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The intrinsic convection in a settling suspension is shown to have its origins in the buoyancy of the
particle-depleted layer next to the side walls. The convection is calculated using a simple model in
which the particles are represented by an excluded volume and by point forces at their centres. A
boundary layer approximation is developed for vessels which are much wider than the particle
diameter. It is shown that the direction of the convection depends critically on assumptions about the
formation of the particle-depleted layer during the placement of the suspension into the vessel.
© 1996 American Institute of Physics.@S1070-6631~96!00505-3#

We consider the sedimentation of rigid spheres sus-
pended in a viscous fluid in a vessel with vertical side walls.
In addition to the sedimentation velocity of the heavy par-
ticles relative to the local fluid, there can also be a global
convection of the suspension in which the fluid and the par-
ticle move together. This convection has been studied by
Geigenmu¨ller and Mazur,1 and is called the ‘‘intrinsic con-
vection.’’ They have shown that in a dilute suspension the
magnitude of this convection isO(V0c) where V0 is the
sedimentation velocity of an isolated sphere andc is the
volume fraction of the particles in the suspension. The intrin-
sic convection is therefore comparable with the correction to
the settling velocity due to a small non-zero concentration
c. It is important to note that this intrinsic convection occurs
in vessels with vertical walls and so is different from the
Boycott effect, which requires inclined walls to generate its
faster convection currents.

In the Geigenmu¨ller and Mazur model, the particles are
rigid spheres and their influence on the fluid is approximated
by a uniform distribution of point forces distributed over the
surface of the particles. Particle-particle and wall-particle in-
teractions are thereby neglected. We adopt an even simpler
model in which the particles are replaced by point forces
acting at their centers. These point forces are uniformly dis-
tributed in the container so that particles can overlap with
one another. We retain however the constraint that the par-
ticles cannot overlap with the wall.

The governing equations for the bulk motion of the sus-
pension, i.e. of the particles and fluid moving together, are
thus taken to be

¹•u5 0, ~1!

052¹p1m¹2u1r~x!g. ~2!

The point particle approximation leaves the viscosity of the
suspension equal to the solvent valuem. The approximation
also gives a simple expression for the densityr(x), equal to
the solvent valuer f within the particle-depleted layer next to
the wall of thicknessa the radius of the particles, and equal
to the suspension valuers5r f(12c)1rpc whererp is the
density of the particles in the bulk of the suspension. The
above equations are subject to the no slip boundary condi-
tion,

u50, ~3!

on the walls of the vessel.
We consider a tall vessel with vertical side walls. Mak-

ing the side walls vertical suppresses the rapid convection of
the Boycott effect. Away from the bottom and the top, the
flow will be vertical and the same over each horizontal sec-
tion. From the incompressibility~1! and the condition of no
net flux through the bottom of the vessel in~3!, we deduce
that there is no net flow across any horizontal section,

E
z5const

wdxdy50. ~4!

Applying this condition determines the vertical pressure gra-
dient which is constant in a tall vessel.

It is a simple matter to solve~2! subject to~3! and~4! in
closed form for the space between two vertical plane walls.
In Fig. 1 we compare our results with those of Geigenmu¨ller
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and Mazur for that case of a channel of width of 10 particle
diameters. We see the buoyant particle-depleted layer next to
the wall drives an upward velocity with a maximum approxi-
mately 2V0c at one particle radius from the wall. The circu-
lation is completed by a downward return flux in the center
with a maximum approximately2V0c. There is little differ-
ence between the results of Geigenmu¨ller and Mazur which
have the weight of the particles distributed over their surface
and our simpler model with the weight concentrated at the
center. Similar remarks apply to the case of a vessel of a
circular cylinder, which we do not display here.

The intrinsic convection has not to our knowledge been
observed experimentally. Most measurements of the sedi-
mentation velocity track the front between the suspension
and the clear fluid above. This method cannot see circulation
inside the suspension. The predicted circulation would de-
flect the interface by a fraction of a particle diameter,
O(2a2/9b) where b is the width of the vessel, thus well
within the uncertainty of the position of the interface. There
have been some observations of the velocity of individual
particles in a sedimenting suspension. These find large varia-
tions in velocity between different particles due to hydrody-
namic interactions. The average velocities reported so far
involve many particles in different parts of the suspension,
so averaging out any internal circulation.

When the particles are small compared with the width of
the vessel, a boundary layer analysis is possible. To leading
order the pressure is the hydrostatic pressure required to sup-
port the weight of the suspension in the majority of the ves-
sel ~the outer region of the boundary layer analysis!,

dp

dz
;2rsg. ~5!

This pressure gradient is unchanged in the particle-depleted
wall layer, because with no motion perpendicular to the wall
the pressure gradient can have no component in that direc-

tion, and so the pressure is solely a function of height. Thus
the governing momentum equation~2! reduces in the wall
layer to

m
d2w

dx2
52~rp2r f !cg, ~6!

wherex is measured normal to the wall. We solve this equa-
tion subject to the no slip conditionw50 on the wall and a
no stress conditionmdw/dx50 at the edge of the wall re-
gion one particle radiusa from the wall. This no stress con-
dition applies at lowest order because the majority of the
vessel will have velocities of the same magnitude but with
much longer length scales than in the wall layer. Integrating
~6!, we obtain the velocity on the edge of the wall layer,

w*5
9

4
V0c, ~7!

using the settling speed of an isolated sphere
V052a2(rp2r f)g/9m.

In the majority of the vessel outside the particle-depleted
layer, the suspension is dragged upwards by the effective slip
velocityw* on the edge of the wall layer. In order to comply
with the no net flux condition~4! a small downward pressure
gradient is required to drive a Poiseuille return flow super-
imposed on this uniform upwardw* . We note that the extra
pressure gradient required isO(mw* /b

2) where b is the
width of the vessel, and that this a small correction
O(a2/b2) relative to the principal hydrostatic balance.

While the effective slip velocityw* is independent of
the shape of the cross-section of the vertically sided vessel,
the Poiseuille return flow does depend on the shape. For two
plane walls, the Poiseuille flow is parabolic with a maximum

downwards velocity at the centre2 1
2w* . We plot our

boundary layer solution also in Fig. 1. It over predicts the
maximum velocity in the wall region due to higher order
corrections which modify the no stress condition on the edge
of the layer.

The boundary layer analysis permits further extensions
to vessels which are not tall, although they must still have
vertical side walls. The argument which gave the slip veloc-
ity w* would be applicable near to the top and the bottom of
the suspension, so long as the vessel is wide compared with
the particles and the suspension is uniformly concentrated in
the interior. Of course within a couple of particle radii of the
top and bottom the no stress condition would fail, but this is
a negligibly small region. Thus the problem reduces to find-
ing the three-dimensional return flow inside the non-tall ves-
sel, which is to be superimposed on a uniform upward ve-
locity w* , the return flow ensuring that there is no net flux
across any horizontal section. This remark could lead to a
simpler approach than the one used by Geigenmu¨ller and
Mazur2 to calculate the intrinsic convection taking into ac-
count the meniscus at the top of the suspension.

The boundary analysis emphasises the origin of the in-
trinsic convection is the buoyancy of the particle-depleted
wall layer compared with the uniformly concentrated suspen-
sion outside. This raises the questions of how the suspension
was placed in the vessel and what happened to the particles
which were associated with the fluid which is destined for

FIG. 1. The vertical motion of the intrinsic convection in a homogeneous
dilute suspension, normalised by the settling speed of an isolated sphere
V0 and the volume fractionc. The dash–dotted curve is the result of Gei-
genmüller and Mazur, the continuous curve is the solution of our simplified
model with the weight of the spheres exerted at their centers, and the dashed
curve is the result of our boundary analysis.
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the wall layer. If the suspension is vigorously stirred, or if
there is strong Brownian motion, then the particles will be
uniformly distributed outside the wall layers. On the other
hand, if vertical walls are carefully introduced into an ini-
tially well stirred suspension, and the particles have no
Brownian motion, then the particles associated with the wall
fluid will be displaced sideways just to the edge of the wall
layer.

We can model the latter case of particles which were in
the wall-layer fluid being displaced to the edge of the wall
layer as a mass (rs2r f)a5(rp2r f)ca per unit area on the
edge of the wall layer. The weight of this mass requires a
stressmdw/dx52(rp2r f)cag to be exerted from just in-
side the wall layer, as the outside is unable to exert any stress
to leading order. Solving~6! using this condition instead of
the earlier no stress boundary condition produces a velocity
on the edge of the wall layer,

w*52
9

4
V0c.

This velocity is the same magnitude as our original model,
but is in the opposite direction. It is clear that the displaced
mass at the edge of the wall layer is more successful at
driving a downward flow than its deficit nearer to the wall is
at driving an upward flow.

Finally we must remark the hydrodynamic interactions
of the spherical particles with the wall have been taken into
account only in a very approximate way, treating the par-
ticles as point forces. It is necessary to return to this in the
future using instead the actual distribution of force over the
surface of a particle which can be found from the solution of
one particle interacting with the wall.
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