L1=4.5 for A80.



V.M. Ento6, E.J. Hinch / J. Non-Newtonian Fluid Mech. 72 (1997) 31–53 51

Fig. 14.
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Fig. 14. A40–A100. The decrease in the diameter 2a(t) (in m) as a function of time (in s) for the fluids A40–A100.
The diamonds are the experimental observations of Liang and Mackley. The continuous curves are (a) for A40,
L1=77 and P=5; (b) for A60, L1=24 and P=3; (c) for A80 L1=4.5 and P=1; and (d) for A100, L1=0.84 and
P=1. The dashed curves are the asymptotic result 2a0(Pa0G(t)/x)1/3.
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Table 2
Parameters and results for the different fluids

A60 A100A80S1 A20 A40

1.2 1.8 2.8Breakup time tb (in s) 16 0.34 0.7
4.5Finite extension limit L1 20 77 77 24 0.84
6.5L1 from Eq. (18) with Eq. (17) 3.247 1538 89

0.76 0.36Capillary pressure x/(a0 � gi) 0.14 0.1545 3.19
1Pre-stretch P 1 45 5 3 1

Hence the effective single relaxation rate of the fluids in the LFR, as measured by Liang and
Mackley from the best straight line fitted through the logarithm of the diameter plotted as a
function of time until just before breakup, is set by the finite extension limit. This deduction is
clearly a result of our analysis which is based on a particular constitutive equation, that for
uncoupled FENE dumbbells. One can debate whether these equations are sensible. In their
defence we point out that they do fit all the experimental observations reasonably well, and that
they do provide an explanation of how fluids can appear identical in simple shear but
significantly different in extension. Of course the values of the finite extension limit found from
the LFR for the different fluids range from very plausible for S1 and A20–A60, through
questionable for A80, to absurd for A100. But this difficulty of placing a molecular interpreta-
tion on the finite extension limit has occurred in the analysis of other experiments. Hence, more
thought is needed about the form of the constitutive equation.
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