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S shape of a granular pile in a rotating drum
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The shape of a granular pile in a rotating drum is investigated. Using discrete elements method �DEM�
simulations we show that the “S shape” obtained for high rotation speed can be accounted for by the friction
on the end plates. A theoretical model which accounts for the effect of the end plates is presented and the
equation of the shape of the free surface is derived. The model reveals a dimensionless number which quan-
tifies the influence of the end plates on the shape of the pile. Finally, the scaling laws of the system are
discussed and numerical results support our conclusions.
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Among all the geometries used to study granular flows,
the rotating drum might be the most complex �1–3�. Depend-
ing on the angular velocities, two different regimes occur. At
low rotation speed the free surface of the pile is inclined and
flat, but a significant curvature appears at high rotation
speed: the so-called S shape �4–6�. Up until now this tran-
sition remains relatively unexplored �1,7�. Different explana-
tions have been proposed, but no consensus has been
reached. One possible origin of the curvature of the bed is
the centrifugal forces acting on the granular flow. This effect
can be quantified by the Froude number: FR=R�2 /g, where
� is the angular rotation speed of the drum, R its radius, and
g the gravitational acceleration. Another possible cause of
the S shape is the “feeding inertia” of the grains. If the
rotation speed is high then the velocity of the grains, v, can
be very high and the grains can display ballistic trajectories.
The vertical distance, �, traveled by such a grain should be
compared to the radius of the drum. This effect is again
quantified by the Froude number: � /R=v2 / �2gd�
=R2�2 / �2gR�=FR/2. Although these effects can indeed ac-
count for the curvature of the free surface, the S shape can
be observed for very low values of the Froude number �typi-
cally, FR=10−4, see �7�, or FR=10−3 in Fig. 2�. This indi-
cates that, in this case, the centrifugal force is not the origin
of the S shape. Another explanation is then needed.

Several other models have been proposed �2,8–10� and
were able to recover the S shape. Yet, none has taken into
account the influence of the end plates. Here instead, we
show that in short drums, the S shape can be explained by
the friction of the end plates of the cylinders. This idea is
based on recent work on confined granular flows which have
shown that the sidewalls of a channel can drastically influ-
ence the flow properties �11–16�. In particular, Khakhar et al.
�11� reported that the inclination of a flow on a heap in-
creases with increasing flow rate, a phenomenon later ex-
plained by Taberlet et al. �13�. These authors have derived a
law linking the inclination of the free surface, �, with the
flow thickness, h, and the channel width, L,

tan � = �i + �w
h

L
, �1�

where �i and �w are two effective friction coefficients de-

scribing the internal and sidewalls frictional properties, re-
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spectively �see �13� for details�. In a rotating drum, the flow
rate is the highest near the center of the drum, which is also
the point at which the free surface is the steepest. This sup-
ports the idea that the end plates can have a crucial influence
on the shape of the free surface. The outline of the paper is as
follows: first the simulation method is presented. The crucial
effect of the end plates on the shape of the pile is then evi-
denced by two numerical tests: one with frictional and one
with frictionless end plates. A theoretical model is presented
and the equation of the free surface is derived. Finally, the
scaling laws of the system are discussed.

In this paper, we consider a cylindrical drum of radius R
which rotates at a constant angular velocity �. The drum is
partially filled with granular material. The position along the
horizontal and vertical axes are labeled x and y, respectively,
and the local slope of the free surface is denoted ��x�
�see Fig. 1�. For all the results shown in this paper, � is large
enough to produce continuous flows but small enough to
neglect centrifugal forces and the feeding inertia effects, the
Froude number being kept below 1.

The shape of the free surface of the pile is investigated
through numerical simulations of soft-sphere molecular dy-
namics method. Although not flawless, this type of simula-
tion has been widely used in the past two decades and has
proven to be very reliable for the study of granular flows in
a rotating drum �17–19�. The forces acting between two col-
liding grains are computed from the normal overlap, �n, and
the equations of motion �displacement and rotation� are inte-
grated using the Verlet method �20�. The schemes used for
the forces calculations are the spring-dashpot and the regu-
larized Coulomb laws, with the following values: particle

FIG. 1. We consider a half-filled three-dimensional �3D� drum
of radius R and length L. The local slope of the free surface is
denoted ��x�. Right: light gray corresponds to flowing material and

dark gray to solid rotation.
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diameter d=8 mm, mass=0.16 g, spring constant kn
=40 000 N m−1, viscous damping �n=0.5 s−1, leading to a
normal coefficient of restitution en=0.64, regularization con-
stant �t=5 s−1, time step dt=10−6 s and, unless otherwise
mentioned, �=0.3. Note that the restitution, i.e., the inelas-
ticity, does not seem to play a role. Different values of en
were tried �0.3�en�0.8� and did not affect the shape ofthe
pile. The collisions against the wall and the end plates are
treated like particle-particle collisions with one of the par-
ticles having infinite mass and radius, which mimics a flat
surface. Note that the mechanical properties of the grain/end-
plate collisions can be chosen independently of those of the
grain/grain collisions. In particular, it is possible to simulate
frictional grains placed in a drum with frictionless end plates.

The radius of the drum R is typically 100d, and its length,
L, is varied from 10d to 200d. The grains are first released in
the drum and rotation is started �at rotation speed �� only
after they have settled. The number of grains is chosen so
that the drum is half filled. Our simulations contain a large
number of particles, between 5000 and 70 000, and run for
typically five full rotations of the drum. The granular mate-
rial is made slightly polydisperse with an equal number of
grains of diameter d and 4/5d, in order to avoid crystalliza-
tion. The snapshots of the pile were taken after two full
rotations after the shape has reached a steady state. On such
short times no radial �or axial� segregation was observed.
Note that no interstitial fluid is present in our simulation but
its effect is expected to be negligible for the low values of �
�typically FR=10−3�.

In order to demonstrate the crucial influence of the end
plates, and in particular their frictional properties, two simu-
lations differing only by their end-plate friction coefficients
were performed. Figure 2 shows two runs with identical val-
ues of all parameters, one with frictional end plates �a� and
the other with frictionless end plates �b�. The two shapes are
very different, displaying on one hand the S shape �a�, and
on the other hand a flat surface �b�. The rotation speed being
the same in both cases �meaning that FR is the same� this
result gives strong evidence that the end plates have a crucial
influence on the shape of the free surface and shows that
neither the centifugal force nor the feeding inertia is respon-
sible for the S shape.

Let us now present a theoretical model based on Eq. �1�.
The aim of our model is to derive the equation for the posi-

FIG. 2. Side views of the 3D drum. In both cases, R=80d, L
=10d, �=0.3, �=0.1 rad/s, and N=36 000 grains. �a� frictional
and �b� frictionless end plates. The difference in shape is very clear
and originates from a change in the frictional properties of the end
plates. This provides evidence of the crucial role of the end plates
on the shape of the free surface.
tion of the free surface, that is, to find an expression for
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ysurf�x�. The following notations will be used: 	̄ is the aver-
age density of the material �in kg m−3�, qfeed�x� is the local
feeding rate per unit length and width along the flow
�in kg s−1 m−2�, Qflow�x� is the local flow rate per unit width
�in kg s−1 m−1�, �̇ is the shear rate, h�x� is the local thickness
of the flow, g is the gravity, and d is the grain diameter.

Some authors mentioned the dependence of �̇ on the flow
properties �7,21�. Yet, in many cases this dependence is weak
�22� so, in order to simplify our analysis we assume that the
shear rate is a constant. For geometrical reasons, the feeding
rate, qfeed, increases linearly with the distance from the cen-
ter of the drum, r, and is positive in one half of the drum
�x
0� and negative in the other half. The feeding rate then
reads

qfeed�x� = 	̄�r . �2�

Because of mass conservation, the flow rate at a given point
of the free surface �at the position �x, ysurf�x��� has to be
equal to the integral of the feeding rate coming from the
solid rotation between the outer cylinder and the considered
radius, r=�x2+ysurf

2 ,

Qflow�x� = �
r

R

qfeed�r�dr =
	̄�

2
�R2 − r2� =

	̄�

2
�R2 − x2 − ysurf

2 � .

�3�

To go further, one needs a relation between the flow thick-
ness and flow rate. Previous theories for the shape, e.g.,
�8,9�, have made different assumptions about the velocity
profiles and the thickness of the flowing layer but those pre-
date experimental observations. Here we build a model based
on the observations in �3� which report a linear velocity pro-
file with a near universal shear rate. Since we consider that
the shear rate is a constant, dimensional analysis yields �̇
=a�g /d. For simplicity we use a=1 but this value has no
effect on the qualitative results presented below. Hence the
mass flow in the layer of thickness h with the linear velocity
gradient �̇ is

Qflow�x� =
1

2
	̄�̇h�x�2 =

	̄

2
�g

d
h�x�2. �4�

The slope of the free surface �i.e., �ysurf /�x� is given by Eq.
�1�,

�ysurf

�x
= tan ��x� = �i + �w

h�x�
L

. �5�

Using �3� and �4�, one can express h as a function of x and
plugging it into �5� leads to

�ysurf

�x
= �i + �w	d�2

g

1/4 1

L
�R2 − x2 − ysurf

2 . �6�

Equation �6� shows that the slope has a minimum value �i
at the outer cylinder and a maximum at the center. It can be
numerically integrated and the shape of the pile can be plot-
ted for different values of the parameters �see Fig. 3�. The
equation is integrated outwards starting from the center of
the drum �x=y=0� using the Euler method. Note that no
-2
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additional condition is needed since the size of the drum is
embedded in Eq. �6� while its symmetry ensures a total mass
of 1/2. Note, however, that Eqs. �1�–�6� do not require any
assumptions regarding the filling ratio. Therefore, Eq. �6� can
be integrated from any point, for instance on the outer
boundary, after what the corresponding filling ratio could be
computed. For frictionless end plates �i.e., �w=0�, the free
surface is a flat plane of equation y=�ix, which confirms the
results of Fig. 2. With increasing influence of the end plates
a curvature appears and the pile displays an S shape, which
qualitatively reproduces the experimental and numerical be-
havior.

One major criticism can be made regarding the present
model: Eq. �1� was derived for uniform flows and its validity
for flows in a rotating drum is questionable since the flow
rate varies along the flow. Moreover, when the grains have
acquired a high velocity during the flow, they can form an
upward tail at the end of the slope. Therefore our model
cannot reproduce this upward tail since the inertia of the
grains is neglected.

The model indicates that there are different ways of
changing the influence of the end plates. One way is to re-
duce their frictional properties as demonstrated by Fig. 2,
and another way is to increase the length of the drum. In-
deed, when L increases, the second term in Eq. �6� vanishes
and the free surface should tend toward a flat plane. This is
demonstrated by Fig. 4, which shows three runs with increas-
ing drum length while keeping the radius, filling ratio, fric-
tional properties, and rotation speed constant. In a narrow
drum �Fig. 4�a�, L=10d� the pile displays a well-marked S
shape. In a longer drum �Fig. 4�b�, L=50d� the free surface
flattens although a curvature is still visible. When the length
is further increased �Fig. 4�c�, L=300d� the system relaxes to
its ground state consisting of a flat surface. This fact gives
further support to our model. Once again, since the radius
and the rotation speed are identical for all three runs, FR is
identical as well, which shows that in this case, the S shape
originates neither from the centrifugal force nor the feeding

FIG. 3. �Color online� Numerical solutions for ysurf for R=1,
�i==0.3, and various values of �=�w /L�d�2 /g�1/4. For �=0,
the influence of the end plates is null and the free surface is flat.
When � is increased, i.e., increasing influence of the end plates, a
curvature appears and the free surface displays an S shape.
inertia.
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Let us now discuss the scaling laws of the system. First,
note that Eq. �6� can be made dimensionless using the re-
duced variables x̃=x /R and ỹ=ysurf /R,

�
� ỹ

� x̃
= �i + �w��1 − x̃2 − ỹ2

� = 	d�2

g

1/4R

L
� . �7�

Equation �7� states that the free surface has a ground state
consisting of a plane of slope �i from which it deviates when
the end plates play an important role. Moreover, the shape of
the free surface in dimensionless units depends only on the
value of � which therefore contains all the scaling laws of
the system. Among them, if the radius R is varied while
keeping d, g, and L constant, the rotation speed should scale
as the inverse of R2: ��1/R2. Similarly, one can find the
following scaling laws linking the rotation speed to the drum
length and particle diameter: ��L2 and ��1/�d. In par-
ticular, if the radius of the drum is doubled, the rotation
speed should be reduced by a factor 4 in order to keep �
constant and obtain identical shapes. Similarly, if the length

FIG. 5. �Color online� Rescaled plots of the position of the free
surface for various values of R, L, and �: Triangles: R=80d, L
=10d, �=0.05 rad/s; squares: R=80d, L=20d, �=0.2 rad/s;
circles: R=40d, L=10d, �=0.2 rad/s. In the simulation, the posi-
tion of the free surface is calculated by identifying the highest grain
located at a position x. R, L, and � are varied while keeping �
constant. The data collapse onto one unique curve which validates

FIG. 4. Side views of the 3D drum. In all cases, R=40d, �
=0.3, and �=0.2 rad/s. �a� L=10d, �b� L=50d, �c� L=300d. The
longer the channel, the flatter the surface. This result gives further
support to the idea that the end plates are responsible for the S
shape of the free surface.
the proposed scaling laws.
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of the drum is doubled, the rotation speed has to increase by
a factor of 4. These two examples are illustrated in Fig. 5,
which shows rescaled plots of the free surface for various
values of R, L, and � while keeping � constant. The differ-
ent sets of data collapse onto one unique curve, giving nu-
merical confirmation of the scaling laws inferred from Eq.
�7�. Let us mention here that the scaling law ��1/R2 and
��1/�d are compatible with experimental observations re-
ported by Felix �7�. One can also notice that �4

=FRd /R�R /L�4. With the Froude number and the ratio d /R
being small, it appears that the end plates have a significant
effect only if the aspect ratio R /L is large.

We have shown that frictional end plates have a major and
nontrivial influence on the shape of a granular pile in a ro-
tating drum. Through numerical simulations we have dem-
onstrated that the S shape disappears when the friction on
the end plates vanishes or when the drum is long enough.
Our theoretical model supports the idea that the end plates

are responsible for the curvature of the free surface and

Garcia-Rojo, H. Hermann, and S. McNamara �Stuttgart, 2005�,
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shows that the dimensionless number � �which includes all
the relevant parameters: particle size, drum length and ra-
dius, rotation speed, and gravity� entirely describes the shape
of the pile. Our theoretical analysis could be improved by
including the inertia of the grains. A model similar to that of
Khakhar et al. �23� could be adapted by adding a friction
term accounting for the effect of the end plates. Such a
model will be presented in a future paper. Finally, we have
presented only a few scaling laws regarding the shape of the
free surface but many more can be inferred from the expres-
sion of �.
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