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When a long line of stationary touching balls is hit on its end by another ball, the line
fragments: some balls fly off at the far end, some in the middle hardly move, and the
impacting ball rebounds backwards taking with it some nearby balls. Two laws for
the contact force are studied, both elastic and cohesionless: first, a simple law linear
in the compression and then the nonlinear 3

2 -power law of Hertz for touching spheres.
For the linear force and for a line of N balls being impacted by a ball at velocity
V , 1.5N1/3 balls fly off from the far end, the furthest at a velocity 1.4V N−1/6, the
others at similar but slower speeds, while the majority rebound, the impacting ball
at −0.13V and the nth from the end at a velocity −0.16V n−5/6 at large n. For the
nonlinear Hertz law, only two balls fly off from the far end with significant velocities,
at 0.986V and 0.149V , the majority hardly move, and a few rebound, the impacting
ball at −0.07V and the nth from the end at a velocity −0.084V e−0.55n.
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1. Introduction

We study the impact of one ball on a long line of balls. While this problem in New-
tonian dynamics is so simple to pose, its resolution has some unexpectedly complex
details. The fragmentation of larger structures by an impact will be quite compli-
cated.
The behaviour is well known and elementary for the shortest line of just two balls.

When ball 1 hits stationary ball 2, there is a brief interaction, during which ball 1
comes to rest and ball 2 takes on the initial velocity of ball 1. This outcome follows
directly from the conservation of momentum and energy for the system, assuming as
we do that the collision is purely elastic. For longer lines of balls, the two conserved
quantities are insufficient to determine the motion. Experience with an executive toy
called a ‘Newton’s cradle’, however, suggests that one ball impacting a stationary
line will produce one ball flying off the far end with a velocity equal to that of the
impacting ball, all the remaining balls becoming stationary. We shall see that this is
not exactly what happens.
From the perspective of granular materials, the problem tackled in this paper falls

in a gap between the recent research into rapid granular flows and that into quasi-
static flows. In studies of rapid granular flow, the duration of collisions between the
particles is assumed to be small compared with the interval between collisions, so
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that particles only interact in pairs. In studies of quasi-static flows, particles interact
with many others all the time, but the inertia of the particles is negligible. The results
of this paper depend both on inertia and on multiparticle interactions.
When the line of balls is long, it is natural to think of some effective continuum

approximation. Certain aspects, such as the propagation of an impulse wave along
the line, are described by a continuum model. Other aspects, however, depend on
the discreteness in the system.
Since completing the work for this paper, some related studies have been drawn

to our attention. Nesterenko (1983) has examined numerically and analytically the
propagation of nonlinear compression pulses along a line of particles. His long-wave
theory will be reviewed in § 5 b. Coste et al . (1997) have performed experiments on
such solitary waves propagating along a line of precompressed balls. Falcon et al .
(1998) have further studied a column of spheres colliding with a wall.

2. Governing equations

Consider the motion in one dimension of N equal particles of mass m and diameter
d. Let the displacements measured from their initial touching positions be xn(t),
n = 1, 2, . . . , N . Thus if the first particle n = 1 is the impacting particle at velocity
V , the initial conditions are

xn(0) = 0 for all n,
ẋ1(0) = V and ẋn(0) = 0 for n � 2.

The contact force is assumed to be purely elastic and non-cohesive. We consider
two cases, a law linear in the compression of the contact and a 3

2 -power law. Thus we
take the force on the nth particle due to its contact with the (n+1)th particle to be

−k(xn − xn+1)α+, with α = 1 or 3
2 .

The notation (·)+ means take the value of the bracket to be zero if the expression
inside is negative, so that the contact force cannot be in tension. The two contact
laws arise in Hertz contact theory. For the contact between two solid spheres, α = 3

2
and k = d1/2E/3(1− ν2), where E is the Young’s elastic modulus of the solid balls
and ν is the Poisson’s ratio. For the contact between two solid cylinders, α = 1 and
k = πLE/4(1− ν2), where L is the length of the cylinders. The contact force is also
linear, α = 1, for spherical shells so long as they do not dimple, with k = O(Eh2/d)
where h is the thickness of the shell.
Newton’s equation of motion for the particles can now be written down as

mẍn = k(xn−1 − xn)α+ − k(xn − xn+1)α+

for n = 2, . . . , N − 1; with omission of the first term for the first particle n = 1 and
omission of the last for n = N .
It is convenient for the numerical solution of these equations to non-dimensionalize

them. For the linear contact force α = 1, the time-scale is (m/k)1/2 and the displace-
ment scale is V (m/k)1/2. For the nonlinear contact force α = 3

2 , the time-scale is
(m2/k2V )1/5 and the displacement scale is (m2V 4/k2)1/5. The result of this non-
dimensionalization is to render all the coefficients in the governing equations equal
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Figure 1. The motion of the particles with a linear contact force. The displacements from the
initial positions as a function of time, xn(t), for all seven particles in a short line. For convenience
the displacement of the nth particle has been shifted vertically by n. The dashed line has slope
1, indicating a disturbance propagating down the line at a speed of unity.

to unity:

xn(0) = 0 and ẋ1(0) = 1, ẋn(0) = 0 for n � 2, (2.1)
ẍn = (xn−1 − xn)α+ − (xn − xn+1)α+. (2.2)

We see that the dynamics of the problem contains no non-dimensional group of
parameters. This has the advantage that there is a single solution to be found, and
the disadvantage that there is no small parameter to be exploited.
The equations were solved numerically using a fourth-order Runge–Kutta algo-

rithm. In fact the standard algorithm does not give fourth-order accuracy, because
the force law changes discontinuously in its derivative between extension and com-
pression. The small non-fourth-order errors only occur occasionally when one particle
loses contact with the line, and so the errors are hardly noticeable for short lines.
For long lines, however, serious irregularities arise in the small velocities of interest.
The numerical method was therefore modified so that if a particle was going to lose
contact during the next time-step, then the size of the time-step was adjusted so the
separation occurred exactly at the end of the time-step, the appropriate size of the
time-step being estimated to second order from a knowledge of xn, ẋn and ẍn at the
beginning of the time-step. To speed up the simulations of some very long lines of
particles, another trick was used that exploited the observation that at any one time
only a small number of the touching particles had any significant motion.

3. Results for the linear contact force

Figure 1 shows the displacements in time of all the particles in a short line, N = 7.
The initial slopes are zero except for the lowest curve, which is for the impacting
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Figure 2. The rebound velocity, −ẋn after separation, as a function of the position along the
line, n, for a line of 25 particles. The dashed line has a slope of − 3

4 .

first particle. The horizontal lines in the top left part of the figure imply that the
impact produces a disturbance which propagates down the line at a finite velocity.
The dashed line of slope unity indicates that the propagation velocity is constant
and of value 1, i.e. one particle per unit of dimensionless time. The dimensional
speed in real space is therefore the diameter of the particles divided by the scaling of
time, i.e. a velocity d

√
k/m. For the Hertz contact theory between solid cylindrical

particles with k = πLE/4(1−ν2) andm = 1
4ρπLd

2, this speed is effectively the speed
of sound inside the elastic particles. We therefore have a problem. While quasi-static
elasticity theory can still be used within the small contact region to calculate the
contact force, it is wrong to treat the particles as rigid masses. One can avoid this
hiccup by asking for the solid cylinders to be coated with a soft deformable material
that is active within the contact region, while keeping the mass made of a hard rigid
material. For the spherical shells, no such problem arises because the propagation
speed is less than the sound speed by a factor

√
h/d.

The expression on the right-hand side of the governing equation (2.2) where the
particles are touching, xn−1 − 2xn + xn+1, is of course the simplest finite-difference
approximation to the second-order partial derivative that would be used in a con-
tinuum approximation to the problem, ∂2x/∂n2, using a step size ∆n = 1. Thus,
where the particles are in contact, the governing equation is an approximation to the
wave equation with speed unity. The simplest approximation is, however, known to
introduce serious deviations compared with the true wave equation, so we expect the
behaviour of our system to be more complicated than just simple wave propagation.
Turning to the right-hand side of figure 1, we see that the curves eventually diverge

and the displacements become linear in time. Thus all the contacts are lost, and then
with no forces acting all the particles travel at constant non-intersecting velocities. At
the top of the right-hand side, we see two particles fly off the far end, the furthest at
a velocity just a little less than that of the impacting particle, the next a little slower.
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Figure 3. Propagation of an impulse wave. The velocity ẋn as a function of the position along
the line, n, at different times t = 13.5, 24.5, 35.2, and 45.7 (when the 10th, 20th, 30th and 40th
particles lose contact).

The unexpected feature of figure 1 is that five out of the seven particles eventually
rebound backwards. It is not so surprising that the impacting particle rebounds off
the line, if one imagines that the initial line of touching particles acts as a continuum
elastic body. But after the impacting particle has rebounded, this continuum body
repeatedly turns itself into the discrete mass of the next particle plus a continuum
body of the remainder, in order for the next particle to bounce off. Note that a pure
continuum approximation would not produce any recoil, and so the discreteness of
the inertia is important to this behaviour.
We examine further the phenomenon of so many particles rebounding in figure 2,

which is for a longer line of 25 particles. Note that 20 particles have a significant
rebound velocity, greater than 1% of the initial impact velocity. The dashed line
suggests a power-law dependence at large n, ẋn(∞) ∝ −n−3/4. The limited data
cannot give the index of the power law accurately, but the slope is clearly less than
−1

2 and greater than −1.
An index of less than −1

2 means that the contributions of the rebounding particles
to the kinetic energy, 1

2 ẋ
2
n ∝ n−3/2, converge on summation. In fact we find numer-

ically that only 4% of the impacting kinetic energy is diverted into the rebounding
particles. An index greater than −1 is, however, more problematic for the conserva-
tion of momentum. The contribution of the rebounding particles to the momentum,
ẋn ∝ −n−3/4, gives a diverging sum. This suggests that arbitrarily large values of
cancelling forward and rebounding momenta would be produced by a sufficiently
long line of particles.
While an accurate value of the index cannot be determined from figure 2, it is

clear that it is not an easy value to explain. One is used to strange powers occurring
in the large highly nonlinear systems that occur in condensed-matter physics. The
very simple problem addressed here is, however, nearly linear, and in linear problems
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Figure 4. The displacement wave. The displacements xn as a function of position along the
line, n, at different times t = 13.5, 24.5, 35.2, and 45.7.

one finds at worse something like the t−1/2 of diffusion. A theory for the exact value
of the index now becomes a central issue to be resolved.
To gain some insight into the behaviour of the fragmenting line of particles, we

plot in figure 3 the velocity of the particles as a function of their position along the
line at several different times. The strange times are when the 10th, 20th, 30th and
40th particles lose contact. A wave is seen to propagate down the line. Ahead of the
wave, the particles are at rest. After the wave has past, the particles take on their
rebound negative velocity, which for a given particle does not change in time, and
which has a decreasing value for particles further along the line. The form of the wave
is that of a single positive pulse, a form which remains roughly the same in time.
What clearly does change is the peak of the pulse and its width: the peak velocity
decreases slowly in time and the width of the region of activity increases slowly.
Figure 4 is a similar plot to figure 3, except for the displacements rather than the

velocities. The displacements are a little more difficult to understand. A wave can
still be discerned propagating into a region where the particles are at rest. After the
leading edge of the wave has past a particular particle, the particle takes on a negative
velocity and so its displacement can be seen to decrease between the different time
plots. As the wave propagates down the line, the peak displacement increases slowly,
and the width of the leading edge also increases slowly.

4. A theory for the linear contact force

(a) Energy-conserving wave

We begin to build a model of the behaviour for the linear contact force by imposing
the constraint on a slowly varying wave that it conserves energy. Suppose that the
displacement of the particles, xn(t), is described by a wave of constant form, which
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propagates at speed unity and has an amplitude a and wavelength λ that vary slowly
in time, i.e.

xn(t) = a(t)f
(
n− t
λ(t)

)
. (4.1)

Here f describes the form of the wave. Because of the unit velocity of propagation,
the slowly varying wavelength λ(t) is both the number of active particles at time t
and also the duration that one particle is active. The separation of time-scales into
fast propagation and slow changes in amplitude and wavelength is appropriate only
for long chains. The modelling here is thus an informal asymptotic analysis for long
chains using multiple time-scales.
The velocities of the particles are found by differentiating expression (4.1) with

respect to time. Treating the slowly varying amplitude and wavelength effectively as
constants, we only differentiate the propagation factor (n− t). Thus

ẋn ∼ −a
λ
f ′. (4.2)

The kinetic energy of the particles in the propagating wave is then

∑
1
2 ẋ

2
n =

∑ 1
2
a2

λ2 f
′2 ∝ a2

λ
,

where we have summed over the λ particles where f ′ is significantly different from
zero.
So long as there are many particles within the wavelength λ we may approximate

xn+1 − xn by (a/λ)f ′. The potential energy
∑ 1

2(xn+1 − xn)2 then also reduces to∑ 1
2(a

2/λ2)f ′2. Thus we have established an equipartition of energy for the slowly
varying propagating wave, a property confirmed by the numerical solutions.
We now require energy to be conserved by the propagating wave. It is found in

the numerical solutions for a long line of particles that only 3.78% of the impact
energy goes into the rebounding particles, leaving 96.2% in the forward propagating
wave. Conserving this forward propagating energy gives one relationship between the
wavelength λ(t) and the amplitude a(t), namely

λ ∝ a2. (4.3)

Substituting this result into the expression (4.2) for the velocity, we obtain

ẋn ∝ a−1. (4.4)

The above results are consistent with the general observations of the numerical
results: that as the wave propagates the wavelength and the peak displacement
change slowly in one direction (increase) the peak velocity changes slowly in the
other direction (decreases).
A more exacting test of our modelling is to replot the travelling wave in figure 3,

dividing the velocity ẋn by a−1 to test result (4.4) and dividing the distance along the
wave n by a2 to test result (4.3). We take a to be the displacement of the last particle
to lose contact, say with n = n1 so a = xn1 , which is approximately the particle with
the largest displacement at that instant. This replot is given in figure 5, where in
addition the waves have been shifted to the left through (n1 + 0.25)/a2. The small
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Figure 5. The self-similar impulse wave propagating along the line of particles. The scaled
velocity as a function of the scaled position, where n1 is the last particle not touching others
and a = xn1 . The different symbols are different times: �, t = 13.5; +, t = 24.5; �, t = 35.2; ×,
t = 45.7. The continuous curved is the solution to equation (4.9).

correction of 0.25 will be explained in § 4 e. Figure 5 demonstrates that there is a
universal self-similar wave of impulse propagating along the line of particles. Energy
conservation has given one relationship between the slowly varying amplitude and
wavelength. A further result for either is now needed to complete our modelling.

(b) Spreading wave

We return to the idea that the right-hand side of the governing equation (2.2),
where the particles are touching, xn+1−2xn+xn−1, is an approximation to ∂2x/∂n2,
and more particularly not a good approximation. It is well known that if one uses
this simple finite-difference approximation for the double space derivative in the
wave equation, then a solitary wave will erroneously spread out. This is precisely
the phenomenon that we wish to characterize. One can analyse this spreading by
making a Taylor-series expansion of x(n ± 1) = xn±1 around x(n) = xn, and now
keeping more than the leading-order term. Thus one obtains the first correction to
the continuum approximation of the simple wave equation:

∂2x

∂t2
=
∂2x

∂n2 +
1
12
∂4x

∂n4 . (4.5)

The second term on the right-hand side represents the numerical diffusion, which
leads to the spreading of the wave.
To solve equation (4.5) for the spreading wave that propagates to the right, we

make a coordinate transformation to a frame moving with the propagation velocity
of 1. Thus with

ν = n− t
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equation (4.5) becomes

∂2x

∂t2
− 2 ∂

2x

∂t∂ν
= 1

12
∂4x

∂ν4 .

At late times, the first term on the left-hand side becomes negligible, leaving the
other two terms to balance. Such a balance is possible only if the scale of the t and ν
variations is related by tλ = λ4. Thus we find the slow variation in the wavelength:

λ(t) ∝ t1/3. (4.6)

Combining this with result (4.3), we have the slow variation in the amplitude:

a(t) ∝ t1/6. (4.7)

An alternative derivation of these two results can be obtained by making a steepest-
descents analysis of a Fourier-transformation solution of governing equation (2.2)
assuming that the particles all remain in contact.

(c) Rebound velocity

With the above scaling results for the impulse wave we can now predict the vari-
ation of the rebound velocity. The forward momentum in the propagating wave is

P =
∑

ẋn>0

ẋn =
∑

−f ′>0

−a
λ
f ′.

The number of particles with significant positive velocity is proportional to the wave-
length λ. Thus

P ∝ a

λ
λ ∝ t1/6,

using (4.7). The forward momentum in the propagating impulse wave thus increases
slowly in time. As the total momentum is conserved, the forward momentum can
only increase by regularly ejecting particles moving backwards, as in the propulsion
of a rocket. The rate of ejection is equal to the rate that the wave propagates past
particles, i.e. the propagation velocity 1. Multiplying this rate of ejection by the
velocity of the ejected particles ẋn(∞), we find the rate of change in time of the
forward momentum:

1× ẋn(∞) = −Ṗ ∝ −t−5/6.

Finally, the time at which the nth particle is ejected is equal to n at large n, on
account of the unit speed of propagation. Hence

ẋn(∞) ∝ −n−5/6. (4.8)

To test result (4.8) we have plotted in figure 6 the rebound velocity ẋn(∞) divided
by n−5/6 as a function of 1/n. We see that ẋn(∞)n5/6 tends to a constant −0.158 as
n → ∞. In § 3 it was suggested that perhaps ẋn(∞) ∝ n−3/4. That suggestion was
based on the limited data of a short line of 25 particles. A second plot in figure 6 of
ẋn(∞)n3/4 is seen to tend to zero rather than a non-zero constant. This demonstrates
that n−3/4 is not, after all, correct.
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Figure 6. The rebound velocity ẋn(∞) divided by n−5/6 (continuous curve) and by n−3/4

(broken curve) as a function of 1/n, for a line of 200 particles.

(d) Similarity solution

We now derive the analytical form of the universal impulse wave of figure 5. We
seek a similarity solution to equation (4.5) for the form of the wave propagating at
speed 1 with a wavelength increasing like t1/3 and an amplitude increasing like t1/6.
Thus we pose

xn(t) = t1/6f(ξ) with ξ =
n− t
t1/3 .

Substituting this into equation (4.5), we obtain

f ′′′′ − 8ξf ′′ − 4f ′ = 0, (4.9)

ignoring a term O(t−1) smaller at large times.
At large positive ξ, the similarity equation (4.9) has four independent solutions,

1, ξ1/2, exp(±4
3

√
2ξ3/2)ξ−1, the form of the latter two being obtained from a WKB

analysis. The requirement that f decays ahead of the wave is therefore equivalent
to imposing three boundary conditions. A fourth condition comes from the normal-
ization that the energy (kinetic plus potential) in the wave

∫
f ′2 dξ is 96.2% of the

impact kinetic energy.
Equation (4.9) was integrated numerically,† shooting backwards from a large

ξ∞ = 3, starting on the one decaying solution. The integration was terminated at
ξ0 = −1.85 where f(ξ) reaches a maximum. The normalization condition was then
applied. This solution of equation (4.9) for the self-similar propagating impulse wave
is compared in figure 5 with the earlier simulations of a line of 50 particles. To
make the comparison, the velocity −f ′ is multiplied by the maximum displacement

† After equation (4.9) had been solved numerically, A. M. J. Davis observed that the solution was
related to the Airy function, as f(ξ) = k

∫ ∞
ξ Ai2(−21/3y) dy (see also Abramowitz & Stegun § 10.4.57).
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f(ξ0) = 0.956, and the position along the wave is similarly shifted and rescaled as
(ξ− ξ0)/f2(ξ0). The prediction of the wave is good. It can be seen on the figure that
at ξ = ξ0 both f ′′ and f ′ vanish.
The solution of equation (4.9) also gives a prediction for the magnitude of the

rebound velocities. The positive momentum in the self-similar impulse wave is

P = t1/6
∫ ∞

ξ0

−f ′ dξ = f(ξ0)t1/6.

Differentiating with respect to time, and assuming that the particles rebound regu-
larly at integer times, we obtain

ẋn(∞) = −1
6f(ξ0)n

−5/6.

The value −1
6f(ξ0) = −0.159 should be compared with that of −0.158 obtained in

figure 6 from the simulations of a line of 200 particles.

(e) The 0.25 shift

The shift of 0.25 in n− n1 used in figure 5 becomes a small correction as t → ∞.
However, at t = 50, the appropriate measure t1/3 is not very large, and so the ‘small’
correction makes a useful improvement.
The similarity solution in § 4 d is the leading-order term of an asymptotic solution

for large times. It has velocities in the propagating impulse wave of O(t−1/6). On
the other hand, the rebound velocity of particles losing contact with the line is
O(t−5/6). Thus there must be an O(t−2/3) correction to the leading-order term. We
will find this correction in the neighbourhood of the rear of the impulse wave where
the particles are losing contact.
Now near ξ = ξ0, equation (4.9), along with f ′(ξ0) = f ′′(ξ0) = 0, gives the

similarity function

f(ξ) ∼ f(ξ0)(1− 2
3(ξ − ξ0)3).

Note that exactly at ξ = ξ0, the leading-order approximation to the velocity, −t−1/6

f ′(ξ), vanishes.
To the leading-order approximation we add in the neighbourhood of ξ = ξ0 a

correction term, t−2/3 smaller, with a non-zero velocity, i.e. we consider

xn(t) ∼ t1/6f(ξ0)(1− 2
3(ξ − ξ)3 + · · · ) + t−1/2f(ξ0)β(ξ − ξ0) + · · · ,

with the constant β to be determined. It is convenient to include the factor f(ξ0)
with β.
Let the value of n− t be δ when particle n loses contact. This quantity is the shift

that we seek. We determine the two unknowns δ and β by examining the contact
force and the velocity of particle n as it loses contact.
The condition that particle n is losing contact is that the compression between it

and the next particle vanishes, i.e. xn(t) = xn+1(t). This gives at O(t−5/6)

2δ2 + 2δ + 2
3 − β = 0.

The condition that particle n loses contact with the rebound velocity −1
6f(ξ0)t

−5/6

gives at O(t−5/6)

2δ2 − β = −1
6 .

Hence we find the shift used in figure 5 as δ = 1
4 , along with the coefficient β =

7
24 .
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Figure 7. The particles flying off the end of a line of N particles. The scaled final velocity of a
particle near the end as a function of the scaled position from the end for different length lines;
�, N = 100; +, N = 200; �, N = 400; ×, N = 800.

(f ) Finite line

The above analysis has been of a self-similar impulse wave propagating down
effectively an infinite line of particles. If the line is long but finite, containing N
particles, then the wave will reach the end at time t = N , at which time O(N1/3)
particles in the wave will have velocities O(N−1/6). One would therefore expect
O(N1/3) particles to fly off the end with such velocities. Figure 7 confirms this by
plotting the velocities at which the particles fly off the end divided by N−1/6 as a
function of their position from the end divided by N1/3. The results for four long
lines, with N = 100, 200, 400 and 800, collapse onto a single curve. It is seen that
1.5N1/3 particles have a significant velocity and the fastest at the end has a velocity
1.397N−1/6. The latter coefficient is twice the peak value 0.703 of −f ′(ξ) in figure 5.
This doubling is a result of a reflected wave of the same amplitude being emitted
from the free end, ∂x/∂n = 0, while the end particle remains in contact, which it
does until the peak velocity reaches it. Afterwards, the end particle detaches and an
analysis of the reflected wave becomes more difficult.

5. The 3
2-power-law contact force

(a) Results for the fragmentation of a line

We now change from the linear contact force to the 3
2 -power law corresponding

to Hertz contacts between solid spheres. We shall see that the behaviour is quite
different from the case of a linear contact force. Figure 8 shows at different times
the displacements of the particles as a function of their position. We first observe
that a displacement wave propagates down the line at a constant velocity of 0.841
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Figure 8. The displacement wave for the 3
2 -power-law contact force. The displacements xn as

a function of position along the line, n, at different times t = 5, 10, 15, . . . . The saturation
displacement is 1.354.

in non-dimensional units. The dimensional speed is 0.841 of a particle diameter per
unit time-scale, i.e. a speed of

0.841d
(
k2V

m2

)1/5

= 0.702
[

E2V

ρ2(1− ν2)2

]1/5

,

using k = d1/2E/3(1 − ν2) and m = 1
6ρπd

3. The speed of propagation is therefore
slower than the speed of sound c by a small factor (V/c)1/5. Hence it is possible
to use quasi-static elasticity theory to calculate the contact force and to treat the
masses as rigid.
In contrast to the displacement wave in figure 4 for the linear contact force, where

the maximum displacement increases as the wave propagates along the line, the
displacement wave saturates for the 3

2 -power law after a period of adjustment to t =
15. The saturated displacement is 1.354 in units of (m2V 4/k2)1/5 = O(d(V/c)4/5).
This saturation corresponds to a balance between the spreading of the wave that
was found previously for the linear contact force and a new sharpening of the wave
associated with the nonlinearity. This balance also gives a short, fixed, wavelength
of about four active particles. Nesterenko’s (1983) long-wavelength analysis of this
solitary wave will be reviewed in § 5 b.
As the particles pass through the wavefront, they have a maximum velocity of 0.682

in units of V , and experience a maximum force of 0.640 in units of k2/5 m3/5V 6/5.
The sum of the momenta of the particles in the solitary wave is 1.138 in units of mV
with total energy 0.497 in units of mV 2. While the total energy is constant, there is
a small exchange of kinetic and potential energies as individual particles enter and
leave the wavefront. Being a nonlinear system, the average values of the kinetic and
potential energies are not equal, but are 0.276 and 0.221, respectively. The kinetic
energy fluctuates between 0.272 and 0.282.
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Figure 9. The rebound velocities for the 3
2 -power-law contact force, as a function of the

position along the line, n. The dashed line is 0.084e−0.55n.

Looking to the left-hand end of figure 8, we see that few particles rebound with
the impacting particle. The majority of the particles are displaced through 1.354 and
then effectively come to rest. Figure 9 shows for a long line that just three particles
rebound with a velocity greater than 1% of the impact velocity. The impacting
particle bounces back at −0.0711, the next at −0.0303 and the third at −0.0158.
Particles 2–15 seem to rebound at a velocity given by ẋn(∞) = −0.084e−0.55n.
This exponential law suggests a quasi-linearized approach to the nonlinear balance
between the wave spreading and sharpening. The kinetic energy in the rebounding
particles is reduced for the 3

2 -power-law contact force to just 0.63% of the impact
energy. The exponential decay in the rebound velocities means that the total rebound
momentum is finite at −0.138, instead of the N1/6 growth for the linear contact force.
When the propagating impulse wave reaches the end of the line, two particles are

thrown forward at significant velocities, the furthest at 0.986 and the next at 0.146.
The third particle has a velocity of about 0.003. The line needs to contain at least 10
particles to attain these values. A line of five particles produces eventual velocities
−0.071, −0.030, −0.015, 0.127 and 0.989.

(b) Nesterenko’s theory for the solitary wave

From an interest in the absorption of shocks by granular and porous media,
Nesterenko (1983) studied the propagation of a compression wave along a line of
solid spheres. His governing equations are identical to those used in this paper. He
found solitary waves propagating in some numerical solutions. This led him to con-
struct a theory for the solitary waves based on a long-wavelength approximation.
The approximation is the same that we used in § 4 b, of including a further term in
the Taylor series of xn+1 around xn.

Proc. R. Soc. Lond. A (1999)



The fragmentation of a line of balls by an impact 3215

While the particles are in contact, xn > xn+1, the nonlinear force on particle n
from particle (n+ 1) is approximated by the first two terms in a Taylor series

−(xn − xn+1)3/2 ∼ −
(

−∂x
∂n

− 1
24
∂3x

∂n3

)3/2

∼ −
(

−∂x
∂n

)3/2

+ 1
16

(
−∂x
∂n

)1/2
∂3x

∂n3 ,

(5.1)

where these partial derivatives are evaluated at n+ 1
2 . Adding the force from particle

(n − 1), we obtain the form of the governing equation (2.2) in the long-wavelength
approximation:

∂2x

∂t2
=
∂

∂n

[
−

(
−∂x
∂n

)3/2

+ 1
16

(
−∂x
∂n

)1/2
∂3x

∂n3

]
+ 1

24
∂3

∂n3

[
−

(
−∂x
∂n

)3/2]
,

where the partial derivatives are now all evaluated at n. A term, which is the third-
order derivative of a third-order derivative, has been discarded as a higher-order
correction.
Amazingly, Nesterenko presented a simple solution to this nonlinear equation in

the form
∂x

∂n
= −A sin4

√
2
5(n− ct),

with velocity of propagation c related to the amplitude A by

c2 = 4
5A

1/2.

Because the right-hand side of the equation vanishes cubically when
√
2/5(n − ct)

approaches a multiple of π, one can construct a solitary wave from one period of
the above solution in 0 �

√
2/5(n− ct) � π and taking ∂x/∂n to vanish identically

outside this range.
The net displacement of particles during the passage of the above solitary wave is

(3π
√
5/(8

√
2))A. Setting this equal to the 1.354 displacement found in our numerical

calculations, we obtain an amplitude A = 0.727. With this value of A, Nesterenko’s
theory predicts a velocity of propagation c = (2/

√
5)A1/4 = 0.826, which is close to

our numerical result of 0.841. The maximum velocity of a particle is predicted to be
Ac = 0.600, which is 12% lower than our numerical result of 0.682. The maximum
of the force, using expression (5.1), is predicted to be 9

10A
3/2 = 0.558, which is

similarly 13% lower than our numerical result of 0.640. The sum of the momenta of
the particles in the solitary wave is predicted to be (3π

√
5/(8

√
2))Ac = 1.118, which

is close to our numerical result of 1.138. The kinetic energy of the particles and the
potential energy of the springs,∫

2
5

(
∂x

∂n

)5/2

+ 1
24

(
∂x

∂n

)3/2
∂3x

∂n3

to be consistent with the expression for the force (5.1), are predicted to be

35π
√
2

128
√
5
A5/2 = 0.245 and

28π
√
2

128
√
5
A5/2 = 0.196,

respectively, which are 11% lower than our numerical results of 0.276 and 0.221 for
the averages of these fluctuating quantities.
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Coste et al . (1977) observed solitary waves propagating along a line of touching
solid spheres. They found good agreement with Nesterenko’s theory for the velocity
of propagation as a function of the maximum force exerted between two particles,
and less good agreement for the variations of the force with time. It should be noted
that they erroneously identified the force with the leading approximation(

−∂x
∂n

)3/2

= A3/2 sin6
√

2
5(n− ct),

rather than the more accurate approximation (5.1), which is used in the derivation of
the solitary-wave equation. Expression (5.1) gives a force 3

5A
3/2(sin6+1

2 sin
4). This

has a maximum of 0.9A3/2, which alters the prediction for the propagation velocity
by less than 2%. The more accurate expression for the force also decays to zero
slightly slower, and this may help to explain the reported poor agreement of the
variation of the force with time.
An existence theorem for solitary waves in a discrete chain has been given by

Friesecke & Wattis (1994).

(c) Impact by several particles

So far we have considered the impact by a single particle on a long line of particles
at rest. In this section we consider the impact by several particles. Before the impact,
the moving particles have the same velocity and they are touching. Thus we change
the initial conditions (2.1) for K-impacting particles to

xn(0) = 0 and ẋn(0) =

{
1, if i = 1, . . . ,K,
0, if i = K + 1, . . . , N.

Figure 10 shows the result of the line of touching particles being impacted simul-
taneously by two particles. Plotted is the displacement as a function of position
along the line at different times. It can be seen that two solitary waves emerge. The
faster wave has a saturated displacement of 1.621 and is propagating at a velocity
0.880. The slower wave has an additional displacement of 0.965 and is propagating
at 0.773. These two waves are scaled copies of the nonlinear wave in figure 8. They
correspond separately to the impact of a single particle at velocities V = 1.252 and
0.655, respectively, with the (additional) displacement proportional to V 4/5 and the
propagation velocity proportional to V 1/5.
As each of the two solitary waves reaches the end of the line, two particles fly

forward at significant velocities; at 1.234 and 0.186 from the first and at 0.647 and
0.089 from the second. There follow several binary collisions, e.g. when the faster
third particle catches up with the slower second particle, which eventually result in
the particles being ordered by decreasing velocity. Note that the pseudo-impacting
velocities 1.252 and 0.655 would separately produce particles flying off at signifi-
cant velocities, at 1.234 and 0.186 and at 0.646 and 0.097. Clearly, there is a small
interaction between the waves on the finite length of N = 50 used in figure 10.
Figure 11 shows the result of an impact by three particles. Now three solitary waves

emerge, again scaled copies of the wave in figure 8. The three waves have (additional)
displacements of 1.727, 1.316 and 0.745, corresponding to single-particle impacts at
velocities 1.355, 0.965 and 0.474. The solitary waves propagate at velocities 0.894,
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Figure 10. Impact by two particles. The displacements xn as a function of position along the
line, n, at different times, t = 5, 10, 15, . . . . All the particles are touching at the time of impact,
the first two have the same velocity, 1, while the others are at rest.

0.835 and 0.724. As each waves reaches the end of the line, two particles fly forward;
at 1.336 and 0.201 from the first, at 0.953 and 0.132 from the second, and at 0.468
and 0.056 from the third. The pseudo-impacting velocities 1.355, 0.965 and 0.474
would separately produce particles flying off at significant velocities 1.336 and 0.199,
0.951 and 0.142, and 0.467 and 0.070, i.e. there is some interaction between the waves
when N = 100.
Further numerical calculations with four, five and six impacting particles found

the same behaviour of the production of a progression of solitary waves, one wave for
each impacting particle. Longer lines are needed for the different solitary waves to
separate clearly. The distribution of the amplitudes of these solitary waves, and its
dependence on the number of impacting particles, now becomes a subject of interest.
At this stage, we have no theoretical ideas for this distribution. The amplitude of
the first and fastest solitary wave increases weakly with the number of impacting
particles, e.g. the net displacement by the fastest wave is 1.354 for one impacting
particle, and increases to 1.621 for two, to 1.727 for three and to 1.775 for four.
As each solitary wave ejects two particles when it arrives at the far end, one can
examine the distribution of the amplitudes by considering the final velocities of the
particles. Figure 12 plots the final velocities of the particles ẋn(∞) as a function of
their position from the far end N−n. It was found that the results came together into
a master curve by adding a shift of 1

2 and by dividing by the number K of impacting
particles, i.e. by plotting as a function of (N − n+ 1

2)/K. The curve seems to have
an exponential decay by one decade for the second particles from each solitary wave,
i.e. those with n = N −K to n = N − 2K.
For the Hertz 3

2 -power-law contact force, few particles rebound with one impacting
particle. When more particles impact, more rebound, roughly half the number that
impact. Figure 13 gives the rebound velocity as a function n of the position from
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Figure 11. Impact by three particles. The displacements xn as a function of position along the
line, n, at different times, t = 10, 20, 30, . . . .
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Figure 12. The velocities that particles fly off the far end, as a function of the position along
the line, n, with K impacting particles: �, K = 3; +, K = 6; �, K = 9; ×, K = 12.

the impact end. Again the results seem to tend to a limit curve when the position
is divided by the number of impacting particles. The approach to the limit curve is,
however, slow, requiring many more impacting particles to demonstrate the trend.
In this section we have considered several particles impacting a long line. Falcon

et al . (1998) have performed experiments in which a column of several particles
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Figure 13. The rebound velocities as a function of the position along the line, n, with K
impacting particles: �, K = 10; +, K = 20; �, K = 30; ×, K = 40; �, K = 60; ∗, K = 80.

Table 1. The final velocities of a line of five spheres

(The different columns are for different numbers of impacting spheres.)

n K = 1 K = 2 K = 3 K = 4

1 −0.0711 −0.1126 −0.1397 0.0112
2 −0.0303 −0.0420 0.1996 0.8729
3 −0.0145 0.2145 0.7855 1.015
4 0.1270 0.8004 1.042 1.030
5 0.9888 1.140 1.113 1.071

bounces off various types of wall. In the case of a hard wall which deforms less than
the particles, their experiments correspond to K particles impacting on an equal
number of stationary particles, i.e. N = 2K. We have not studied this case.

(d) Newton’s cradle

The executive toy called a ‘Newton’s cradle’ normally consists of five solid spheres,
each suspended from two parallel rails by a pair of light strings. Using two strings
confines all of the spheres to move in a single plane, and for swings of small amplitude
confines them to a single line. The spheres should be touching in the rest position.
If one sphere is moved to the side and then released so it impacts the four other
stationary spheres, then one appears to see the sphere at the far end flying off,
leaving the remainder stationary. This paper has argued that this is not quite what
happens. For a line of five spheres, of the ‘stationary remainder’ only the second from
the far end, sphere n = 4, has a significant velocity of 0.13. This can in fact be seen
by concentrating attention on the second from the far end, comparing its position
with a nearby fixed mark. Alternatively, one can catch the far sphere in midflight,
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and see that the other spheres are not still. That the spheres do separate on impact
was noted earlier by Herrmann & Seitz (1982).
A further ‘common experience’ with Newton’s cradle is that, if two spheres are

moved to the side so that when released they impact together on the other stationary
spheres, then two spheres fly off together from the far end. Similarly, three and four
spheres impacting simultaneously produce, respectively, three and four spheres flying
off together. This ‘common experience’ is only an approximation to the results of a
numerical calculation presented in table 1 for the final velocities of a line of five
spheres with different numbers of impacting spheres. Knowing what to look for, it is
quite easy to observe when two spheres impact five that the central sphere does move
and that the two that fly off do so at slightly different velocities and so separate.
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