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Thinning and breakup of liquid filaments are central to dripping of
leaky faucets, inkjet drop formation, and raindrop fragmentation.
As the filament radius decreases, curvature and capillary pressure,
both inversely proportional to radius, increase and fluid is expelled
with increasing velocity from the neck. As the neck radius vanishes,
the governing equations become singular and the filament breaks.
In slightly viscous liquids, thinning initially occurs in an inertial
regime where inertial and capillary forces balance. By contrast, in
highly viscous liquids, initial thinning occurs in a viscous regime
where viscous and capillary forces balance. As the filament thins,
viscous forces in the former case and inertial forces in the latter
become important, and theory shows that the filament approaches
breakup in the final inertial–viscous regime where all three forces
balance. However, previous simulations and experiments reveal
that transition from an initial to the final regime either occurs at a
value of filament radius well below that predicted by theory or is
not observed. Here, we perform new simulations and experiments,
and show that a thinning filament unexpectedly passes through a
number of intermediate transient regimes, thereby delaying onset
of the inertial–viscous regime. The new findings have practical im-
plications regarding formation of undesirable satellite droplets and
also raise the question as to whether similar dynamical transitions
arise in other free-surface flows such as coalescence that also ex-
hibit singularities.
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Drop formation is ubiquitous in daily life, industry, and nature
(1–3). The phenomenon is central to inkjet printing (4, 5),

dripping from leaky faucets (6, 7), measurement of equilibrium
and dynamic surface tension (8, 9), DNA arraying and printing of
cells (10, 11), chemical separations and analysis (12, 13), pro-
duction of particles and capsules (14, 15), printing of wires and
transistors (16, 17), and mist formation in waterfalls and frag-
mentation of raindrops (18, 19). Fig. 1A shows an experimental
setup for studying the dynamics of a drop of an incompressible
Newtonian fluid of density ρ, viscosity μ, and surface tension σ
forming from a tube of radius R (Fig. 1B and Drop Formation
from a Tube and Filament Thinning). A salient feature of, and key
to understanding, drop formation is the occurrence of a thin
filament that connects an about-to-form primary drop to the rest
of the fluid that is attached to the tube (Fig. 1 B and C). Thus, it
often proves convenient to study filament thinning in the ideal-
ized setup depicted in Fig. 1D (Drop Formation from a Tube and
Filament Thinning). As time t advances and the filament radius
decreases, curvature and capillary pressure, both of which are at
leading order inversely proportional to radius, increase and fluid
is expelled with increasing velocity from the neck. At the instant
t= tb when the neck radius vanishes, a finite time singularity
occurs and the filament breaks. When the filament breaks, one
or more satellite droplets may also form. These satellites are
typically much smaller than the primary drop (20) and almost
always undesirable in applications (2).

For Newtonian filaments, three theories have been developed
to describe the dynamics in the vicinity of the pinch-off singu-
larity (Scaling Theories of Pinch-Off). When viscous effects are
weak, thinning and pinching occur in an inertial (I) regime (21–
23) where inertial and capillary forces balance, and the minimum
filament radius hmin (Fig. 1B) and the instantaneous Reynolds
number ReðtÞ vary with dimensionless time τ to breakup as

hmin

R
∼ τ2=3, ReðtÞ∼ 1

Oh
τ1=3, [1]

where τ≡ ðtb − tÞ=tI and tI ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3=σ

p
(Scaling Theories of Pinch-

Off). For real liquids, the Ohnesorge number Oh= μ=
ffiffiffiffiffiffiffiffiffi
ρRσ

p
is not identically zero no matter how small the viscosity. Thus,
for low-viscosity liquids, Oh � 1 and Eq. 1 shows that regardless
of how large the Reynolds number is initially, as τ→ 0 and
breakup is approached, ReðtÞ→ 0. Therefore, the inertial regime
cannot persist all of the way to breakup and can only describe the
initial dynamics for low-viscosity fluids. Similarly, when viscous
effects are dominant, thinning and pinching occur in a viscous
(V) regime (24) where viscous and capillary forces balance, and
hmin and ReðtÞ vary with τ as

hmin

R
∼ τ , ReðtÞ∼ 1

Oh2
τ 2β−1, [2]

where τ≡ ðtb − tÞ=tV , tV ≡ μR=σ, and β= 0.175 (Scaling Theories of
Pinch-Off). For real liquids, Oh cannot be infinite no matter how
large the viscosity. Thus, for high-viscosity liquids, Oh � 1 and
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Eq. 2 shows that regardless of how small the Reynolds number is
initially, as τ→ 0 and breakup is approached, ReðtÞ→∞. There-
fore, the V regime cannot persist all of the way to breakup and
hence can only describe the initial dynamics even for high-vis-
cosity fluids. Therefore, as the filament radius tends to zero, a
transition occurs from either the I or the V regime to a final
inertial–viscous (IV) regime in which all three forces, i.e., iner-
tial, viscous, and capillary, balance and the instantaneous Reyn-
olds number ReðtÞ∼ 1 (25). From Eqs. 1 and 2, the transition
from the I to the IV regime and that from the V to IV regime can
be calculated by setting ReðtÞ to be order one. Thus, transition
from the I to the IV regime should occur when (2, 18)

hmin=R∼Oh2, [3]

and that from the V to the IV regime should occur when (2, 18)

hmin=R∼Oh2=ð2β−1Þ. [4]

However, whereas careful simulations and experiments have
shown that the transition from the I to the IV regime does in-
deed occur, it has been found to take place for values of hmin that
are about an order of magnitude smaller than that predicted
from theory (Eq. 3) (26). Furthermore, the transition from the
V to the IV regime has not yet been demonstrated to occur from
simulation and an attempt for an experimental demonstration of
the transition (27) was perhaps at too small a value of Oh
(Oh= 0.49) to be conclusively in the V regime. In this paper, we
demonstrate that in contrast with the conventional wisdom that
the dynamics of capillary pinching should exhibit a transition
from either the I to the IV regime or the V to the IV regime, the

transition from either of the two initial regimes to the final IV
regime is in fact more complex and, unexpectedly, can be
delayed by the occurrence of a number of intermediate transient
regimes as shown in Fig. 1E. The possibility of such complexity
has been anticipated in part by Eggers (18) but no study has yet
been carried out to explore the existence of these intermediate
regimes or contemplate its implications in other free-surface
flows exhibiting finite time singularities.
In this work, the dynamics of filament thinning is studied both

numerically and experimentally. Simulations are performed to
track how sinusoidal perturbations on a liquid cylinder cause it to
break, which have been successfully used in the past to study
pinch-off and scaling for Newtonian (26, 28) as well as non-
Newtonian fluids (29, 30) (Fig. 1D and Simulations). In the ex-
periments, high-speed imaging and image analysis are used to
measure the evolution in time of the minimum filament radius
for liquids dripping from a tubular nozzle. Glycerol–water mix-
tures are used as working fluids to explore systems with different
values of Oh.
Fig. 2A shows the computed variation of hmin with τ for a

slightly viscous liquid of Oh= 0.23. The simulations make plain
that after sufficient time has passed so that the initial transients
have decayed, the filament first thins in the I regime, where
hmin ∼ τ2=3, as expected. According to conventional wisdom, the
thinning dynamics is expected to transition from the I regime to
the IV regime when hmin ∼Oh2 = 0.053; thenceforward, the
thinning is to follow IV scaling where hmin = 0.0304τ=Oh. How-
ever, the simulation results show that this transition is delayed
and does not take place until hmin has fallen below a value that is
about an order of magnitude smaller than that predicted by the
theoretical estimate. Moreover, the simulations show unexpectedly
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Fig. 1. Methods used for studying and new phase diagram for capillary thinning and pinch-off. (A) Experimental setup used to capture images of the
thinning neck of a drop forming from a nozzle. The images are then postprocessed to obtain the minimum neck radius as a function of the time remaining
until breakup. (B) Snapshot of a drop forming from a tube that highlights the pinching zone in the vicinity of the pinch point. (C) Two series of images that
focus on the pinching zones and depict the evolution in time of thinning filaments for drops of two fluids with different viscosities (i.e., different Oh).
(D) Setup for simulating filament thinning and pinch-off: periodically perturbed jet (Left) and domain of axial length λ=2 used in simulations (Right). (E) Phase
space showing trajectories taken by filaments of a slightly viscous ðOh< 1Þ and a highly viscous ðOh> 1Þ fluid. The large squares indicate the starting states at
t = 0. The arrows along each trajectory show the direction of evolution.
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that the dynamics switches over from the I to the IV regime only
after passing through an intermediate V regime, where hmin =
0.0709τ=Oh. The existence of these regimes can be verified by
plotting the local Reynolds number Relocal (Simulations) in the
thinning filament in the vicinity of the pinch point as a function of
hmin (Fig. 2B). Fig. 2B clearly shows that at early times when
hmin ≈ 0.2, Relocal � 1, confirming the existence of the I regime.
However, when hmin has fallen to ≈ 0.03, Relocal � 1, which clearly
demonstrates that the dynamics has entered the newly discovered
intermediate V regime. Finally, as the filament asymptotically
approaches breakup, i.e., for values of hmin ≈ 10−3 or smaller,
Relocal ∼ 1, demonstrating that near the singularity, all three forces
(viz., inertial, viscous, and capillary) balance each other and the

dynamics lies in the IV regime. To confirm the correctness of
these computationally made predictions, dripping experiments
have been carried out with two liquids of Oh= 0.23 and Oh= 0.55.
For the former, Fig. 2C shows the transition from the initial
I regime to the intermediate V regime, with the latter regime
lasting nearly over two decades in hmin. When Oh= 0.23, it is not
possible to observe the transition from the V regime to the final
IV regime because that transition occurs for neck radii smaller
than a micrometer, which is the lower limit of length scales that
can be imaged using visible light. The experimental results for
Oh= 0.55 depicted in Fig. 2D, on the other hand, do show the
transition to the final IV regime, albeit with an intermediate
V regime of much shorter duration.

Fig. 2. Simulations and experiments demonstrating the existence of an intermediate viscous regime between the initial inertial regime and the final
IV regime for slightly viscous fluids ðOh< 1Þ. (A) Variation of minimum neck radius with time until breakup when Oh= 0.23 obtained from simulations.
(B) Computed variation with minimum neck radius of the local Reynolds number in the neighborhood of the pinch point verifies the existence of all three
regimes: Relocal � 1 in the I regime, Relocal � 1 in the V regime, and Relocal ∼ 1 in the IV regime. (C) Experimental confirmation of the existence of an in-
termediate V regime when Oh= 0.23. The IV regime is not attained here because of optical limitations. (D) At a slightly higher value of Oh than that in
C ðOh= 0.55Þ, the V to IV transition is observed experimentally. (C and D, Insets) Same data as in the main figures are presented but use linear rather than
logarithmic axes.
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Having demonstrated the existence of the intermediate V re-
gime, we now turn our attention to understanding the reason for
its occurrence, which is facilitated by examining flow fields within
thinning filaments. To do so, we turn our attention to a filament
of Oh= 0.07 which, as shown in Fig. 3A, clearly depicts the ex-
istence of all three scaling regimes. The instantaneous stream-
lines and pressure contours at three different times when the
dynamics lies in each of these three regimes are shown in Fig. 3
B–D over 0≤ z≤ λ=2≡ 4. At early times, the minimum in the
filament radius is located at z= λ=2≡ 4, i.e., halfway between two
swells, one located at z= 0 and the other at z= λ≡ 8 (Fig. 3B). As
the filament continues to thin, the fluid accelerates as it flows
from the neck, where pressure is highest, toward the two swells,
where pressure is lowest. On account of this effect, which is at-
tributable to finite fluid inertia (20, 22), the filament begins to
thin fastest at two locations that are located on either side of
z= λ=2. Within the computational domain, this leads to a shift in
the minimum radius from the end of the domain ðz= 4Þ to its
interior, i.e., z≈ 1.95. As shown in Fig. 3C, the occurrence of this
new minimum gives rise to a new stagnation zone in the interior
of the domain in the vicinity of which the flow has slowed down
considerably and even reversed. This shift in the location of hmin
and the accompanying slowing down of the flow then takes the
dynamics into the V regime. Although the new stagnation zone
persists for some time, the filament does not break while in the

V regime. The capillary pressure which continues to rise as the
filament continues to thin accelerates fluid out of the thinning
neck and causes inertia to become significant once again, thereby
taking the filament into the IV regime. Hence, with the simu-
lation and experimental results shown in Figs. 2 and 3, the
thinning and breakup dynamics of slightly viscous filaments for
which Oh< 1 are seen to exhibit I to V to IV scaling as τ→ 0.
Furthermore, these results at long last shed light on the reason
for the delay in the transition to the final IV regime that had
remained perplexing and unexplained for over a decade.
Having clarified the heretofore inadequately understood

thinning dynamics of slightly viscous fluids of Oh< 1, we next
show that highly viscous fluids of Oh> 1 exhibit even more subtle
behavior during capillary thinning. Fig. 4 shows results of simu-
lations and experiments for a fluid of Oh= 1.81. As expected,
both simulations (Fig. 4A) and experiments (Fig. 4B) reveal that
the initial and final scaling regimes are the V and IV regimes.
Conventional wisdom dictates that the transition from the V to
the IV regime should occur when hmin ∼Oh2=ð2β−1Þ = 0.162, which
is contradicted by both simulations and experiments. The simu-
lations show (Fig. 4A), and experiments confirm (Fig. 4B), that
there exists an intermediate I regime that follows the initial
V regime. Local Reynolds number calculations near the pinch
point from the simulations are yet even more revealing (Fig. 4C):
they show the existence of an intermediate V regime that lies
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Fig. 3. Simulation results when Oh= 0.07 highlight the formation of a stagnation zone within the filament and help explain why the intermediate viscous
regime exists. (A) Variation of minimum neck radius with time until breakup that shows occurrence of all three regimes and transition from I to IV regime
through an intermediate V regime. (See below for the explanation of the arrow.) (B) Instantaneous streamlines and pressure contours within the thinning
filament when the dynamics lies in the I regime. As shown in the figure, this I regime has a slender geometry (21) rather than a fully developed double-cone
structure (23). The legend on the top right identifies contour values of the pressure. At this instant in time, the minimum neck radius is located at z= λ=2= 4
and the fluid accelerates as it flows from the neck to the swell. (C) Instantaneous streamlines and pressure contours in the filament at a later time than in B
where the acceleration of the fluid has resulted in shifting of the neck from the top end of the domain ðz= 4Þ to a location between the two ends ð0< z< 4Þ.
The time and minimum filament radius when this shift commences is identified by the arrow in A. (Inset) A new stagnation zone has formed away from the
two ends, resulting in a region of reversed flow and the slowing down of the flow in the vicinity of the new minimum in filament radius. (D) The stagnation
zone persists but because of the large capillary pressures that develop as the neck continues to thin, fluid is once more accelerated as it flows away from the
neck. Thus, inertial forces come into play again and compete with viscous and capillary forces in setting the final fate of the filament.
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between the intermediate I and the final IV regime. Therefore,
according to Fig. 4, the capillary thinning of highly viscous fila-
ments for which Oh> 1 is seen to transition from V to I to V to
IV regimes as τ→ 0. Furthermore, it is worth noting that Fig. 4A
depicts, to our knowledge, the first demonstration by simulation
of the transition from an initial V regime to the final IV regime.
In conclusion, our analysis provides, to our knowledge, the

first correct trajectories in the phase space of ðhmin,RelocalÞ that
are taken by filaments as they undergo capillary pinching.
A particularly interesting finding is that the dynamics cannot
reach the asymptotic universal IV regime directly from the I
regime without passing through an intermediate transient V re-
gime even though this latter regime may be very short-lived. The
presence of the intermediate V regime indicates that even for a
low-viscosity fluid, at some stage viscous force (along with cap-
illary force) will dominate the dynamics during filament thinning
and breakup. The existence of intermediate regimes has several
practical implications as occurrence of slender threads that pinch
symmetrically at their midpoints is associated with breakup of
highly viscous filaments undergoing creeping flow, whereas occur-
rence of satellites is associated with inviscid fluids (20, 23, 24, 30).
Therefore, the presence of the intermediate I regime makes plain
that a visible satellite drop may form even during breakup of highly
viscous filaments that reach the IV regime for values of hmin below
the limit set by visible light. Additionally, the existence of multiple
regime transitions before a filament enters the final IV regime
helps explain why it has heretofore proven difficult to observe this
regime during pinch-off of highly viscous filaments.
The unexpected findings of this work raise a number of

questions. Two issues that have not been addressed here are that
the amount of time spent by filaments in each regime remains
unclear and that similar transitions that may take place during
capillary pinching of complex fluids (29, 30) remain unexplored.
Moreover, it is well known that there are a number of other free-
surface flows that exhibit finite time singularities. Chief among
these is the coalescence singularity that arises when two drops
are just allowed to touch and then merge into one (31). Whether
transitions of the sort uncovered in this work exist in problems
like coalescence are worthy topics for future study and may help
explain why it took over a decade to uncover the true asymptotic
regime of coalescence (31, 32).

Materials and Methods
Drop Formation from a Tube and Filament Thinning. Dynamics of formation of
drops of an incompressible Newtonian fluid from a tube at constant flow rate
Q is governed by three dimensionless groups (33): Ohnesorge number
Oh= μ=

ffiffiffiffiffiffiffiffi
ρRσ

p
, which is the ratio of viscous force to the square root of the

product of surface tension and inertial forces; gravitational Bond number
G= ρgR2=σ, which is the ratio of gravitational to surface tension force; and
Weber numberWe= ρU2R=σ where U=Q=ðπR2Þ, which is the ratio of inertial
to surface tension force. If the drops are formed quasi-statically so that
We � 1, the dynamics is independent of We (9, 33). Once the filaments
shown in Fig. 1C become sufficiently thin, the dynamics in the vicinity of the
location where filament radius is smallest is also independent of G. There-
fore, it is both convenient and sufficient to study filament pinch-off in the
setup shown in Fig. 1D where attention is focused on the time evolution and
breakup of an initially cylindrical filament of radius R that is subjected to an
axially periodic perturbation of wavelength λ. The capillary thinning of an
idealized filament is governed by three dimensionless groups: the Ohnesorge
number Oh= μ=

ffiffiffiffiffiffiffiffi
ρRσ

p
, dimensionless wavelength λ=R, and dimensionless per-

turbation amplitude. The latter two parameters must have appropriate values
to cause instability (29, 34, 35) but have no effect whatsoever on the dynamics
near the singularity.

Scaling Theories of Pinch-Off. For filaments of incompressible Newtonian
fluids, three theories have been developed to describe the dynamics in
the pinching zone (Fig. 1B), i.e., the vicinity of the pinch-off singularity
ðr = 0, z= z0Þ, where ðr, zÞ are the radial and axial coordinates in a cylindri-
cal coordinate system based along the filament axis and z0 is the axial
location where the filament will pinch off. If the effect of viscosity can
be neglected and the fluid can be treated as inviscid, i.e., Oh= 0, thin-
ning and pinching occur in an inertial (I) or inviscid or potential flow regime
(21–23) where inertial and capillary forces balance, and the radial and axial
distances and the axial velocity scale with time measured to breakup as
h=R∼ z′=R∼ τ2=3, v=vc ∼ τ−1=3. Here, r =hðz, tÞ is the shape function that
prescribes the filament profile, t is time, z′= z− z0 is the length scale of the
neck, τ= ðtb − tÞ=tc , where tb is the breakup time and tc is characteristic time so
that τ is the dimensionless time to breakup, v is the axial velocity, and vc is
characteristic velocity. In the I regime, tc ≡ tI =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3=σ

p
is the inertial-capillary

time tI and vc =R=tc =
ffiffiffiffiffiffiffiffiffiffiffi
σ=ρR

p
. Real fluids, however, have finite viscosity no

matter how small its value. Hence, using these scales, one can calculate an
instantaneous Reynolds number ReðtÞ that applies during thinning of a slightly
viscous filament Oh � 1 as ReðtÞ≡ ρz′v=μ∼ τ1=3=Oh (36).

Similarly, if the effect of viscosity is dominant and inertia is negligible so
that Oh=∞, thinning and pinching occur in a viscous (V) or Stokes regime
(24) where viscous and capillary forces balance, and the radial and axial
distances and the axial velocity scale with time measured to breakup
as h=R∼ τ, z′=R∼ τβ, v=vc ∼ τβ−1, where β= 0.175. In the V regime,
tc ≡ tV = μR=σ is the viscous-capillary time tV and vc =R=tc = σ=μ. With these

Fig. 4. Simulations and experiments demonstrating the existence of several intermediate regimes between the initial viscous regime and the final IV regime
for a highly viscous fluid of Oh= 1.81. (A) Computations show that as the filament thins, the dynamics transitions from an initial V regime to the final
IV regime through an intermediate I regime (but see C). (B) Experiments accord with the predictions from simulations and exhibit the same transition dy-
namics. (C) However, local Reynolds number calculations from the simulations reveal more information about the transitions. Whereas the initial V, in-
termediate I, and final IV regimes are confirmed from the computed variation of Relocal with hmin, this analysis also indicates the existence for a very short time
of an intermediate V regime after the I regime.
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scales, one can calculate an instantaneous Reynolds number ReðtÞ that
applies during thinning of a highly viscous filament Oh � 1 as ReðtÞ≡
ρz′v=μ∼ τ2β−1=Oh2 (36).

Lastly, under the assumption that all three forces, i.e., inertial, viscous,
and capillary, remain in a balance as the filament thins and pinches off,
Eggers (25) has shown that h=lμ ∼ τ,   z′=lμ ∼ τ1=2,   v=vc ∼ τ−1=2. In this IV regime,
tc ≡ tμ ≡ μ3=ρσ2 is the viscous time, lμ ≡ μ2=ρσ is the viscous length, and
vc = lμ=tμ = σ=μ. In this regime, ReðtÞ∼ 1.

Simulations. The dynamics of pinch-off of Newtonian filaments is governed by
the continuity and Navier–Stokes equations. Because the filament is axi-
symmetric and subjected to an axially periodic perturbation of wavelength λ,
the domain consists of the 2D region that is bounded by the free surface
SðtÞ, the axis of symmetry r = 0, and two horizontal planes of symmetry lo-
cated at z= 0 and z= λ=2, as shown in Fig. 1D. The governing equations are
solved subject to symmetry boundary conditions along the axis of symmetry
and on the two planes of symmetry, and kinematic and traction boundary
conditions along SðtÞ (33).

The problem statement is made dimensionless using unperturbed radius as
characteristic length lc ≡R, inertial-capillary time as characteristic time tc ≡ tI ,
and the ratio of the previous scales as characteristic velocity vc =R=tc . Dif-
ferent scales are used for pressure and viscous stress, with pc ≡ σ=R as char-
acteristic pressure and τc ≡ μvc=R as characteristic viscous stress.

This free-boundary problem is solved numerically by a fully implicit
method of lines algorithm that uses an arbitrary Lagrangian–Eulerian
scheme, the Galerkin/finite-element method (G/FEM) for spatial discretiza-
tion, and an adaptive finite-difference method (FDM) for time integration.
Because of the presence of the free boundary, the interior of the flow
domain is discretized by an adaptive elliptic mesh generation algorithm
(37). The G/FEM converts the time-dependent system of nonlinear partial

differential equations to a system of nonlinear ordinary differential equa-
tions (ODEs). Application of the FDM time integration scheme further re-
duces the system of ODEs to a large system of nonlinear algebraic equations.
Finally, this system of equations is solved by Newton’s method with an an-
alytically computed Jacobian.

Starting from an initially quiescent state corresponding to a deformed
cylinder (Fig. 1D), the dynamics is followed in time ~t ≡ t=tc until the di-
mensionless minimum radius ~hmin ≡hmin=R falls below 10−4. The last few
data points obtained on the variation of ~hmin with ~t before stopping the
simulations are then extrapolated to find the dimensionless breakup time
~tb ≡ tb=tc at which ~hmin = 0. In the body of the paper, results are reported as
functions of dimensionless time measured to breakup, viz., ~τ≡ τ=tc =~tb −~t.
Results from simulations and experiments are compared with the three scaling
theories of pinch-off. In dimensionless form, they are ~hmin ∼~τ2=3 (I regime),
~hmin = 0.0709 Oh−1   ~τ (V regime), and ~hmin = 0.0304 Oh−1   ~τ (IV regime). To
simplify the notation, in discussing Figs. 2–4 the tildes are omitted and hmin

and τ are understood to denote the dimensionless versions of these quantities.
The relative importance of the underlying forces near the pinch point hmin

is determined by calculating a local Reynolds number Relocal ≡ ð1=OhÞz′v
from the simulation data. Here, z′≡ zj1.2hmin

− zjhmin
is the difference between

zj1.2hmin
—the z coordinate of the free surface where r = 1.2hmin—and zjhmin

—

the z coordinate of the location where the neck radius is a minimum. The
local velocity v in Relocal is the axial velocity at the free surface at zj1.2hmin

.
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