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Continuing from the work of Hinch & Kelmanson (2003 Proc. R. Soc. Lond. A459,
1193–1213), the lubrication approximation is used to investigate the drift and decay
of free-surface perturbations in the viscous flow exterior to a circular cylinder rotating
about its horizontal axis in a vertical gravitational field. Non-dimensional parameters
corresponding to gravity, γ = ρgh̄2/3ωµa, and surface tension, α = σh̄3/3ωµa4, are
used to characterize the flow, where ω and a are respectively the angular velocity and
radius of the cylinder, µ, ρ, σ and h̄ are respectively the kinematic viscosity, density,
surface tension and mean film thickness of the fluid, and g is the acceleration due
to gravity. Within the parameter hierarchy γ2 � α � γ � 1, Hinch & Kelmanson
(2003) discovered a complex interaction between rotation, gravity and surface ten-
sion, leading to a four-time-scale cascade over which drift and decay of free-surface
perturbations occur. However, when α = o(γ2), the low-harmonic asymptotics of
Hinch & Kelmanson (2003) cannot represent the shock-like solutions manifest in
numerical simulations.

Accordingly, the case of vanishingly small surface tension is investigated herein,
and the resulting shock-like solutions are analysed. When the surface tension is identi-
cally zero, the resulting Hamiltonian problem may be solved explicitly via the method
of characteristics, action-angle variables and strained-coordinate asymptotic expan-
sions, which reveal a shock-formation time-scale of ω2µ3a3/ρ3g3h̄6. The strained
(fast) time-scale τ , which can be deduced a priori via action-angle variables, is con-
sistent with that obtained via the independent asymptotic approach of Hinch &
Kelmanson (2003), and the (slow) shock time-scale T = 30γ3t is derived and con-
firmed via spectral numerical integrations of the full lubrication approximation with
vanishingly small, non-zero surface tension.

With β ≡ α/30γ3 � 1, a shock thickness of order O(β1/3) is discovered, and the
leading-order transient in the surface elevation is found to satisfy a Kuramoto–
Sivashinsky evolution equation, which is solved via multiple scales for the extreme
cases β � 1 and β � 1, and numerically otherwise. A universal scaling of the
transient results is discovered which gives good agreement with the quasi-steady
shock solution, even when the transient shock thickens in response to its decreasing
amplitude.
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Depending upon critical values of α/γ2, β and γ, the transient solution is discov-
ered to decay in one of only four possible sequences comprising one or more of T−1,
T−1/2 and exp(−81αγ2t). Physical data indicate that all four decay sequences are
observable in practice.

Keywords: viscous fluid mechanics; free-surface flow; lubrication approximation;
asymptotic expansions; computer algebra

1. Introduction

Hinch & Kelmanson (2003) use multiple-time-scale asymptotics to consider the well-
studied problem (first considered by Moffatt (1977) and Pukhnachev (1977)) of the
time-dependent evolution of the free surface of a thin film of viscous fluid adhering to
the exterior of a rotating horizontal circular cylinder in a vertical gravitational field.
Non-dimensional parameters corresponding to gravity and surface tension, respec-
tively, are used to characterize the flow,

γ =
ρgh̄2

3ωµa
and α =

σh̄3

3ωµa4 , (1.1)

in which ω and a are respectively the angular velocity and radius of the cylinder, µ,
ρ, σ and h̄ are respectively the kinematic viscosity, density, surface tension and mean
film thickness of the fluid, and g is the acceleration due to gravity. The numerical fac-
tors in (1.1) absorb those in the free-surface-elevation equation given by Pukhnachev
(1977).

Specifically, Hinch & Kelmanson (2003) consider the non-dimensional evolution
equation (representing mass conservation) and initial condition

∂th + ∂θh − ∂θ(γh3 cos θ − αh3∂θ(∂2
θh + h)) = 0, h(θ, 0) = 1, (1.2)

for the film thickness h(θ, t) exterior to a rotating cylinder, where γ and α are given
by (1.1). The initial condition represents a uniform initial film thickness, the film
height h having been non-dimensionalized with respect to the mean film thickness
h̄, and time t with respect to ω−1. Moreover, the parameters in (1.1) are such that
the decay from the initial uniform state is to a final, nearly uniform film.

Within the hierarchy considered by Hinch & Kelmanson (2003),

γ2 � α � γ � 1, (1.3)

the existence of four distinct time-scales over which different physical mechanisms
act is deduced: first, there is the fast process of rotating with the cylinder on the
(referential) time-scale 1; second, surface tension squeezes the free surface to a cylin-
drical shape on the time-scale α−1; after this time, disturbances to the steady state
take the form of an eccentricity of the cylindrical shape of the free surface which
drifts in phase on the third time-scale of γ−2 and decays exponentially on the fourth
and slowest time-scale of α−1γ−2—specifically, at the rate 81αγ2. These asymptotic
findings are all corroborated by Hinch & Kelmanson (2003) via numerical evidence,
both for the hierarchy (1.3) and for α as small as O(γ2).
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Figure 1. Breakdown of low-harmonic asymptotics when α = o(γ2) (γ = 5.32 × 10−2 and
α = 4.8 × 10−5 � γ3.39). Free-surface elevation h(θ, t) plotted at station θ = 0. Four-term
two-time-scale expansion ( ) compared with spectral results ( ). (a) 0 � t � 10,
(b) 90 � t � 100, (c) 240 � t � 250, (d) 990 � t � 1000. Spectral results obtained with: 128
modes; adaptive time-stepping; absolute and relative error tolerances respectively 10−10 and
10−7; mass conserved to machine accuracy. Fast Fourier transforms performed using Fftw of
Frigo & Johnson (1998) (see http://www.fftw.org).

If, however, the hierarchy (1.3) is violated, i.e. α = o(γ2), Hinch & Kelman-
son (2003) demonstrate, but do not analyse, the breakdown of their asymptotics.
Figure 1 shows results for the case α � γ3.39; the numerical results obtained via
a mass-conserving spectral method differ appreciably from the asymptotic results
as t increases. In particular, figure 1c reveals that shock-like solutions form (for
γ = 5.32 × 10−2 and α = 4.8 × 10−5) at approximately t = 250, and figure 1d reveals
that the amplitude decay is far greater than the expected exp(−81αγ2t) predicted
by the large-time asymptotics. This observation is addressed in some detail in § 4.

In § 2, analysis is undertaken of the limiting theoretical case of zero surface tension,
which naturally leads to post-shock overturning waves. Although this is not phys-
ically possible in the thin-film limit because of the dissipative and diffusive terms
in the lubrication approximation for the film height, analysis of this case is useful
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in obtaining theoretical pre-shock information and, in particular, an estimate of the
shock time itself. In the absence of surface tension, the hyperbolic first-order lubri-
cation approximation can be analysed in terms of a Hamiltonian which admits an
action-angle formulation, whose essential role is in determining the fast-time drift of
the system a priori to an arbitrarily high order. This is in stark contrast to the analy-
sis of Hinch & Kelmanson (2003), in which higher-order corrections to the drift are
obtained at the expense of considerable algebraic manipulation as the asymptotic-
series solution develops through orders of γ. With the drift rate known, the problem
is solved using strained-coordinate asymptotic expansions, and a theoretical estimate
is obtained for the shock time; this estimate dictates the slow time-scale over which
shock formation occurs. All results are verified by convincing agreement with the
results obtained independently via a spectral numerical method.

In § 3 the drift rate and shock time-scale T of § 2 admit a two-time-scale asymptotic
analysis of the lubrication approximation. The parameter β = α/30γ3, a measure
of the balance between surface tension and gravity-induced drift leading to shock
formation, is introduced. Assuming β to be O(1), equivalently α = O(γ3), multiple-
time-scale analysis reveals that the shock evolution is governed by a Kuramoto–
Sivashinsky equation (KSE).

In § 4 the case when β � 1 is discussed. Then, an implicit solution of the KSE is
possible, thereby providing an insight into the hierarchy of the relative magnitude
of terms in the KSE. Non-uniformity is shown to arise in the asymptotic analysis
of § 3 when α = O(γ6); then, the shock structure and evolution are no longer dictated
by the KSE. Hence, by β � 1 is meant O(γ3) � α � O(γ6). Despite this restrictive
relation between α and γ, the limit β → 0 is admissible and a two-time-scale analysis
of the KSE reveals that disturbances initially decay as T−1, whereafter a changeover
to a T−1/2 decay is observed at later times; such asymptotic analysis is corroborated
by numerical integrations of the KSE.

In § 5 the case β � 1, when no shocks form, is considered. A large-β asymptotic
analysis reveals that disturbance amplitudes decay as T−1/2, and the common T−1/2

decay of the large-T–small-β and large-T–large-β regimes is explained. A small-
time comparison of the precise form of the T−1/2 decay rate with the exponential
decay rate observed by Hinch & Kelmanson (2003) suggests a transition region when
α ∼ γ2/2, an interesting consequence of which is the restriction γ � 1/60. A heuristic
theory is proposed to account for the transition, and the theory verified by numerical
solution of the governing equation (1.2).

In § 6, the quasi-steady shock structure is analysed when β � 1; it is deduced
that the shock thickness is (2β/A)1/3, where A is the shock amplitude. Numerically
determined transient solutions of the full governing thin-film equation are rescaled
and compared with the quasi-steady shock structure. The rescaling permits such a
comparison to be made irrespective of (small) α and γ, and the comparison reveals
good universal agreement within the main rise of the shock, any discrepancies occur-
ring away from the shock due to the large-time spreading of the numerical solution
as its amplitude decays.

Finally, in § 7, the findings of the earlier sections are reconsidered to show that
only four possible sequences of decay transition, for varying α and γ, are possible. By
considering physical data for five different fluids, examples are found which indicate
that all four discovered decay sequences are indeed observable in practice.
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2. Vanishing surface tension: shock formation

Since solutions of (1.2) as α → 0 are required, the limiting case α ≡ 0 is first
considered. Then, (1.2) may be solved by the method of characteristics from the
coupled ordinary differential equations

dθ

dt
= 1 − 3γh2 cos θ, θ(0) = θ0, (2.1)

dh

dt
= −γh3 sin θ, h(0) = 1. (2.2)

Before undertaking the solution of the characteristic equations, note that the system
(2.1) and (2.2) admits the Hamiltonian

H(θ, h) ≡ h − γh3 cos θ, (2.3)

so that action-angle variables (J, φ) are readily determined (via the Maple algebraic
manipulator) to be

J = H + 3
2γ2H5 + 165

8 γ4H9 + O(γ6H13), (2.4)

φ = θ + 3γJ2 sin θ + 15
4 γ2J4 sin 2θ + γ3J6(63

2 sin θ + 7 sin 3θ) + O(γ4J8). (2.5)

Further, the angular velocity (∂H/∂J) is found to be

Ω = 1 − 15
2 γ2J4 − 675

8 γ4J8 + O(γ6J12), (2.6)

and, noting from (2.3) that H(θ(0), h(0)) = 1 − γ cos θ0, (2.4) and (2.6) give the
angular velocity explicitly as

Ω(θ0) = 1 − 15
2 γ2 + 30γ3 cos θ0 − (1215

8 + 45
2 cos 2θ0)γ4 + O(γ5). (2.7)

Thus, the mean angular velocity taken over all the initial data θ0 ∈ [0, 2π) is

Ω0 = 1 − 15
2 γ2 − 1215

8 γ4 + O(γ6). (2.8)

The action-angle determination of Ω(θ0) thus provides us with a means of averting
secularity in the solutions for θ and h to any pre-specified order; without this a
priori knowledge, the expansion (2.7) would have to be constructed laboriously,
as information was gleaned term-by-term from the increasingly higher-order (and
increasingly more complicated) terms in multiple-scale expansions for θ(t, γ2t) and
h(t, γ2t), as per Hinch & Kelmanson (2003). With the angular velocity determined,
the coupled characteristic equations (2.1) and (2.2) are rescaled with respect to the
drift time-scale τ = Ω(θ0)t and then solved interactively by expanding θ(θ0, τ) and
h(θ0, τ) as asymptotic series in powers of γ. We find

θ(θ0, τ) = θ0 + τ − 3(s11 − s10)γ + 3
4(s22 − 2s21 + s20 + 10s01)γ2

− 1
4{15(s12 + 10s11 − 9s10 − 2s1−1) + (s33 − 3s32 + 3s31 − s30)}γ3

+ O(γ4), (2.9)

h(θ0, τ) = 1 + (c11 − c10)γ + 3(1 − c01)γ2 + 15
4 (3c11 − 4c10 + c1−1)γ3 + O(γ4),

(2.10)
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wherein cmn = cos(mθ0 + nτ) and smn = sin(mθ0 + nτ). Equations (2.9) and (2.10)
reveal that, during one cylinder rotation commencing at time t0 > 0, θ and h change
respectively by

∆θ = 2π − 15πγ2 + 15π(3 cos(θ0 + t0) + 4 cos θ0)γ3 + O(γ4),

∆h = 15π sin(θ0 + t0)γ3 + O(γ4).

Hence there is an O(γ2) uniform drift counter to the rotation of the cylinder. By
contrast, the perturbations at O(γ3) in both θ and h are dependent upon the initial
data θ0 and therefore represent a non-uniform drift which gives rise to shock for-
mation at that order. Note too the first appearance of the reflected modes c1−1 and
s1−1 at O(γ3) in (2.9) and (2.10).

In the calculation of subsequent results, the expansions (2.9) and (2.10) were
obtained up to and including terms of order O(γ5). Figure 2 shows the evolution of
the free surface as calculated via characteristics, action-angle variables and numerical
integration for the specific case γ = 0.05; the action-angle and characteristic results
differ imperceptibly at the presented resolution.† Superimposed over the crosses and
circles is the (non-overturning) spectral solution of the full evolution equation (1.2) in
the case α = 1.0 × 10−9. It is evident that both the characteristic and action-angle
solutions accurately represent the solution to large times in the non-overturning
region; specifically, the absolute error in the Hamiltonian H(θ(θ0, Ωt), h(θ0, Ωt)) lies
within the interval [10−8, 10−5] when t = 1000. But the most striking and useful
observation is from figure 2b, which shows that the characteristic and action-angle
solutions are accurate—on comparison with the spectral solution of (1.2)—even as
the gradients increase and the shock begins to form (here, at t � 250). Although
the post-shock overturning characteristic and action-angle solutions of figure 2c, d
no longer have physical meaning, they are still accurate in those regions which have
not passed into the shock. In other words, even after the shock has formed in the
case 0 < α � 1, the α ≡ 0 characteristic solution is accurate away from the shock
region.

The accuracy of (2.9) and (2.10) demonstrates that the shock time can be obtained
theoretically. The surface gradient (∂h/∂θ)t becomes infinite at a time ts given by

ts = −
(

∂θ

∂θ0

)
τ

(
Ω′(θ0)

(
∂θ

∂τ

)
θ0

)−1

=
1

30γ3 sin θ0
+ O(γ−2), (2.11)

so that, in dimensional terms, the shock-formation time is ω2µ3a3/30ρ3g3h̄6. When
γ = 0.05, (2.11) reveals that the first point into the shock emanates from approxi-
mately (because of the O(γ−2) error) θ0 = π/2 when t = 1/30γ3 � 267. At this value
of γ, the full asymptotic series (2.9) and (2.10) reveals that the first point into the
shock emanates from θ0 � 0.598π when t � 230; ts is ca. 16% too large. When γ is
reduced to 0.01, (2.11) gives ts � 33 933 and θ0 = π/2, whereas the asymptotic series
gives t � 33 148 and θ0 � 0.521π; now, ts is too large by only 2%.

† A greatly enlarged version of figure 2 reveals that the (action-angle) crosses do not exactly centre on
the corresponding (characteristic) circles: a result of the proximity to the convergence limit, particularly
as t increases, of the series reversion process used to extract the physical angle θ from the variable φ.
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Figure 2. Free-surface profiles for γ = 0.05 relative to initial frame θ0 ∈ [0, 2π) at (a) t = 100, (b)
t = 250, (c) t = 500, (d) t = 1000. ◦, α = 0 characteristic solution from (2.9) and (2.10); ×, α = 0
action-angle solution extracted from (2.4) and (2.5); , α = 0 numerical integration of
(2.1) and (2.2); , α = 1.0 × 10−9 spectral integration of full partial differential equation
(1.2).

3. Shock-like solutions: the KSE

Non-shock secularities arising purely through drift are precluded by means of the
coordinate transformations ξ = θ and η = θ − τ = ξ − Ω0t, where Ω0 is the mean
angular velocity taken over all initial data, as introduced in (2.8). A suitable two-
time-scale expansion is then

h(θ, t) = hs(θ) + hu(ξ, η, T ) = hs(θ) +
∑

n

γnHn(ξ, η, T ), (3.1)

wherein the slow time-scale is T = 30γ3t as suggested by (2.11), hu(ξ, η, T ) is the
unsteady component of the solution and hs(θ), the steady component of the solution,
is an extended version of the steady-state equation (5.1) of Hinch & Kelmanson
(2003), expanded for small α:

hs(θ) = 1 + γc1 + γ2(3
2c2 − 9αs2) + γ3(9

2c1 + 3c3 − 9α[3s1 + 11s3])

+ γ4(65
4 c2 + 55

8 c4 − α[435s2 + 1419
2 s4]) + O(γ2α2, γ5), (3.2)

where cm = cos mθ and sm = sinmθ. Spatial and temporal derivatives now transform
in (1.2) as ∂θ → ∂ξ + ∂η and ∂t → −Ω0∂η + 30γ3∂T , and the shock-formation time
is T = 1. In order to obtain physical (non-overturning) solutions, the surface tension
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α must balance the 30γ3 slow-time-scale drift towards shocks introduced in § 2. We
therefore introduce the parameter

β ≡ α

30γ3 , (3.3)

wherein the proposed balance leads us presently to assume β = O(1), although the
limiting cases β � 1 and β � 1 are indeed admissible and are discussed respectively
in §§ 4 and 5. Having substituted (3.3) and expansion (3.1) into equation (1.2),
determination of Hn is straightforward for n = 1, 2, 3. At O(γ) we have

H1(ξ, η, T ) = f1(η, T ), f1(η, 0) = − cos η. (3.4)

Determination of f1 effectively solves the problem. By design, its evolution equation
will arise at order O(γ4). At O(γ2) we have

H2(ξ, η, T ) = 3 sin ξ∂ηf1 + 3 cos ξf1 + f2(η, T ), f2(η, 0) = 3
2 cos 2η. (3.5)

H2 represents the oscillatory perturbation of H1 arising from the changing orientation
of gravity relative to the point θ(t) during one cylinder rotation. Specifically, γH2
can be interpreted as a combination of phase and amplitude (respectively first and
second terms on the right-hand side of (3.5)) corrections to H1.

At O(γ3) we have

H3(ξ, η, T ) = 15
2 cos 2ξf1 + 3 cos ξf2

1 + 33
4 sin 2ξ∂ηf1 + 3 cos ξf2

− 9
4 cos 2ξ∂2

ηf1 + 3 sin ξ∂ηf2 + 6 sin ξf1∂ηf1 + f3(η, T ),

f3(η, 0) = −9
4 cos η − 3 cos 3η.

⎫⎪⎬
⎪⎭ (3.6)

While many of the terms in γ2H3 represent corresponding phase and amplitude
corrections to H1 + γH2, the second, fifth and seventh terms on the right-hand side of
(3.6) do not. Containing first and second harmonics, H3 represents the perturbation
due to drift which, by construction of η (which contains the mean angular velocity
Ω0), is uniform and does not give rise to secularity. However, secularity (in ξ) arises
as expected—indeed, required—in the O(γ4) problem for H4, and its annihilation
requires that the as-yet-unknown function f1(η, T ) satisfies the nonlinear evolution
equation

∂T f1 − f1∂ηf1 + β∂2
η(∂2

ηf1 + f1) = 0, f1(η, 0) = − cos η, (3.7)

which is a specific case of the KSE (Holmes 1995, p. 279). Thus, the leading-order
transient perturbation satisfies a KSE with constant coefficients, which should be
contrasted with the θ-dependent equation (1.2). Note further that (3.7) reveals that
β = O(1) has the physical interpretation that surface tension is then of sufficient
magnitude to balance the O(γ3) non-uniform drift discovered in § 2.

4. Vanishingly small surface tension: the case β � 1

The fact that the dominant transient f1 satisfies the KSE (3.7) is a direct consequence
of the balance α = O(γ3). If surface tension were reduced to α = O(γ3+m), m > 0,
β cannot be redefined as O(α/γ3+m), since (3.7) would not arise at O(γ4). Rather,
when α = O(γ3+m), definition (3.3) must be retained and α considered to be of
order O(γm) � 1, where it is to be noted that there is a resultant restriction on m.
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Equation (3.1) ceases to be valid when H1 ∼ γH2. By construction, the fn in (3.4)–
(3.6) are O(1), so that H1 = O(1) and H2 = O(∂ηf1) = O(γ/α1/3), the last estimate
being based upon the shock thickness β1/3 determined in § 6. Hence, the expansion
for hu ceases to be uniformly valid when 1 = O(γ2/α1/3), i.e. α = O(γ6). Thus, if
m � 3, the shock structure is no longer determined by (3.7), and by β � 1 we mean
O(γ6) � α � O(γ3). Thus an analysis of (3.7) in the limit β → 0 is justified only if
γ3 � β.

An asymptotic expansion for the solution of (3.7) is proposed in the form

f1(η, T ) =
∞∑

n=0

βnFn(η, T ), (4.1)

wherein T = 30γ3t is the shock-formation time-scale dictated by (2.11) and, by con-
struction, all Fn are of order O(1). The O(1) problem is

∂T F0 − F0∂ηF0 = 0, F0(η, 0) = − cos η, (4.2)

with the implicit solution

F0(η, T ) = − cos(η + TF0(η, T )). (4.3)

It is evident from the discussion of the characteristic solutions of § 2 and the
shock structure in § 6 that (4.3) is the solution of (3.7) provided η is not within
O(β1/3) of the shock. The implicit solution (4.3) has a shock forming at T = 1 and
η = π/2, the amplitude of the shock thereafter eventually decaying as π/T since, if
C0 ≡ cos(η + F0T ) and S0 ≡ sin(η + F0T ), implicit differentiation of (4.3) gives

∂T F0 =
S0F0

1 − S0T
⇒ F0 ∼ b0(η)

T
, T � 1,

where b0(η) is determined as 1
2π − η. For large T , the last points into the shock are

η = −1
2π and η = 3

2π, i.e. |b0(η)| → π. Thus, between T = O(1) and T = O(β−1) �
1, |F0| (and so |f1|) decreases from O(1) to O(β) as T−1. Specifically, for T ∼ β−1,
we have C0 ∼ β and S0 ∼ 1 − 1

2β2, from which the leading-order asymptotic forms

∂ηF0 ∼ − 1
T

, ∂2
ηF0 ∼ − β

T 3 , ∂4
ηF0 ∼ −9β

T 5 (4.4)

of all terms in (3.7) are readily determined. Hence, when T ∼ β−1, F0 is of order
O(β) and the series (4.1) is no longer asymptotic, and (3.7) must be rescaled using
f1 = βF (where F = O(1)) and τ = βT to give

∂τF − F∂ηF + ∂2
η(∂2

ηF + F) = 0. (4.5)

Although an asymptotic analysis of (4.5) is not possible, numerical integrations indi-
cate that |F|max is a monotonically decreasing function of τ for large τ . Hence a
further rescaling is introduced, namely F = εG, where G = O(1) and 0 < ε � 1; note
that ε is not necessarily related to β. Then, (4.5) rescales to

∂τG − εG∂ηG + ∂2
η(∂2

ηG + G) = 0. (4.6)

The solution of (4.6) requires a two-time-scale expansion employing τ0 = τ and
τ1 = ε2τ : the ‘obvious’ slow time-scale τ1 = ετ leads to a contradiction in the O(ε)
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problem. Hence ∂τ = ∂τ0 + ε2∂τ1 in (4.6) is used together with the formal expansion

G(η, τ0, τ1) =
∞∑

n=0

εnGn(η, τ0, τ1). (4.7)

Recalling the initial condition in (3.7), the cos η spatial dependence gives the O(1)
solution as

G0(η, τ0, τ1) = A(τ1) cos η,

with the corresponding O(ε) solution readily determined as

G1(η, τ0, τ1) = − 1
24{A(τ1)}2(1 + g1e−12τ0) sin 2η,

wherein g1 is an arbitrary constant. In order to suppress secularity at order O(ε2),
A(τ1) must satisfy the amplitude-evolution equation

∂τ1A = − 1
48A3 ⇒ A(τ1) = {a0 + 1

24τ1}−1/2,

wherein a0 is determined by matching at T = O(β−1). Reverting to the original
variables, f1 ∼ βεA(ε2βT ) cos η gives

f1(η, T ) ∼
√

24β

T
cos η, T � O(β−1), (4.8)

so that the amplitude of f1 divided by β is proportional to (βT )−1/2 at large times. By
contrast, the first relationship in (4.4) indicates that, at early times, |f1|/β ∝ (βT )−1.
Note that the introduced arbitrary parameter ε is absent, as required, from (4.8).
Note also that, as G decreases as τ

−1/2
1 , any further rescaling of (4.6) continues to

give the asymptotic behaviour (4.8) for f1. However, the T−1/2 decay eventually
gives way to an exponential decay, as will be discussed in § 5 b.

The behaviour predicted by the small-β analysis is confirmed via the results por-
trayed in figure 3, which shows decaying |f1|max/β plotted against βT where |f1| is
obtained from a numerical integration of the full KSE (3.7). Most notably, the gradi-
ent of the asymptotes clearly changes as predicted from −1 to −1

2 when βT = O(1).
For β < 0.01, curves join the T−1 asymptote before switching to the T−1/2 asymp-
tote, whereas, for β > 0.1, curves head straight for the latter asymptote, taking
several decades to arrive for the larger β values. That larger β values tend directly
to the T−1/2 asymptote is entirely compatible with the analysis of § 5.

5. Large surface tension: the case β � 1

(a) Algebraic amplitude decay

Shocks do not form when β � O(γ−1) � O(1), as per Hinch & Kelmanson (2003).
The expectation of a gently decaying wave profile suggests the following two-time-
scale expansion for the solution of (3.7):

f1(η, T ) =
∞∑

n=0

β−nΦn(η, T0, T1),

where T0 = T is the (slow) shock-formation time-scale and T1 = β−1T is an even
slower time-scale. The O(1) solution is

Φ0(η, T0, T1) = −B(T0, T1) cos η, B(0, 0) = 1,
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Figure 3. Log–log plot of |f1|max/β against βT from numerical integrations of the KSE
(3.7). Descending on the left-hand side of the figure, β takes the values 1 × 10−3, 3 × 10−3,
1 × 10−2, 3 × 10−2, 1 × 10−1, 3 × 10−1 and 1. The location of the ‘kink’ in the curves—which
signifies the transition from the T −1 to T −1/2 decay—agrees well with the theoretical esti-
mate of (βT, f1/β) ∼ (π2/24, 24/π) � (0.4112, 7.639), although the numerical results suggest
that the analysis of § 4 requires β � 1 × 10−1 rather than β � 1. For the smaller values of
β, the early increase in f1/β is attributable to the formation of capillary waves. The two
straight lines correspond respectively to the theoretically obtained |f1/β| = 2π/(βT ) (upper)
and |f1/β| = 2

√
24/(βT ) (lower), wherein the factor 2 has been included to translate the lines

away from the (collapsed) numerical results.

and secularity is averted at order O(β−1) if ∂T0B ≡ 0, whence B = B(T1) and

Φ1(η, T0, T1) = − 1
24{B(T1)}2 sin 2η.

In order to suppress secularity at order O(β−2), B(T1) must satisfy the amplitude-
evolution equation

∂T1B = − 1
48B3, B(0) = 1, (5.1)

and hence

B(T ) =
{

1 +
T

24β

}−1/2

. (5.2)

Thus, for T � 1,

f1(η, T ) ∼
√

24β

T
cos η, T � O(β),

which should be contrasted with (4.8). The identical T−1/2-asymptotic behaviours
for both β � 1 and β � 1 are explained by noting that, when the amplitude A1 of
f1 is small, the rescaling f1 = A1F (F = O(1)) and τ = A1T in the KSE (3.7) gives

∂τF − F∂ηF +
β

A1
∂2

η(∂2
ηF + F) = 0, (5.3)
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Figure 4. , Algebraic and , exponential amplitude decays of dominant pertur-
bation (scaled with respect to γ) in (5.4), from the steady state when γ = 0.05 and (a) α = γ3/2,
(b) α = γ2/2.

from which small A1(� β) and large β(� 1) are seen to be equivalent, admit-
ting the same asymptotic forms. Moreover, (5.3) reveals a shock thickness of order
O({β/A1}1/3), which is O({βT}1/3), upon using the first expression in (4.4). Hence
the shock which forms at T = 1 disperses at T = O(β−1), when the amplitude is
O(β); thereafter, T−1/2 amplitude decay occurs irrespective of the magnitude of β.

(b) Transition from algebraic to exponential amplitude decay

Section 5 a reveals that the amplitude of the O(γ) term in h decays as {γ3t/24}−1/2

when β � 1, i.e. α � γ3. However, when α � γ2 (see (1.3)), Hinch & Kelmanson
(2003) discover an exponential decay, specifically exp(−81αγ2t). Therefore, as β
is further increased, a third decay region (over and above (γ3t)−1 and (γ3t)−1/2)
is encountered and, to determine the precise parameter regime of the transition
between the (γ3t)−1/2 and exp(−81αγ2t) decays, note that, for small t, (5.2) and
exp(−81αγ2t) can be expanded as

B(T ) � 1 − 75γ6

4α
t + · · · , exp(−81αγ2t) � 1 − 81αγ2t + · · · , (5.4)

respectively, so that transition from algebraic to exponential decay requires the small-
t balance α � γ2/2, i.e. in keeping with β � 1. Thus, as α is increased from O(γ3)
to O(γ2), one obtains not the algebraically decaying shock-like perturbations of the
present work but the exponentially decaying low-harmonic perturbations in Hinch
& Kelmanson (2003). Amplitude decay rates resulting from parameters spanning
this transition region are shown in figure 4. Figure 4a explains the greater-than-
expected large-time decay rates evident in figure 1c, d, and figure 4b demonstrates
the long-term comparability (over a surprisingly large time-scale, given that the
transition region was determined via small-t expansions) of the negative-exponential
and inverse-square-root decays when α = O(γ2), providing strong corroboration of
the transition region.

A more extensive view of the transition between the t−1/2 and exponential regimes
can be obtained as follows. The algebraically and exponentially decaying amplitude
A(t) expressed in terms of t satisfies

At = −75γ6

4α
A3 and At = − 81αγ2

1 + 144α2 A,
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Figure 5. Large-t transition factors φ as a function of α/γ2, or 5δ/(6
√

3). The symbols are
obtained by extracting the coefficient multiplying the exponential decay from numerical inte-
grations of (1.2) with γ = 0.03 (×), γ = 0.05 (+) and γ = 0.07 (∗), and the continuous line is
given by the limit in (5.6).

respectively, the former equation arising from (5.1) and the latter from eqns (3.8)–
(3.10) of Hinch & Kelmanson (2003). Now consider A as the solution of a proposed
‘transition’ equation

At = −75γ6

4α
A3 − 81αγ2

1 + 144α2 A, (5.5)

and approximate this by At � −νA(δ−2A2 + 1), where ν = 81αγ2 and δ =
6
√

3α/(5γ2), so that δ � 1 and δ = O(1), respectively, correspond to algebraic and
exponential decays. The solution of (5.5) with A(0) = 1 is

A(t) = {(1 + δ−2)e2νt − δ−2}−1/2,

in which the large-t transition factor—i.e. that multiplying the purely exponential
decay exp(−νt) of Hinch & Kelmanson (2003)—is therefore

φ = lim
t→∞

{1 + δ−2(1 − e−2νt)}−1/2 =
δ

(1 + δ2)1/2 =
α

γ2

(
α2

γ4 +
25
108

)−1/2

, (5.6)

so that limδ→0 φ = 0 and limδ→∞ φ = 1. Figure 5 shows a comparison between large-t
transition factors obtained numerically from (1.2) and the predicted value of φ from
(5.6), plotted as a function of α/γ2, i.e. 5δ/(6

√
3). Figure 5 both corroborates the

small-t estimate of α/γ2 ∼ 1/2 deduced via (5.4) and demonstrates the good agree-
ment between numerical solutions and theory for a range of γ values, justifying that
the heuristically proposed equation (5.5) does indeed capture the nature of the tran-
sition. The justification lies in the fact that the algebraic and exponential secular
perturbations are independent, arising in different regions of parameter space, and
so their leading-order effects may simply be added. Since β � 1 when α = O(γ2),
by the discussion of (5.3), α = O(γ2) corresponds to small amplitude A1; specifically
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A1 � β. Hence, the transition from T−1/2 to exponential decay also occurs when
A1 � β � 1, i.e. the combination of small β and small amplitude admits an expo-
nential decay, as noted at the end of § 4. A summary of all possible decay transitions,
with particular emphasis upon realizable observations based upon physical data, is
presented in § 7.

6. Quasi-steady shock structure

The implicit solution (4.3) of the KSE (3.7) applies outside the thin shock region
which forms at η = π/2. Retaining only the highest derivative for the purposes of
the inner scaling, the quasi-steady shock solution f(x), where x = η −π/2, therefore
satisfies

−f∂xf + β∂4
xf � 0, (6.1)

which can be integrated once to give

f2 − A2
s = 2β∂3

xf, (6.2)

wherein As is the shock amplitude. Then, the transformations

f = Asf̂ and x =
(

2β

As

)1/3

x̂ (6.3)

(cf. discussion on shock thickness immediately following (5.3)) reduce (6.2) to the
canonical form

f̂2 − 1 = ∂3
x̂f̂ , (6.4)

which is solved numerically using maple9† by shooting from x̂ = 0, with f̂(0) =
∂2

x̂f̂(0) = 0, such that f̂(x̂) → ±1 as x̂ → ±∞; the value ∂x̂f̂(0) � 1.060 765 34 is
required. We note that, in considering the closely related rimming-flow problem, Ash-
more et al . (2003) also employ (their eqn (3.8)) a scaling of O(α1/3), as per the second
equation in (6.3), to show that H, the steady film thickness non-dimensionalized with
respect to the flux, satisfies the Landau–Levich–Derjaguin equation H3H ′′′ +H = 1;
however, their scaling dependence on γ is different from that presently employed.

In order to effect a comparison between the quasi-steady-shock solution f̂ of the
canonical (6.4) and the shock-like solutions of (1.2), the transient disturbance in the
solution of (1.2) must be isolated and scaled appropriately. To this end, (3.1)–(3.5)
together yield

h(θ, T ) = 1 + γ(cos θ + f1(η, T )) + γ2(3
2 cos 2θ + H2(ξ, η, T )) + O(αγ2, γ3). (6.5)

Denoting by h̃ the numerical solution of (1.2), and by Ã = Ã(T ) the theoretical
amplitude (determined by (4.3)) of the decaying transient f1, (6.5) implies that

H̃(θ, T ) ≡
h̃(θ, T ) − 1 − γ cos θ − 3

2γ2 cos 2θ

γÃ
=

f1(η, T )
Ã

+ O

(
γ

Ã

)
. (6.6)

† Using both polynomial and Burlirsch–Stoer rational extrapolation in Gear’s one-step method in the
function dsolve, with relative error, absolute error and initial ∆x̂ all equal to 1.0×10−8, and a minimum
∆x̂ of 1.0 × 10−11.
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Figure 6. Plots of theoretical quasi-steady shock f̂(x̂) (solid curve) and scaled numerically deter-
mined transients H̃(θ̃, T ), in which γ, α and β are respectively: 8.0 × 10−2, 1.0 × 10−4 and
6.5104 × 10−3 (dotted curves); 1.0 × 10−1, 3.0 × 10−4 and 1.0 × 10−2 (long-dashed curves);
8.0 × 10−2, 3.0 × 10−4 and 1.953 × 10−2 (short-dashed curves). The horizontal scale is common
to both x̂ and θ̃. The ‘fanning’ of the scaled numerical transients is explained in the text.

Rescaling the independent variables via

θ =
(

2β

Ã

)1/3

θ̃ and η =
π

2
+

(
2β

Ã

)1/3

x̃, (6.7)

the function H̃(θ̃, T ) obtained via the definition in (6.6) therefore approximates the
normalized solution f1(x̃, T )/Ã of the KSE (3.7), which, by the first scaling in (6.3),
may be compared directly with the quasi-steady solution f̂(x̂) of (6.4).

H̃(θ̃, T ) is determined by first solving numerically the full governing equation (1.2)
for h̃(θ, T ) using a finite-difference method which is fourth-order in space and first-
order (explicit) in time, using 50 equally spaced points in 0 < θ < 2π. Plots are
captured at times when the slope at the origin, h̃θ(0, T ), takes its first maximum
just after T = 30γ3t � 4, 5, 6, 7, 8, 9 (e.g. at T = 4.052, 5.071, 6.089, 7.108, 8.126
and 9.144 in the case γ = 8.0 × 10−2 and α = 1.0 × 10−4 (i.e. β = 6.5104 × 10−3)).
This criterion is chosen since, for small surface tension (α � 1), the steady state is
symmetric/even about θ = 0, so that when the slope is the maximum the shock wave
should be centred on θ = 0 (cf. the first scaling in (6.7)). To find the theoretical ampli-
tude |f1(η, T )|max of the decaying transient at the specified time T , the characteristic
solution of (4.2), F0 = − cos η0, where η0 is the solution of η0 + T cos η0 = η, is used.

An inspection of unscaled results in the case γ = 8.0 × 10−2, α = 3.0 × 10−4

(i.e. β = 1.953 × 10−2) reveals that the amplitude of the transient decays by the
factor 0.471 in between T = 4.050 and T = 9.143, and the theoretical factor based
on the solution of (4.2) is 0.505; both figures confirm the prediction of 1/T decay
(which gives the exact factor 0.443). It is noteworthy that the 1/T decay is evident
well before the asymptotic T � 1 regime.
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Table 1. The four theoretically possible decay sequences

(Phases 1, 2 and 3 correspond respectively to initial decay, subsequent low-amplitude decay and
ultimate asymptotic decay.)

sequence conditions phase 1 phase 2 phase 3

I α > γ2/2 exponential exponential exponential
IIa α < γ2/2, β � 1 t−1/2 exponential exponential
IIb (i) α < γ2/2, β � 1, γ > 1/60 t−1 exponential exponential
IIb (ii) α < γ2/2, β � 1, γ < 1/60 t−1 t−1/2 exponential

Figure 6 shows a comparison between the theoretical shock solution f̂(x̂) and the
numerically determined transients H̃(θ̃, T ), the latter for a range of values of γ and α.
By construction, the quasi-steady shock curve and the transient curves for different
times should almost be superposed, the O(γ/Ã(T )) error in (6.6) precluding exact
superposition. Furthermore, x̂ and θ̃ admit only approximately the same scaling, since
the former uses the fixed amplitude As in (6.3), whereas the latter uses the slowly
decreasing amplitude Ã(T ) which, via (6.7), gives the slow (horizontal) ‘fanning’
of the H̃(θ̃, T ) curves towards the centre of figure 6. For example, the rightmost
abscissae on the dotted curves compress by a factor of approximately 0.796 (i.e. from
θ̃ = 11.341 down to θ̃ = 9.030) in between T = 4.052 and T = 9.144; this figure agrees
well with the 1/T -decay-based theoretical compression of (4.052/9.144)1/3 = 0.762.

The superposition is best in the vicinity of the origin, where the slope and the
main rise of the shock (for |θ̃| < 1.5) agree well. For the lower values of surface ten-
sion (dotted curves) the maximum height agrees extremely well with the theoretical
solution (solid line), which has a maximum of f̂ = 1.226 857 when x̂ = 2.079 55.
Outside the main rise, however, the amplitude of the scaled transient solutions is
considerably smaller than that of the theoretical shock because, in the cases stud-
ied, the shock-amplitude decay was accompanied by a thickening of the shock (not
immediately evident due to the scaling in figure 6) to between 10% (at T � 4) and
20% (at T � 9) of the whole interval.

7. Decay transition sequences and their observability

Three distinct amplitude decay rates have been discovered and the transitions
between them discussed in general terms. First, figure 3 and the discussion thereon
considers the transition between the T−1 decay of § 4 and the and T−1/2 decay of
§ 5, then figure 5 summarizes the transition between the T−1/2 decay and the expo-
nential decay analysed by Hinch & Kelmanson (2003). Depending on the relative
magnitudes of γ, α and β, a number of decay sequences may arise.

Note from table 1 that the overall condition γ � 1/60 must apply if sequence
IIa is to be observed in practice. Whether or not this condition—and, indeed,
any other condition in table 1—is realistic can be determined from the informa-
tion in table 2, which enables determination of α/γ2, β and γ when the radius
a, angular velocity ω and film thickness h are prescribed. The information, for
five different fluids at 100 KPa and 288 K, is based upon the physical data (in SI
units) at http://imartinez.etsin.upm.es/dat1/eLIQ.htm, together with a value of
g = 9.81 m s−2.
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Table 2. Values of parameter combinations in table 1, based upon physical data (see text), for a
film of thickness h on a cylinder of radius a rotating with angular velocity ω

(This information can be used to determine experimental (h, a, ω) combinations admitting the
theoretically possible decay sequences of table 1.)

fluid
ha2

ω

α

γ2

h3a

ω2 β
ωa

h2 γ

water 2.28 × 10−12 2.33 × 10−20 3.26 × 106

ethylene glycol 2.43 × 10−11 4.47 × 10−18 1.81 × 105

glycerine 1.73 × 10−9 1.96 × 10−14 2.94 × 103

silicone oil DMS-10 6.89 × 10−12 7.02 × 10−19 3.27 × 105

mercury 1.29 × 10−13 1.51 × 10−21 2.86 × 107

For all fluids (i.e. not just those referenced in table 2), sequence I of table 1 can
at first sight be achieved by making the film thickness sufficiently small. However, it
is to be borne in mind that the lubrication approximation (1.2) ceases to be valid as
van der Waals effects dominate in the limit h → 0, i.e. solutions in which h is of the
order of a fraction of a micrometre should be rejected. To illustrate this, consider an
example with a fixed at 1 cm. Taking α/γ2 = 1 > 1/2, an angular velocity of ω = 20π
gives h = 1.09 mm for glycerine and h = 1.43 µm for water; to sustain a water film
of thickness 1.43 mm would therefore require an angular velocity of ω = 20 000π. It
is inferred that sequence I would be observable for glycerine but not for water. If
γ = 1

600 � 1
60 , a = 10−2 and ω = 20π, h = 0.596 mm for glycerine and h = 17.9 µm

for water. Hence, sequence IIa would be observable for the former but not for the
latter unless, as above, ω were increased by a factor of 1000. Finally, if β = 1/10 � 1,
a = 10−2 and ω = 20π, h = 4.26 mm for glycerine and h = 0.14 mm for silicone oil
DMS-10; both are perfectly reasonable from an experimental viewpoint. However,
γ = 0.0851 > 1

60 for glycerine and γ = 0.0103 < 1
60 for silicon oil DMS-10, so that

the former and latter respectively admit the IIb (i) and IIb (ii) decay sequences. It is
concluded that all of the four discovered decay sequences are observable in practice.

References

Ashmore, J., Hosoi, A. E. & Stone, H. A. 2003 The effect of surface tension on rimming flows
in a partially filled rotating cylinder. J. Fluid Mech. 479, 65–98.

Frigo, M. & Johnson, S. G. 1998 Fftw: an adaptive software architecture for the FFT. In Proc.
IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Seattle, vol. 3, pp. 1381–1384.
New York: IEEE Press.

Hinch, E. J. & Kelmanson, M. A. 2003 On the decay and drift of free-surface perturbations in
viscous, thin-film flow exterior to a rotating cylinder. Proc. R. Soc. Lond. A459, 1193–1213.

Holmes, M. H. 1995 Introduction to perturbation methods. Springer.
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J.

Méc. 187, 651–673.
Pukhnachev, V. V. 1977 Motion of a liquid film on the surface of a rotating cylinder in a

gravitational field. Z. Prikl. Mekh. Tekh. Fiz. 3, 78–88. (English Transl. 1977 J. Appl. Mech.
Tech. Phys. 18, 344–351.)

Proc. R. Soc. Lond. A (2004)

 on 10 July 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/



